Advertisement

Current Sexual Health Reports

, Volume 9, Issue 4, pp 296–304 | Cite as

Testosterone and Physical Function

  • Swaytha Yalamanchi
  • Rita R. Kalyani
  • Brian Buta
  • Adrian Dobs
Medical Comorbidities (M Miner, S Parish and A Goldstein, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Medical Comorbidities

Abstract

Purpose of Review

The purpose of this review is to provide an overview of recent data on the relationship of testosterone with physical function.

Recent Findings

The safety of testosterone treatment in older men who do not have hypogonadism has increasingly been questioned. In recent years, multiple studies have been performed to better understand the relationship between testosterone and physical function.

Summary

Overall, the relationship between testosterone and physical function is unclear. Endogenous and exogenous testosterones are associated with favorable changes in body composition and, to a lesser extent, muscle strength. However, the relationship between testosterone and physical function is less clear in healthy older men. Exogenous testosterone is associated with favorable changes in body composition and strength, but further data are needed to understand if treatment is associated with functional improvements and ultimately decreased disability and morbidity.

Keywords

Testosterone Androgens Sex hormones Physical function, aging Body composition Strength 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published within the last three years, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Bhasin S, Cunningham GR, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(6):2536–59.PubMedCrossRefGoogle Scholar
  2. 2.
    Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR, Baltimore Longitudinal Study of Aging. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab. 2001;86(2):724–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Lapauw B, Goemaere S, Zmierczak H, Van Pottelbergh I, Mahmoud A, Taes Y, et al. The decline of serum testosterone levels in community-dwelling men over 70 years of age: descriptive data and predictors of longitudinal changes. Eur J Endocrinol. 2008;159(4):459–68.PubMedCrossRefGoogle Scholar
  4. 4.
    Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87(2):589–98.PubMedCrossRefGoogle Scholar
  5. 5.
    Morley JE, Kaiser FE, Perry HM, Patrick P, Morley PM, Stauber PM, et al. Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metabolism. 1997;46(4):410–3.PubMedCrossRefGoogle Scholar
  6. 6.
    Gray A, Feldman HA, McKinlay JB, Longcope C. Age, disease, and changing sex hormone levels in middle-aged men: results of the Massachusetts Male Aging Study. J Clin Endocrinol Metab. 1991;73(5):1016–25.PubMedCrossRefGoogle Scholar
  7. 7.
    Orwoll E, Lambert LC, Marshall LM, Phipps K, Blank J, Barrett-Connor E, et al. Testosterone and estradiol among older men. J Clin Endocrinol Metab. 2006;91(4):1336–44.PubMedCrossRefGoogle Scholar
  8. 8.
    Yeap BB, Almeida OP, Hyde Z, Norman PE, Chubb SA, Jamrozik K, et al. In men older than 70 years, total testosterone remains stable while free testosterone declines with age. The Health in Men Study. Eur J Endocrinol. 2007;156(5):585–94.PubMedCrossRefGoogle Scholar
  9. 9.
    Simon D, Preziosi P, Barrett-Connor E, Roger M, Saint-Paul M, Nahoul K, et al. The influence of aging on plasma sex hormones in men: the Telecom Study. Am J Epidemiol. 1992;135(7):783–91.PubMedCrossRefGoogle Scholar
  10. 10.
    Svartberg J, Midtby M, Bonaa KH, Sundsfjord J, Joakimsen RM, Jorde R. The associations of age, lifestyle factors and chronic disease with testosterone in men: the Tromso Study. Eur J Endocrinol. 2003;149(2):145–52.PubMedCrossRefGoogle Scholar
  11. 11.
    Harman SM, Tsitouras PD. Reproductive hormones in aging men. I. Measurement of sex steroids, basal luteinizing hormone, and Leydig cell response to human chorionic gonadotropin. J Clin Endocrinol Metab. 1980;51(1):35–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Nieschlag E, Lammers U, Freischem CW, Langer K, Wickings EJ. Reproductive functions in young fathers and grandfathers. J Clin Endocrinol Metab. 1982;55(4):676–81.PubMedCrossRefGoogle Scholar
  13. 13.
    Zmuda JM, Cauley JA, Kriska A, Glynn NW, Gutai JP, Kuller LH. Longitudinal relation between endogenous testosterone and cardiovascular disease risk factors in middle-aged men. A 13-year follow-up of former Multiple Risk Factor Intervention Trial participants. Am J Epidemiol. 1997;146(8):609–17.PubMedCrossRefGoogle Scholar
  14. 14.
    Araujo AB, O'Donnell AB, Brambilla DJ, Simpson WB, Longcope C, Matsumoto AM, et al. Prevalence and incidence of androgen deficiency in middle-aged and older men: estimates from the Massachusetts Male Aging Study. J Clin Endocrinol Metab. 2004;89(12):5920–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Mulligan T, Iranmanesh A, Kerzner R, Demers LW, Veldhuis JD. Two-week pulsatile gonadotropin releasing hormone infusion unmasks dual (hypothalamic and Leydig cell) defects in the healthy aging male gonadotropic axis. Eur J Endocrinol. 1999;141(3):257–66.PubMedCrossRefGoogle Scholar
  16. 16.
    Veldhuis JD, Urban RJ, Dufau ML. Differential responses of biologically active luteinizing hormone secretion in older versus young men to interruption of androgen negative feedback. J Clin Endocrinol Metab. 1994;79(6):1763–70.PubMedGoogle Scholar
  17. 17.
    Veldhuis JD, Zwart A, Mulligan T, Iranmanesh A. Muting of androgen negative feedback unveils impoverished gonadotropin-releasing hormone/luteinizing hormone secretory reactivity in healthy older men. J Clin Endocrinol Metab. 2001;86(2):529–35.PubMedGoogle Scholar
  18. 18.
    Matsumoto AM. Fundamental aspects of hypogonadism in the aging male. Rev Urol. 2003;5(Suppl 1):S10.Google Scholar
  19. 19.
    Liu PY, Beilin J, Meier C, Nguyen TV, Center JR, Leedman PJ, et al. Age-related changes in serum testosterone and sex hormone binding globulin in Australian men: longitudinal analyses of two geographically separate regional cohorts. J Clin Endocrinol Metab. 2007;92(9):3599–603.PubMedCrossRefGoogle Scholar
  20. 20.
    Belanger A, Candas B, Dupont A, Cusan L, Diamond P, Gomez JL, et al. Changes in serum concentrations of conjugated and unconjugated steroids in 40- to 80-year-old men. J Clin Endocrinol Metab. 1994;79(4):1086–90.PubMedGoogle Scholar
  21. 21.
    O'Connell MD, Ravindrarajah R, Tajar A, Wu FC. Low testosterone in ageing men: a modifiable risk factor for frailty? Trends Endocrinol Metab. 2011;22(12):491–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Derby CA, Zilber S, Brambilla D, Morales KH, McKinlay JB. Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: the Massachusetts Male Ageing Study. Clin Endocrinol. 2006;65(1):125–31.CrossRefGoogle Scholar
  23. 23.
    Mohr BA, Bhasin S, Link CL, O'Donnell AB, McKinlay JB. The effect of changes in adiposity on testosterone levels in older men: longitudinal results from the Massachusetts Male Aging Study. Eur J Endocrinol. 2006;155(3):443–52.PubMedCrossRefGoogle Scholar
  24. 24.
    Travison TG, Araujo AB, Kupelian V, O'Donnell AB, McKinlay JB. The relative contributions of aging, health, and lifestyle factors to serum testosterone decline in men. J Clin Endocrinol Metab. 2007;92(2):549–55.PubMedCrossRefGoogle Scholar
  25. 25.
    Wu FC, Tajar A, Pye SR, Silman AJ, Finn JD, O'Neill TW, et al. Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European Male Aging Study. J Clin Endocrinol Metab. 2008;93(7):2737–45.PubMedCrossRefGoogle Scholar
  26. 26.
    Crespo CJ, Keteyian SJ, Heath GW, Sempos CT. Leisure-time physical activity among US adults. Results from the Third National Health and Nutrition Examination Survey. Arch Intern Med. 1996;156(1):93–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Vermeulen A, Goemaere S, Kaufman JM. Testosterone, body composition and aging. J Endocrinol Investig. 1999;22(5 Suppl):110–6.Google Scholar
  28. 28.
    Lindle RS, Metter EJ, Lynch NA, Fleg JL, Fozard JL, Tobin J, et al. Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J Appl Physiol 1997;83(5):1581–7.Google Scholar
  29. 29.
    Candow DG, Chilibeck PD. Differences in size, strength, and power of upper and lower body muscle groups in young and older men. J Gerontol A Biol Sci Med Sci. 2005;60(2):148–56.PubMedCrossRefGoogle Scholar
  30. 30.
    Fleg JL, Morrell CH, Bos AG, Brant LJ, Talbot LA, Wright JG, et al. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation. 2005;112(5):674–82.PubMedCrossRefGoogle Scholar
  31. 31.
    O'Connell MD, Wu FC. Androgen effects on skeletal muscle: implications for the development and management of frailty. Asian J Androl. 2014;16(2):203–12.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147(8):755–63.PubMedCrossRefGoogle Scholar
  33. 33.
    Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50(5):889–96.PubMedCrossRefGoogle Scholar
  34. 34.
    Delmonico MJ, Harris TB, Lee JS, Visser M, Nevitt M, Kritchevsky SB, et al. Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J Am Geriatr Soc. 2007;55(5):769–74.PubMedCrossRefGoogle Scholar
  35. 35.
    Newman AB, Kupelian V, Visser M, Simonsick E, Goodpaster B, Nevitt M, et al. Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc. 2003;51(11):1602–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Bergman H, Ferrucci L, Guralnik J, Hogan DB, Hummel S, Karunananthan S, et al. Frailty: an emerging research and clinical paradigm—issues and controversies. J Gerontol A Biol Sci Med Sci. 2007;62(7):731–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J Gerontol A Biol Sci Med Sci. 2004;59(3):255–63.PubMedCrossRefGoogle Scholar
  38. 38.
    Walston J, Hadley EC, Ferrucci L, Guralnik JM, Newman AB, Studenski SA, et al. Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American Geriatrics Society/National Institute on Aging Research Conference on Frailty in Older Adults. J Am Geriatr Soc. 2006;54(6):991–1001.PubMedCrossRefGoogle Scholar
  39. 39.
    Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P, et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr. 2009;90(6):1579–85.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Narici MV, Maffulli N, Maganaris CN. Ageing of human muscles and tendons. Disabil Rehabil. 2008;30(20–22):1548–54.PubMedCrossRefGoogle Scholar
  42. 42.
    Koster A, Visser M, Simonsick EM, Yu B, Allison DB, Newman AB, et al. Association between fitness and changes in body composition and muscle strength. J Am Geriatr Soc. 2010;58(2):219–26.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Koster A, Ding J, Stenholm S, Caserotti P, Houston DK, Nicklas BJ, et al. Does the amount of fat mass predict age-related loss of lean mass, muscle strength, and muscle quality in older adults? J Gerontol A Biol Sci Med Sci. 2011;66(8):888–95.PubMedCrossRefGoogle Scholar
  44. 44.
    Russ DW, Gregg-Cornell K, Conaway MJ, Clark BC. Evolving concepts on the age-related changes in “muscle quality”. J Cachexia Sarcopenia Muscle. 2012;3(2):95–109.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Bhasin S, Taylor WE, Singh R, Artaza J, Sinha-Hikim I, Jasuja R, et al. The mechanisms of androgen effects on body composition: mesenchymal pluripotent cell as the target of androgen action. J Gerontol A Biol Sci Med Sci. 2003;58(12):1103.CrossRefGoogle Scholar
  46. 46.
    Sinha-Hikim I, Artaza J, Woodhouse L, Gonzalez-Cadavid N, Singh AB, Lee MI, et al. Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. Am J Physiol Endocrinol Metab. 2002;283(1):154.CrossRefGoogle Scholar
  47. 47.
    Sinha-Hikim I, Cornford M, Gaytan H, Lee ML, Bhasin S. Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men. J Clin Endocrinol Metab. 2006;91(8):3024–33.PubMedCrossRefGoogle Scholar
  48. 48.
    Sinha-Hikim I, Roth SM, Lee MI, Bhasin S. Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. Am J Physiol Endocrinol Metab. 2003;285(1):197.CrossRefGoogle Scholar
  49. 49.
    Braga M, Bhasin S, Jasuja R, Pervin S, Singh R. Testosterone inhibits transforming growth factor-beta signaling during myogenic differentiation and proliferation of mouse satellite cells: potential role of follistatin in mediating testosterone action. Mol Cell Endocrinol. 2012;350(1):39–52.PubMedCrossRefGoogle Scholar
  50. 50.
    Spitzer M, Huang G, Basaria S, Travison TG, Bhasin S. Risks and benefits of testosterone therapy in older men. Nat Rev Endocrinol. 2013;9(7):414–24.PubMedCrossRefGoogle Scholar
  51. 51.
    Ferrando AA, Sheffield-Moore M, Paddon-Jones D, Wolfe RR, Urban RJ. Differential anabolic effects of testosterone and amino acid feeding in older men. J Clin Endocrinol Metab. 2003;88(1):358–62.PubMedCrossRefGoogle Scholar
  52. 52.
    Sheffield-Moore M, Urban RJ, Wolf SE, Jiang J, Catlin DH, Herndon DN, et al. Short-term oxandrolone administration stimulates net muscle protein synthesis in young men. J Clin Endocrinol Metab. 1999;84(8):2705–11.PubMedGoogle Scholar
  53. 53.
    Urban RJ, Bodenburg YH, Gilkison C, Foxworth J, Coggan AR, Wolfe RR, et al. Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am J Phys. 1995;269(5 Pt 1):820.Google Scholar
  54. 54.
    Araujo AB, Travison TG, Bhasin S, Esche GR, Williams RE, Clark RV, et al. Association between testosterone and estradiol and age-related decline in physical function in a diverse sample of men. J Am Geriatr Soc. 2008;56(11):2000–8.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Chin KY, Soelaiman IN, Naina Mohamed I, Shahar S, Teng NI, Suhana Mohd Ramli E, et al. Testosterone is associated with age-related changes in bone health status, muscle strength and body composition in men. Aging Male. 2012;15(4):240–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Iannuzzi-Sucich M, Prestwood KM, Kenny AM. Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J Gerontol A Biol Sci Med Sci. 2002;57(12):772.CrossRefGoogle Scholar
  57. 57.
    Szulc P, Duboeuf F, Marchand F, Delmas PD. Hormonal and lifestyle determinants of appendicular skeletal muscle mass in men: the MINOS study. Am J Clin Nutr. 2004;80(2):496–503.PubMedGoogle Scholar
  58. 58.
    van den Beld AW, de Jong FH, Grobbee DE, Pols HA, Lamberts SW. Measures of bioavailable serum testosterone and estradiol and their relationships with muscle strength, bone density, and body composition in elderly men. J Clin Endocrinol Metab. 2000;85(9):3276–82.PubMedGoogle Scholar
  59. 59.
    Folland JP, Mc Cauley TM, Phypers C, Hanson B, Mastana SS. The relationship of testosterone and AR CAG repeat genotype with knee extensor muscle function of young and older men. Exp Gerontol. 2012 June 01;47(6):437–43.PubMedCrossRefGoogle Scholar
  60. 60.
    • Mouser JG, Loprinzi PD, Loenneke JP. The association between physiologic testosterone levels, lean mass, and fat mass in a nationally representative sample of men in the United States. Steroids. 2016;115:62–6. Using data from 1999–2000 NHANES, the authors demonstrated that higher endogenous testosterone levels were associated with favorable lean and fat masses. PubMedCrossRefGoogle Scholar
  61. 61.
    • Cunningham GR, Stephens-Shields AJ, Rosen RC, Wang C, Ellenberg SS, Matsumoto AM, et al. Association of sex hormones with sexual function, vitality, and physical function of symptomatic older men with low testosterone levels at baseline in the testosterone trials. J Clin Endocrinol Metab. 2015;100(3):1146–55. Cross-sectional study of baseline sex hormones in the Testosterone Trials that did not demonstrate an association of endogenous free or total testosterone with physical function in symptomatic older men with total testosterone < 275 ng/dl. PubMedCrossRefGoogle Scholar
  62. 62.
    • Vandenput L, Mellstrom D, Laughlin GA, Cawthon PM, Cauley JA, Hoffman AR, et al. Low testosterone, but not estradiol, is associated with incident falls in older men: the International MrOS Study. J Bone Miner Res. 2017;32(6):1174–81. Utilizing data from the Osteoporotic Fractures in Men Study, the authors demonstrated an association with low endogenous total and bioavailable testosterone levels with increased falls in older men. PubMedCrossRefGoogle Scholar
  63. 63.
    Auyeung TW, Lee JS, Kwok T, Leung J, Ohlsson C, Vandenput L, et al. Testosterone but not estradiol level is positively related to muscle strength and physical performance independent of muscle mass: a cross-sectional study in 1489 older men. Eur J Endocrinol. 2011;164(5):811–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Schaap LA, Pluijm SM, Deeg DJ, Penninx BW, Nicklas BJ, Lips P, et al. Low testosterone levels and decline in physical performance and muscle strength in older men: findings from two prospective cohort studies. Clin Endocrinol. 2008;68(1):42–50.CrossRefGoogle Scholar
  65. 65.
    Krasnoff JB, Basaria S, Pencina MJ, Jasuja GK, Vasan RS, Ulloor J, et al. Free testosterone levels are associated with mobility limitation and physical performance in community-dwelling men: the Framingham Offspring Study. J Clin Endocrinol Metab. 2010;95(6):2790–9.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Orwoll E, Lambert LC, Marshall LM, Blank J, Barrett-Connor E, Cauley J, et al. Endogenous testosterone levels, physical performance, and fall risk in older men. Arch Intern Med. 2006;166(19):2124–31.PubMedCrossRefGoogle Scholar
  67. 67.
    LeBlanc ES, Wang PY, Lee CG, Barrett-Connor E, Cauley JA, Hoffman AR, et al. Higher testosterone levels are associated with less loss of lean body mass in older men. J Clin Endocrinol Metab. 2011;96(12):3855–63.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Perry HM, Miller DK, Patrick P, Morley JE. Testosterone and leptin in older African-American men: relationship to age, strength, function, and season. Metabolism. 2000;49(8):1085–91.PubMedCrossRefGoogle Scholar
  69. 69.
    Schaap LA, Pluijm SM, Smit JH, van Schoor NM, Visser M, Gooren LJ, et al. The association of sex hormone levels with poor mobility, low muscle strength and incidence of falls among older men and women. Clin Endocrinol. 2005;63(2):152–60.CrossRefGoogle Scholar
  70. 70.
    O'Donnell AB, Travison TG, Harris SS, Tenover JL, McKinlay JB. Testosterone, dehydroepiandrosterone, and physical performance in older men: results from the Massachusetts Male Aging Study. J Clin Endocrinol Metab. 2006;91(2):425–31.PubMedCrossRefGoogle Scholar
  71. 71.
    Aksglaede L, Molgaard C, Skakkebaek NE, Juul A. Normal bone mineral content but unfavourable muscle/fat ratio in Klinefelter syndrome. Arch Dis Child. 2008;93(1):30–4.PubMedCrossRefGoogle Scholar
  72. 72.
    Bojesen A, Birkebaek N, Kristensen K, Heickendorff L, Mosekilde L, Christiansen JS, et al. Bone mineral density in Klinefelter syndrome is reduced and primarily determined by muscle strength and resorptive markers, but not directly by testosterone. Osteoporos Int. 2011;22(5):1441–50.PubMedCrossRefGoogle Scholar
  73. 73.
    Bojesen A, Kristensen K, Birkebaek NH, Fedder J, Mosekilde L, Bennett P, et al. The metabolic syndrome is frequent in Klinefelter’s syndrome and is associated with abdominal obesity and hypogonadism. Diabetes Care. 2006;29(7):1591–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Host C, Skakkebaek A, Groth KA, Bojesen A. The role of hypogonadism in Klinefelter syndrome. Asian J Androl. 2014;16(2):185–91.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Nguyen PL, Alibhai SM, Basaria S, D'Amico AV, Kantoff PW, Keating NL, et al. Adverse effects of androgen deprivation therapy and strategies to mitigate them. Eur Urol. 2015;67(5):825–36.PubMedCrossRefGoogle Scholar
  76. 76.
    Wu IC, Lin XZ, Liu PF, Tsai WL, Shiesh SC. Low serum testosterone and frailty in older men and women. Maturitas. 2010;67(4):348–52.PubMedCrossRefGoogle Scholar
  77. 77.
    Hyde Z, Flicker L, Almeida OP, Hankey GJ, McCaul KA, Chubb SA, et al. Low free testosterone predicts frailty in older men: the health in men study. J Clin Endocrinol Metab. 2010;95(7):3165–72.PubMedCrossRefGoogle Scholar
  78. 78.
    Mohr BA, Bhasin S, Kupelian V, Araujo AB, O'Donnell AB, McKinlay JB. Testosterone, sex hormone-binding globulin, and frailty in older men. J Am Geriatr Soc. 2007;55(4):548–55.PubMedCrossRefGoogle Scholar
  79. 79.
    Bhasin S, Woodhouse L, Casaburi R, Singh AB, Mac RP, Lee M, et al. Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle. J Clin Endocrinol Metab. 2005;90(2):678–88.PubMedCrossRefGoogle Scholar
  80. 80.
    Ferrando AA, Sheffield-Moore M, Yeckel CW, Gilkison C, Jiang J, Achacosa A, et al. Testosterone administration to older men improves muscle function: molecular and physiological mechanisms. Am J Physiol Endocrinol Metab. 2002;282(3):601.CrossRefGoogle Scholar
  81. 81.
    Blackman MR, Sorkin JD, Munzer T, Bellantoni MF, Busby-Whitehead J, Stevens TE, et al. Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial. JAMA. 2002;288(18):2282–92.PubMedCrossRefGoogle Scholar
  82. 82.
    Emmelot-Vonk MH, Verhaar HJ, Nakhai Pour HR, Aleman A, Lock TM, Bosch JL, et al. Effect of testosterone supplementation on functional mobility, cognition, and other parameters in older men: a randomized controlled trial. JAMA. 2008;299(1):39–52.PubMedCrossRefGoogle Scholar
  83. 83.
    Kenny AM, Prestwood KM, Gruman CA, Marcello KM, Raisz LG. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels. J Gerontol A Biol Sci Med Sci. 2001;56(5):266.CrossRefGoogle Scholar
  84. 84.
    Kenny AM, Kleppinger A, Annis K, Rathier M, Browner B, Judge JO, et al. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels, low bone mass, and physical frailty. J Am Geriatr Soc. 2010;58(6):1134–43.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Nair KS, Rizza RA, O'Brien P, Dhatariya K, Short KR, Nehra A, et al. DHEA in elderly women and DHEA or testosterone in elderly men. N Engl J Med. 2006;355(16):1647–59.PubMedCrossRefGoogle Scholar
  86. 86.
    Page ST, Amory JK, Bowman FD, Anawalt BD, Matsumoto AM, Bremner WJ, et al. Exogenous testosterone (T) alone or with finasteride increases physical performance, grip strength, and lean body mass in older men with low serum T. J Clin Endocrinol Metab. 2005;90(3):1502–10.PubMedCrossRefGoogle Scholar
  87. 87.
    Sattler FR, Castaneda-Sceppa C, Binder EF, Schroeder ET, Wang Y, Bhasin S, et al. Testosterone and growth hormone improve body composition and muscle performance in older men. J Clin Endocrinol Metab. 2009;94(6):1991–2001.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Snyder PJ, Peachey H, Hannoush P, Berlin JA, Loh L, Lenrow DA, et al. Effect of testosterone treatment on body composition and muscle strength in men over 65 years of age. J Clin Endocrinol Metab. 1999;84(8):2647–53.PubMedGoogle Scholar
  89. 89.
    Srinivas-Shankar U, Roberts SA, Connolly MJ, O'Connell MD, Adams JE, Oldham JA, et al. Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab. 2010;95(2):639–50.PubMedCrossRefGoogle Scholar
  90. 90.
    Tenover JS. Effects of testosterone supplementation in the aging male. J Clin Endocrinol Metab. 1992;75(4):1092–8.PubMedGoogle Scholar
  91. 91.
    Travison TG, Basaria S, Storer TW, Jette AM, Miciek R, Farwell WR, et al. Clinical meaningfulness of the changes in muscle performance and physical function associated with testosterone administration in older men with mobility limitation. J Gerontol A Biol Sci Med Sci. 2011;66(10):1090–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Wittert GA, Chapman IM, Haren MT, Mackintosh S, Coates P, Morley JE. Oral testosterone supplementation increases muscle and decreases fat mass in healthy elderly males with low-normal gonadal status. J Gerontol A Biol Sci Med Sci. 2003;58(7):618–25.PubMedCrossRefGoogle Scholar
  93. 93.
    Frederiksen L, Hojlund K, Hougaard DM, Brixen K, Andersen M. Testosterone therapy increased muscle mass and lipid oxidation in aging men. Age (Dordr). 2012;34(1):145–56.CrossRefGoogle Scholar
  94. 94.
    Bhasin S, Storer TW, Berman N, Yarasheski KE, Clevenger B, Phillips J, et al. Testosterone replacement increases fat-free mass and muscle size in hypogonadal men. J Clin Endocrinol Metab. 1997;82(2):407–13.PubMedGoogle Scholar
  95. 95.
    Sih R, Morley JE, Kaiser FE, Perry HM, Patrick P, Ross C. Testosterone replacement in older hypogonadal men: a 12-month randomized controlled trial. J Clin Endocrinol Metab. 1997;82(6):1661–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Clague JE, Wu FC, Horan MA. Difficulties in measuring the effect of testosterone replacement therapy on muscle function in older men. Int J Androl. 1999;22(4):261–5.PubMedCrossRefGoogle Scholar
  97. 97.
    Frederiksen L, Hojlund K, Hougaard DM, Mosbech TH, Larsen R, Flyvbjerg A, et al. Testosterone therapy decreases subcutaneous fat and adiponectin in aging men. Eur J Endocrinol. 2012;166(3):469–76.PubMedCrossRefGoogle Scholar
  98. 98.
    Ly LP, Jimenez M, Zhuang TN, Celermajer DS, Conway AJ, Handelsman DJ. A double-blind, placebo-controlled, randomized clinical trial of transdermal dihydrotestosterone gel on muscular strength, mobility, and quality of life in older men with partial androgen deficiency. J Clin Endocrinol Metab. 2001;86(9):4078–88.PubMedCrossRefGoogle Scholar
  99. 99.
    Isidori AM, Giannetta E, Greco EA, Gianfrilli D, Bonifacio V, Isidori A, et al. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol. 2005;63(3):280–93.CrossRefGoogle Scholar
  100. 100.
    Ottenbacher KJ, Ottenbacher ME, Ottenbacher AJ, Acha AA, Ostir GV. Androgen treatment and muscle strength in elderly men: a meta-analysis. J Am Geriatr Soc. 2006;54(11):1666–73.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Brenowitz WD, Hubbard RA, Crane PK, Gray SL, Zaslavsky O, Larson EB. Longitudinal associations between self-rated health and performance-based physical function in a population-based cohort of older adults. PLoS One. 2014;9(11):e111761.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    •• Snyder PJ, Bhasin S, Cunningham GR, Matsumoto AM, Stephens-Shields AJ, Cauley JA, et al. Effects of testosterone treatment in older men. N Engl J Med. 2016;374(7):611–24. Data from The Physical Function Trial within the Testosterone Trials, a randomized, placebo-controlled trial including 790 men ≥ 65 years of age with total testosterone ≤ 275 ng/dl, did not show evidence of improvements in physical function (6-min walking distance) with testosterone gel. PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Storer TW, Basaria S, Traustadottir T, Harman SM, Pencina K, Li Z, et al. Effects of testosterone supplementation for 3 years on muscle performance and physical function in older men. J Clin Endocrinol Metab. 2017;102(2):583–93.PubMedGoogle Scholar
  104. 104.
    Bhasin S, Woodhouse L, Casaburi R, Singh AB, Bhasin D, Berman N, et al. Testosterone dose-response relationships in healthy young men. Am J Physiol Endocrinol Metab. 2001;281(6):1172.Google Scholar
  105. 105.
    • Storer TW, Magliano L, Woodhouse L, Lee ML, Dzekov C, Dzekov J, et al. Testosterone dose-dependently increases maximal voluntary strength and leg power, but does not affect fatigability or specific tension. J Clin Endocrinol Metab. 2003;88(4):1478–85. Double-blind, placebo-controlled trial in which healthy men ≥ 60 years old with total testosterone levels of 100–400 ng/dl or free testosterone levels < 50 pg/ml were treated with 7.5g of 1% testosterone gel or placebo for three years. The authors demonstrated that testosterone treatment was associated with greater improvements in stair-climbing power, muscle mass, and power. PubMedCrossRefGoogle Scholar
  106. 106.
    Storer TW, Woodhouse L, Magliano L, Singh AB, Dzekov C, Dzekov J, et al. Changes in muscle mass, muscle strength, and power but not physical function are related to testosterone dose in healthy older men. J Am Geriatr Soc. 2008;56(11):1991–9.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Onasanya O, Iyer G, Lucas E, Lin D, Singh S, Alexander GC. Association between exogenous testosterone and cardiovascular events: an overview of systematic reviews. Lancet Diabetes Endocrinol. 2016;4(11):943–56.PubMedCrossRefGoogle Scholar
  108. 108.
    Basaria S, Coviello AD, Travison TG, Storer TW, Farwell WR, Jette AM, et al. Adverse events associated with testosterone administration. N Engl J Med. 2010;363(2):109–22.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Finkle WD, Greenland S, Ridgeway GK, Adams JL, Frasco MA, Cook MB, et al. Increased risk of non-fatal myocardial infarction following testosterone therapy prescription in men. PLoS One. 2014;9(1):e85805.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Nguyen CP, Hirsch MS, Moeny D, Kaul S, Mohamoud M, Joffe HV. Testosterone and “age-related hypogonadism”—FDA concerns. N Engl J Med. 2015;373(8):689–91.PubMedCrossRefGoogle Scholar
  111. 111.
    Coetsee C, Terblanche E. The time course of changes induced by resistance training and detraining on muscular and physical function in older adults. Eur Rev Aging Phys Act. 2015;12:8. eCollection 2015 CrossRefGoogle Scholar
  112. 112.
    Liu CJ, Latham NK. Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst Rev. 2009;(3):CD002759. doi(3):CD002759.Google Scholar
  113. 113.
    Hildreth KL, Barry DW, Moreau KL, Vande Griend J, Meacham RB, Nakamura T, et al. Effects of testosterone and progressive resistance exercise in healthy, highly functioning older men with low-normal testosterone levels. J Clin Endocrinol Metab. 2013;98(5):1891–900.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Rochira V, Zirilli L, Orlando G, Santi D, Brigante G, Diazzi C, et al. Premature decline of serum total testosterone in HIV-infected men in the HAART-era. PLoS One. 2011;6(12):e28512.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Sunchatawirul K, Tantiwongse K, Chathaisong P, Thongyen S, Chumpathat N, Manosuthi W. Hypogonadism among HIV-infected men in Thailand. Int J STD AIDS. 2012;23(12):876–81.PubMedCrossRefGoogle Scholar
  116. 116.
    Blick G. Optimal diagnostic measures and thresholds for hypogonadism in men with HIV/AIDS: comparison between 2 transdermal testosterone replacement therapy gels. Postgrad Med. 2013;125(2):30–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Monroe AK, Glesby MJ, Brown TT. Diagnosing and managing diabetes in HIV-infected patients: current concepts. Clin Infect Dis. 2015;60(3):453–62.PubMedCrossRefGoogle Scholar
  118. 118.
    Rochira V, Guaraldi G. Hypogonadism in the HIV-infected man. Endocrinol Metab Clin N Am. 2014;43(3):709–30.CrossRefGoogle Scholar
  119. 119.
    Kong A, Edmonds P. Testosterone therapy in HIV wasting syndrome: systematic review and meta-analysis. Lancet Infect Dis. 2002;2(11):692–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Bhasin S, Storer TW, Asbel-Sethi N, Kilbourne A, Hays R, Sinha-Hikim I, et al. Effects of testosterone replacement with a nongenital, transdermal system, Androderm, in human immunodeficiency virus-infected men with low testosterone levels. J Clin Endocrinol Metab. 1998;83(9):3155–62.PubMedGoogle Scholar
  121. 121.
    Bhasin S, Storer TW, Javanbakht M, Berman N, Yarasheski KE, Phillips J, et al. Testosterone replacement and resistance exercise in HIV-infected men with weight loss and low testosterone levels. JAMA. 2000;283(6):763–70.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Grinspoon S, Corcoran C, Parlman K, Costello M, Rosenthal D, Anderson E, et al. Effects of testosterone and progressive resistance training in eugonadal men with AIDS wasting. A randomized, controlled trial. Ann Intern Med. 2000;133(5):348–55.PubMedCrossRefGoogle Scholar
  123. 123.
    Grinspoon S, Corcoran C, Stanley T, Baaj A, Basgoz N, Klibanski A. Effects of hypogonadism and testosterone administration on depression indices in HIV-infected men. J Clin Endocrinol Metab. 2000;85(1):60–5.PubMedGoogle Scholar
  124. 124.
    Knapp PE, Storer TW, Herbst KL, Singh AB, Dzekov C, Dzekov J, et al. Effects of a supraphysiological dose of testosterone on physical function, muscle performance, mood, and fatigue in men with HIV-associated weight loss. Am J Physiol Endocrinol Metab. 2008;294(6):1135.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Swaytha Yalamanchi
    • 1
  • Rita R. Kalyani
    • 1
    • 2
  • Brian Buta
    • 2
  • Adrian Dobs
    • 1
    • 3
  1. 1.Division of Endocrinology, Diabetes and MetabolismJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Center on Aging and HealthJohns Hopkins Medical InstitutionsBaltimoreUSA
  3. 3.BaltimoreUSA

Personalised recommendations