Current Sexual Health Reports

, Volume 7, Issue 4, pp 210–219 | Cite as

The Impact of the 5α-Reductase Inhibitors (5α-RIs) on Male Sexual Function and Psychological Well-Being

Male Sexual Dysfunction and Disorders (SE Althof and AW Pastuszak, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Male Sexual Dysfunction and Disorders

Abstract

5α-Reductase inhibitors (5α-RIs) such as finasteride and dutasteride have proven useful in clinical management of lower urinary tract symptoms (LUTS) secondary to benign prostatic hyperplasia (BPH) and also in treatment of androgenetic alopecia (AGA). However, these drugs have serious and, in some patients, persistent or irreversible sexual side effects. These agents interfere with the biosynthesis and metabolism of neurosteroids and may adversely affect mood, stress, and anxiety and potentiate the onset of depression. Data from preclinical and clinical studies have provided substantial evidence that these agents cause loss or reduction of libido, increase the risk of erectile dysfunction and ejaculatory dysfunction, and may contribute to the onset of depression. It is imperative that clinicians give serious considerations to these adverse effects and their impact on patients’ health and engage their patients in an open and honest discussion regarding the potential harm of these agents prior to prescribing them.

Keywords

Neurosteroids Depression Sexual dysfunction Finasteride Dutasteride 5α-Reductases 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Traish AM. 5α-reductases in human physiology: an unfolding story. Endocr Pract. 2012;18(6):965–75.PubMedCrossRefGoogle Scholar
  2. 2.
    Imperato-McGinley J, Zhu YS. Androgens and male physiology the syndrome of 5alpha-reductase-2 deficiency. Mol Cell Endocrinol. 2002;198:51–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Cantagrel V, Lefeber DJ, Ng BG, Guan Z, Silhavy JL, Bielas SL, et al. SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell. 2010;142:203–17.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Stiles AR, Russell DW. SRD5A3: a surprising role in glycosylation. Cell. 2010;142:196–8.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Morava E, Wevers RA, Cantagrel V, Hoefsloot LH, Al-Gazali L, Schoots J, et al. A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism. Brain. 2010;133:3210–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Traish AM, Hassani J, Guay AT, Zitzmann M, Hansen ML. Adverse side effects of 5α-reductase inhibitors therapy: persistent diminished libido and erectile dysfunction and depression in a subset of patients. J Sex Med. 2011;8(3):872–84.PubMedCrossRefGoogle Scholar
  7. 7.
    Russell DW, Wilson JD. Steroid 5α-reductase: two genes/two enzymes. Annu Rev Biochem. 1994;63:25–61.PubMedCrossRefGoogle Scholar
  8. 8.
    Poletti A, Coscarella A, Negri-Cesi P, Colciago A, Celotti F, Martini L. 5α-reductase isozymes in the central nervous system. Steroids. 1998;63:246–51.PubMedCrossRefGoogle Scholar
  9. 9.
    Thigpen AE, Silver RI, Guileyardo JM, Casey ML, McConnel JD, Russel DW. Tissue distribution and ontogeny of steroid 5a-reductase isozyme expression. J Clin Invest. 1993;92:903–10.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Patte-Mensah C, Penning TM, Mensah-Nyagan AG. Anatomical and cellular localization of neuroactive 5α/3α-reduced steroid synthesizing enzymes in the spinal cord. J Comp Neurol. 2004;477:286–99.PubMedCrossRefGoogle Scholar
  11. 11.
    Pozzi P, Bendotti C, Simeoni S, Piccioni F, Guerini V, Marron TU, et al. Androgen 5-alpha-reductase type 2 is highly expressed and active in rat spinal cord motor neurones. J Neuroendocrinol. 2003;15:882–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Normington K, Russell DW. Tissue distribution and kinetic characteristics of rat steroid 5 alpha-reductase isozymes. Evidence for distinct physiological functions. J Biol Chem. 1992;267:19548–54.PubMedGoogle Scholar
  13. 13.•
    Traish AM, Mulgaonkar A, Giordano N. The dark side of 5α-reductase inhibitors’ therapy: sexual dysfunction, high Gleason grade prostate cancer and depression. Korean J Urol. 2014;55(6):367–79. This study provides highlights of the adverse effects resulting from 5 α-RIs therapy.Google Scholar
  14. 14.
    Melcangi RC, Poletti A, Cavarretta I, Celotti F, Colciago A, Motta V, et al. The 5a-reductase in the central nervous system: expression and modes of control. J Steroid Biochem Mol Biol. 1998;65:295–9.PubMedCrossRefGoogle Scholar
  15. 15.•
    Melcangi RC, Giatti S, Calabrese D, Pesaresi M, Cermenati G, Mitro N, et al. Levels and actions of progesterone and its metabolites in the nervous system during physiological and pathological conditions. Prog Neurobiol. 2014;113:56–69. This study points to the importance of 5α-R in central nervous system physiology.Google Scholar
  16. 16.•
    Melcangi RC, Panzica GC. Allopregnanolone: state of the art. Prog Neurobiol. 2014;113:1–5. This study demonstrates the criticlal role of 5 α-R in progesterone metabolism in the CNS.Google Scholar
  17. 17.
    Borowicz KK, Piskorska B, Banach M, Czuczwar SJ. Neuroprotective actions of neurosteroids. Front Endocrinol (Lausanne). 2011;2:50.Google Scholar
  18. 18.
    Cooke PS, Nanjappa MK, Yang Z, Wang KK. Therapeutic effects of progesterone and its metabolites in traumatic brain injury may involve non-classical signaling mechanisms. Front Neurosci. 2013;7:108.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Yawno T, Hirst JJ, Castillo-Melendez M, Walker DW. Role of neurosteroids in regulating cell death and proliferation in the late gestation fetal brain. Neuroscience. 2009;163(3):838–47.PubMedCrossRefGoogle Scholar
  20. 20.
    Noorbakhsh F, Baker GB, Power C. Allopregnanolone and neuroinflammation: a focus on multiple sclerosis. Front Cell Neurosci. 2014;8:134.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Noorbakhsh F, Ellestad KK, Maingat F, Warren KG, Han MH, Steinman L, et al. Impaired neurosteroid synthesis in multiple sclerosis. Brain. 2011;134(Pt 9):2703–21.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Wirth MM. Beyond the HPA axis: progesterone-derived neuroactive steroids in human stress and emotion. Front Endocrinol (Lausanne). 2011;2:19.Google Scholar
  23. 23.
    Mellon S, Gong W, Griffin LD. Niemann pick type C disease as a model for defects in neurosteroidogenesis. Endocr Res. 2004;30(4):727–35.PubMedCrossRefGoogle Scholar
  24. 24.
    Griffin LD, Gong W, Verot L, Mellon SH. Niemann-pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nat Med. 2004;10(7):704–11.PubMedCrossRefGoogle Scholar
  25. 25.
    Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, et al. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol. 2014;113:6–39.PubMedCrossRefGoogle Scholar
  26. 26.••
    Agis-Balboa RC, Guidotti A, Pinna G. 5α-reductase type I expression is downregulated in the prefrontal cortex/Brodmann’s area 9 (BA9) of depressed patients. Psychopharmacology (Berlin). 2014;231(17):3569–80. This study points to the critical role of 5α-R in depression.Google Scholar
  27. 27.•
    Agís-Balboa RC, Pinna G, Pibiri F, Kadriu B, Costa E, Guidotti A. Down-regulation of neurosteroid biosynthesis in corticolimbic circuits mediates social isolation-induced behavior in mice. Proc Natl Acad Sci U S A. 2007;104(47):18736–41. This study highlights the role of 5 α-R in social behavior and isolation.Google Scholar
  28. 28.
    Schüle C, Eser D, Baghai TC, Nothdurfter C, Kessler JS, Rupprecht R. Neuroactive steroids in affective disorders: target for novel antidepressant or anxiolytic drugs? Neuroscience. 2011;191:55–77.PubMedCrossRefGoogle Scholar
  29. 29.
    Eser D, Baghai TC, Schüle C, Nothdurfter C, Rupprecht R. Neuroactive steroids as endogenous modulators of anxiety. Curr Pharm Des. 2008;14(33):3525–33.PubMedCrossRefGoogle Scholar
  30. 30.
    Eser D, Schüle C, Baghai TC, Romeo E, Rupprecht R. Neuroactive steroids in depression and anxiety disorders: clinical studies. Neuroendocrinology. 2006;84(4):244–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Eser D, Schüle C, Baghai TC, Romeo E, Uzunov DP, Rupprecht R. Neuroactive steroids and affective disorders. Pharmacol Biochem Behav. 2006;84(4):656–66.PubMedCrossRefGoogle Scholar
  32. 32.
    Eser D, Romeo E, Baghai TC, di Michele F, Schüle C, Pasini A, et al. Neuroactive steroids as modulators of depression and anxiety. Neuroscience. 2006;138(3):1041–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Eser D, Schüle C, Romeo E, Baghai TC, di Michele F, Pasini A, et al. Neuropsychopharmacological properties of neuroactive steroids in depression and anxiety disorders. Psychopharmacology (Berlin). 2006;186(3):373–87.CrossRefGoogle Scholar
  34. 34.
    Padberg F, di Michele F, Zwanzger P, Romeo E, Bernardi G, Schüle C, et al. Plasma concentrations of neuroactive steroids before and after repetitive transcranial magnetic stimulation (rTMS) in major depression. Neuropsychopharmacology. 2002;27(5):874–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Rupprecht R, di Michele F, Hermann B, Ströhle A, Lancel M, Romeo E, et al. Neuroactive steroids: molecular mechanisms of action and implications for neuropsychopharmacology. Brain Res Brain Res Rev. 2001;37(1–3):59–67.PubMedCrossRefGoogle Scholar
  36. 36.
    Rupprecht R, Holsboer F. Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci. 1999;22(9):410–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Dubrovsky B. Neurosteroids, neuroactive steroids, and symptoms of affective disorders. Pharmacol Biochem Behav. 2006;84:644–55.PubMedCrossRefGoogle Scholar
  38. 38.
    Windahl SH, Andersson N, Börjesson AE, Swanson C, Svensson J, Movérare-Skrtic S, et al. Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice. PLoS One. 2011;6:e21402.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Frye CA, Walf AA, Rhodes ME, Harney JP. Progesterone enhances motor, anxiolytic, analgesic, and antidepressive behavior of wild-type mice, but not those deficient in type 1 5 alpha-reductase. Brain Res. 2004;1004:116–24.PubMedCrossRefGoogle Scholar
  40. 40.
    Maimoun L, Philibert P, Cammas B, Audran F, Bouchard P, Fenichel P, et al. Phenotypical, biological, and molecular heterogeneity of 5α-reductase deficiency: an extensive international experience of 55 patients. J Clin Endocrinol Metab. 2011;96:296–307.PubMedCrossRefGoogle Scholar
  41. 41.
    Melcangi RC, Poletti A, Cavarretta I, Celotti F, Colciago A, Magnaghi V, et al. The 5α-reductase in the central nervous system: expression and modes of control. J Steroid Biochem Mol Biol. 1998;65:295–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Baulieu EE. Neurosteroids: a novel function of the brain. Psychoneuroendocrinology. 1998;23:963–87.PubMedCrossRefGoogle Scholar
  43. 43.
    Barbaccia ML, Roscetti G, Trabucchi M, Purdy RH, Mostallino MC, Concas A, et al. The effects of inhibitors of GABAergic transmission and stress on brain and plasma allopregnanolone concentrations. Br J Pharmacol. 1997;120:1582–8.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Reddy DS, Rogawski MA. Stress-induced deoxycorticosterone-derived neurosteroids modulate GABAA receptor function and seizure susceptibility. J Neurosci. 2002;22:3795–805.PubMedGoogle Scholar
  45. 45.
    Morrow AL, Suzdak PD, Paul SM. Steroid hormone metabolites potentiate GABA receptor-mediated chloride ion flux with nanomolar potency. Eur J Pharmacol. 1987;142:483–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Morrow AL. Recent developments in the significance and therapeutic relevance of neuroactive steroids—introduction to the special issue. Pharmacol Ther. 2007;116:1–6.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Reddy DS. Neurosteroids: endogenous role in the human brain and therapeutic potentials. Prog Brain Res. 2010;186:113–37.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Rupprecht R, Holsboer F. Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci. 1999;22:410–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Stoffel-Wagner B. Neurosteroid biosynthesis in the human brain and its clinical implications. Ann N Y Acad Sci. 2003;1007:64–78.PubMedCrossRefGoogle Scholar
  50. 50.
    Stoffel-Wagner B. Neurosteroid metabolism in the human brain. Eur J Endocrinol. 2001;145:669–79.PubMedCrossRefGoogle Scholar
  51. 51.
    Römer B, Pfeiffer N, Lewicka S, Ben-Abdallah N, Vogt MA, Deuschle M, et al. Finasteride treatment inhibits adult hippocampal neurogenesis in male mice. Pharmacopsychiatry. 2010;43:174–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Saalmann YB, Morgan IG, Calford MB. Neurosteriods involved in regulating inhibition in the inferior colliculus. J Neurophysiol. 2006;96:3064–73.PubMedCrossRefGoogle Scholar
  53. 53.•
    Upreti R, Hughes KA, Livingstone DE, Gray CD, Minns FC, Macfarlane DP, et al. Andrew R.5α-reductase type 1 modulates insulin sensitivity in men. J Clin Endocrinol Metab. 2014;99(8):E1397–406. This study provides new insights to the role of 5 α-RI in onset of Diabetes.Google Scholar
  54. 54.•
    Traish AM, Guay AT, Zitzmann M. 5α-reductase inhibitors alter steroid metabolism and may contribute to insulin resistance, diabetes, metabolic syndrome and vascular disease: a medical hypothesis. Horm Mol Biol Clin Investig. 2014;20(3):73–80. This study emphasizes the role of 5 α-R in metabolism of glucocorticoids.Google Scholar
  55. 55.•
    Livingstone DE, Barat P, Di Rollo EM, Rees GA, Weldin BA, Rog-Zielinska EA, et al. 5α-Reductase type 1 deficiency or inhibition predisposes to insulin resistance, hepatic steatosis, and liver fibrosis in rodents. Diabetes. 2015;64(2):447–58. This study demonstrates a role for 5 α-R activity in gllucocorticoid metablism and prevention of insulin resistance.Google Scholar
  56. 56.
    Marver D, Edelman IS. Dihydrocortisol: a potential mineralocorticoid. J Steroid Biochem. 1978;9:1.PubMedCrossRefGoogle Scholar
  57. 57.
    Andersson S, Berman DM, Jenkins EP, Russell DW. Deletion of 5α-reductase 2 gene in male pseudohermaphroditism. Nature. 1991;354:159–61.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Steers WD. 5α-reductase activity in the prostate. Urology. 2001;58:17–24.PubMedCrossRefGoogle Scholar
  59. 59.
    Bartsch G, Rittmaster RS, Klocker H. Dihydrotestosterone and the concept of 5α-reductase inhibition in human benign prostatic hyperplasia. World J Urol. 2002;19:413–25.PubMedCrossRefGoogle Scholar
  60. 60.
    Gormley GJ, Stoner E, Brusketwitz RC, Imperato-McGinley J, Walsh P, McConnell JD, et al. The effect of finasteride in men with benign prostatic hyperplasia. J Urol. 1992;167:1102–7.CrossRefGoogle Scholar
  61. 61.
    Lepart ED. Age-related changes in brain and pituitary 5alpha-reductase with finasteride (Proscar) treatment. Neurobiol Aging. 1995;16:647–50.CrossRefGoogle Scholar
  62. 62.
    Desgrandchamps F, Droupy S, Irani J, Saussine C, Comenducci A. Effect of dutasteride on the symptoms of benign prostatic hyperplasia, and patient quality of life and discomfort, in clinical practice. BJU Int. 2006;98:83–8.PubMedCrossRefGoogle Scholar
  63. 63.
    AUA Practice Guidelines Committee. AUA guidelines on management of benign prostatic hyperplasia. Chapter 1: diagnosis and treatment recommendations. J Urol. 2003;170:530–47.CrossRefGoogle Scholar
  64. 64.
    Marberger MJ. Long-term effects of finasteride in patients with benign prostatic hyperplasia: a double-blind placebo-controlled, multicenter study. Urology. 1998;51:677–86.PubMedCrossRefGoogle Scholar
  65. 65.
    Roehrborn CG, Boyle P, Nickel JC, Hoefner K, Andriole G. Efficacy and safety of a dual inhibitor of 5-alpha-reductase types 1 and 2 (dutasteride) in men with benign prostatic hyperplasia. Urology. 2002;60:434–41.PubMedCrossRefGoogle Scholar
  66. 66.
    McConnell JD, Brusketwitz R, Walsh P, Andriole G, Lieber M, Holtgrewe L, et al. The effect of finasteride on the risk of acute urinary retention and the need for surgical treatment among men with benign prostatic hyperplasia. N Engl J Med. 1998;338:557–63.PubMedCrossRefGoogle Scholar
  67. 67.
    Debruyne F, Koch G, Boyle P, Da Silva FC, Gillenwater JG, Hamdy FC, et al. Comparison of a phytotherapeutic agent (Permixon) with an α-blocker (Tamsulosin) in the treatment of benign prostatic hyperplasia: a 1 year randomized international study. Eur Urol. 2002;41:497–507.PubMedCrossRefGoogle Scholar
  68. 68.
    Thompson IM, Goodman PJ, Tangen CM, Lucia MS, Miller GJ, Ford LG, et al. The influence of finasteride on the development of prostate cancer. N Engl J Med. 2003;349:215–24.PubMedCrossRefGoogle Scholar
  69. 69.
    Andriole GL, Bostwick DG, Brawley OW, Gomella LG, Marberger M, Montorsi F, et al. Effect of dutasteride on the risk of prostate cancer. N Engl J Med. 2010;362:1192–202.PubMedCrossRefGoogle Scholar
  70. 70.
    Wessells H, Roy J, Bannow J, Grayhack J, Matsumoto AM, Tenover L, et al. Incidence and severity of sexual adverse experiences in finasteride and placebo-treated men with benign prostatic hyperplasia. Urology. 2003;61:579–84.PubMedCrossRefGoogle Scholar
  71. 71.
    Bradshaw WG, Baum MJ, Awh CC. Attenuation by a 5 alpha-reductase inhibitor of the activational effect of testosterone propionate on penile erections in castrated male rats. Endocrinology. 1981;109:1047–51.PubMedCrossRefGoogle Scholar
  72. 72.
    Gray GD, Smith ER, Davidson JM. Hormonal regulation of penile erection in castrated male rats. Physiol Behav. 1980;24:463–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Hart BL. Effects of testosterone propionate and dihydrotestosterone on penile morphology and sexual reflexes of spinal male rats. Horm Behav. 1973;4:239–46.PubMedCrossRefGoogle Scholar
  74. 74.
    Hart BL. Activation of sexual reflexes of male rats by dihydrotestosterone but not estrogen. Physiol Behav. 1979;23:107–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Mantzoros CS, Georgiadis EI, Trichopoulos D. Contribution of dihydrotestosterone to male sexual behaviour. BMJ. 1995;310:1289–91.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Saksena SK, Lau IF, Chang MC. The inhibition of the conversion of testosterone into 5alpha-dihydrotestosterone in the reproductive organs of the male rat. Steroids. 1976;27:751–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Baum MJ. A comparison of the effects of methyltrienolone (R 1881) and 5 alpha-dihydrotestosterone on sexual behavior of castrated male rats. Horm Behav. 1979;13:165–74.PubMedCrossRefGoogle Scholar
  78. 78.
    Lugg JA, Rajfer J, Gonzalez-Cadavid NF. Dihydrotestosterone is the active androgen in the maintenance of nitric oxide-mediated penile erection in the rat. Endocrinology. 1995;136:1495–501.PubMedGoogle Scholar
  79. 79.
    Penson DF, Ng C, Rajfer J, Gonzalez-Cadavid NF. Adrenal control of erectile function and nitric oxide synthase in the rat penis. Endocrinology. 1997;138:3925–32.PubMedGoogle Scholar
  80. 80.
    Garban H, Marquez D, Cai L, Rajfer J, Gonzalez-Cadavid NF. Restoration of normal adult penile erectile response in aged rats by long-term treatment with androgens. Biol Reprod. 1995;53:1365–72.PubMedCrossRefGoogle Scholar
  81. 81.
    Park KH, Kim SW, Kim KD, Paick JS. Effects of androgens on the expression of nitric oxide synthase mRNAs in rat corpus cavernosum. BJU Int. 1999;83:327–33.PubMedCrossRefGoogle Scholar
  82. 82.
    Bialy M, Sachs BD. Androgen implants in medial amygdala briefly maintain noncontact erection in castrated male rats. Horm Behav. 2002;42:345–55.PubMedCrossRefGoogle Scholar
  83. 83.
    Manzo J, Cruz MR, Hernandez ME, Pacheco P, Sachs BD. Regulation of noncontact erection in rats by gonadal steroids. Horm Behav. 1999;35:264–70.PubMedCrossRefGoogle Scholar
  84. 84.
    Sachs BD. Placing erection in context: the reflexogenic-psychogenic dichotomy reconsidered. Neurosci Biobehav Rev. 1995;19:211–24.PubMedCrossRefGoogle Scholar
  85. 85.
    Seo SI, Kim SW, Paick JS. The effects of androgen on penile reflex, erectile response to electrical stimulation and penile NOS activity in the rat. Asian J Androl. 1999;1:169–74.PubMedGoogle Scholar
  86. 86.
    Oztekin CV, Gur S, Abdulkadir NA, Lokman U, Akdemir AO, Cetinkaya M, et al. Incomplete recovery of erectile function in rat after discontinuation of dual 5-alpha reductase inhibitor therapy. J Sex Med. 2012;9:1773–81.PubMedCrossRefGoogle Scholar
  87. 87.
    Pinsky MR, Gur S, Tracey AJ, Harbin A, Hellstrom WJ. The effects of chronic 5-alpha-reductase inhibitor (dutasteride) treatment on rat erectile function. J Sex Med. 2011;8:3066–74.PubMedCrossRefGoogle Scholar
  88. 88.
    Zhang MG, Wang XJ, Shen ZJ, Gao PJ. Long-term oral administration of 5alpha-reductase inhibitor attenuates erectile function by inhibiting autophagy and promoting apoptosis of smooth muscle cells in corpus cavernosum of aged rats. Urology. 2013;82:743.e9–743.e15.Google Scholar
  89. 89.
    Traish AM, Park K, Dhir V, Kim NN, Moreland RB, Goldstein I. Effects of castration and androgen replacement on erectile function in a rabbit model. Endocrinology. 1999;140:1861–8.PubMedGoogle Scholar
  90. 90.••
    Traish AM, Haider KS, Doros G, Haider A. Finasteride, not tamsulosin, increases severity of erectile dysfunction and decreases testosterone levels in men with benign prostatic hyperplasia. Horm Mol Biol Clin Investig. 2015. doi:10.1515/hmbci-2015-0015. This study demonstrates that the sexual adverse side effects of 5 α-RI therapy do not resolve by continued treatment and may cause hypogonadism.
  91. 91.••
    Belknap SM, Aslam I, Kiguradze T, Temps WH, Yarnold PR, Cashy J, et al. Adverse event reporting in clinical trials of finasteride for androgenic alopecia: a meta-analysis. JAMA Dermatol. 2015. doi:10.1001/jamadermatol.2015.36. This study highlights the bias and the inaccuracy of reporting of adverse effects of 5 a-RI in clincial trials and we have to be concerned with claims of safety.
  92. 92.••
    Moore TJ. Finasteride and the uncertainties of establishing harms. JAMA Dermatol. 2015. doi:10.1001/jamadermatol.2015.37. This editorial highlights the harm that can be done when claims of safety are unsubstantiated.
  93. 93.
    Wilton L, Pearce G, Edet E, Freemantle S, Stephens MD, Mann RD. The safety of finasteride used in benign prostatic hypertrophy: a non-interventional observational cohort study in 14,772 patients. Br J Urol. 1996;78:379–84.PubMedCrossRefGoogle Scholar
  94. 94.
    Uygur MC, Gür E, Arik AI, Altuğ U, Erol D. Erectile dysfunction following treatments of benign prostatic hyperplasia: a prospective study. Andrologia. 1998;30(1):5–10.PubMedCrossRefGoogle Scholar
  95. 95.
    Edwards JE, Moore RA. Finasteride in the treatment of clinical benign prostatic hyperplasia: a systematic review of randomised trials. BMC Urol. 2002;2:14.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Nickel JC, Fradet Y, Boake RC, Pommerville PJ, Perreault JP, Afridi SK, et al. Efficacy and safety of finasteride therapy for benign prostatic hyperplasia: results of a 2 years randomized controlled trial (the PROSPECT study). PROscar Safety Plus Efficacy Canadian 2 years study. CMAJ. 1996;155:1251–9.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Tenover JL, Pagano GA, Morton AS, Liss CL, Byrnes CA. Efficacy and tolerability of finasteride in symptomatic benign prostatic hyperplasia: a primary care study. Primary Care Investigator Study Group. Clin Ther. 1997;19:243–58.PubMedCrossRefGoogle Scholar
  98. 98.
    Roehrborn CG, Siami P, Barkin J, Damiao R, Major-Walker K, Morrill B, et al. The effects of dutasteride, tamsulosin and combination therapy on lower urinary tract symptoms in men with benign prostatic hyperplasia and prostatic enlargement: 2 years results from the CombAT study. J Urol. 2008;179:616–21.PubMedCrossRefGoogle Scholar
  99. 99.
    Siami P, Roehrborn CG, Barkin J, Damiao R, Wyczolkowski M, Duggan A, et al. Combination therapy with dutasteride and tamsulosin in men with moderate-to-severe benign prostatic hyperplasia and prostate enlargement: the CombAT (combination of avodart and tamsulosin) trial rationale and study design. Contemp Clin Trials. 2007;28:770–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Kaplan SA, Chung DE, Lee RK, Scofield S, Te AE. A 5 years retrospective analysis of 5alpha-reductase inhibitors in men with benign prostatic hyperplasia: finasteride has comparable urinary symptom efficacy and prostate volume reduction, but less sexual side effects and breast complications than dutasteride. Int J Clin Pract. 2012;66:1052–5.PubMedCrossRefGoogle Scholar
  101. 101.•
    Fwu CW, Eggers PW, Kirkali Z, McVary KT, Burrows PK, Kusek JW. Change in sexual function in men with lower urinary tract symptoms (LUTS)/ benign prostatic hyperplasia (BPH) associated with long-term treatment with doxazosin, finasteride, and combined therapy. J Urol. 2014;191(6):1828–34. This study provides critical information pertaining to continued adverse effects of Finasteride and such adverse events do not resolve with continued treatment, as claimed in other studies. Google Scholar
  102. 102.
    Gur S, Kadowitz PJ, Hellstrom WJ. Effects of 5-alpha reductase inhibitors on erectile function, sexual desire and ejaculation. Expert Opin Drug Saf. 2013;12:81–90.PubMedCrossRefGoogle Scholar
  103. 103.
    Lu YL, Kuang L, Zhu H, Wu H, Wang XF, Pang YP, et al. Changes in aortic endothelium ultrastructure in male rats following castration, replacement with testosterone and administration of 5alpha-reductase inhibitor. Asian J Androl. 2007;9(6):843–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Romeo E, Ströhle A, Spalletta G, di Michele F, Hermann B, Holsboer F, et al. Effects of antidepressant treatment on neuroactive steroids in major depression. Am J Psychiatry. 1998;155(7):910–3.PubMedCrossRefGoogle Scholar
  105. 105.
    Uzunova V, Sheline Y, Davis JM, Rasmusson A, Uzunov DP, Costa E, et al. Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc Natl Acad Sci U S A. 1998;95(6):3239–44.PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Ströhle A, Romeo E, Hermann B, Pasini A, Spalletta G, di Michele F, et al. Concentrations of 3 alpha-reduced neuroactive steroids and their precursors in plasma of patients with major depression and after clinical recovery. Biol Psychiatry. 1999;45(3):274–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Rupprecht R, Ströhle A, Hermann B, di Michele F, Spalletta G, Pasini A, et al. Neuroactive steroid concentrations following metyrapone administration in depressed patients and healthy volunteers. Biol Psychiatry. 1998;44(9):912–4.PubMedCrossRefGoogle Scholar
  108. 108.
    Finn DA, Beadles-Bohling AS, Beckley EH, Ford MM, Gililland KR, Gorin-Meyer RE, et al. A new look at the 5alpha-reductase inhibitor finasteride. CNS Drug Rev. 2006;12(1):53–76.PubMedCrossRefGoogle Scholar
  109. 109.
    Gasior M, Carter RB, Witkin JM. Neuroactive steroids: potential therapeutic use in neurological and psychiatric disorders. Trends Pharmacol Sci. 1999;20(3):107–12.PubMedCrossRefGoogle Scholar
  110. 110.
    Khisti RT, Chopde CT, Jain SP. Antidepressant-like effect of the neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one in mice forced swim test. Pharmacol Biochem Behav. 2000;67(1):137–43.PubMedCrossRefGoogle Scholar
  111. 111.
    Frye CA, Walf AA. Hippocampal 3alpha,5alpha-THP may alter depressive behavior of pregnant and lactating rats. Pharmacol Biochem Behav. 2004;78(3):531–40.PubMedCrossRefGoogle Scholar
  112. 112.
    Le Mellédo JM, Baker G. Role of progesterone and other neuroactive steroids in anxiety disorders. Expert Rev Neurother. 2004;4(5):851–60.PubMedCrossRefGoogle Scholar
  113. 113.
    Altomare G, Capella GL. Depression circumstantially related to the administration of finasteride for androgenetic alopecia. J Dermatol. 2002;29(10):665–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Irwig MS. Safety concerns regarding 5α reductase inhibitors for the treatment of androgenetic alopecia. Curr Opin Endocrinol Diabetes Obes. 2015;22(3):248–53.PubMedCrossRefGoogle Scholar
  115. 115.
    Irwig MS. Depressive symptoms and suicidal thoughts among former users of finasteride with persistent sexual side effects. J Clin Psychiatry. 2012;73(9):1220–3. doi:10.4088/JCP.12m07887. Epub 2012 Aug 7.PubMedCrossRefGoogle Scholar
  116. 116.
    Rahimi-Ardabili B, Pourandarjani R, Habibollahi P, Mualeki A. Finasteride induced depression: a prospective study. BMC Clin Pharmacol. 2006;6:7.PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Melcangi RC, Caruso D, Abbiati F, Giatti S, Calabrese D, Piazza F, et al. Neuroactive steroid levels are modified in cerebrospinal fluid and plasma of post-finasteride patients showing persistent sexual side effects and anxious/depressive symptomatology. J Sex Med. 2013;10(10):2598–603.PubMedGoogle Scholar
  118. 118.
    Caruso D, Abbiati F, Giatti S, Romano S, Fusco L, Cavaletti G, et al. Patients treated for male pattern hair with finasteride show, after discontinuation of the drug, altered levels of neuroactive steroids in cerebrospinal fluid and plasma. J Steroid Biochem Mol Biol. 2015;146:74–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Steen NE, Methlie P, Lorentzen S, Dieset I, Aas M, Nerhus M, et al. Altered systemic cortisol metabolism in bipolar disorder and schizophrenia spectrum disorders. J Psychiatr Res. 2014;52:57–62.PubMedCrossRefGoogle Scholar
  120. 120.
    Singh MK, Avram M. Persistent sexual dysfunction and depression in finasteride users for male pattern hair loss: a serious concern or red herring? J Clin Aesthet Dermatol. 2014;7(12):51–5.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Tosti A, Pazzaglia M, Soli M, Rossi A, Rebora A, Atzori L, et al. Evaluation of sexual function with an international index of erectile function in subjects taking finasteride for androgenetic alopecia. Arch Dermatol. 2004;140(7):857–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Rossi A, Carlesimo M, Pranteda G, Fortuna MC, Maxia C, Scali E, et al. Finasteride for androgenetic alopecia and side effects. Clin Dermatol. 2014;1(4):197–203. ISSN: 2282–4103.Google Scholar
  123. 123.
    Yim E, Nole KL, Tosti A. 5α-Reductase inhibitors in androgenetic alopecia. Curr Opin Endocrinol Diabetes Obes. 2014;21(6):493–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Koonce CJ, Frye CA. Progesterone facilitates exploration, affective and social behaviors among wildtype, but not 5α-reductase type 1 mutant, mice. Behav Brain Res. 2013;253:232–9.PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Galea LA, Wainwright SR, Roes MM, Duarte-Guterman P, Chow C, Hamson DK. Sex, hormones and neurogenesis in the hippocampus: hormonal modulation of neurogenesis and potential functional implications. J Neuroendocrinol. 2013;25(11):1039–61.PubMedCrossRefGoogle Scholar
  126. 126.
    McHenry J, Carrier N, Hull E, Kabbaj M. Sex differences in anxiety and depression: role of testosterone. Front Neuroendocrinol. 2014;35(1):42–57.PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    Shores MM, Sloan KL, Matsumoto AM, Moceri VM, Felker B, Kivlahan DR. Increased incidence of diagnosed depressive illness in hypogonadal older men. Arch Gen Psychiatry. 2004;61(2):162–7.PubMedCrossRefGoogle Scholar
  128. 128.
    Shores MM, Kivlahan DR, Sadak TI, Li EJ, Matsumoto AM. A randomized, double-blind, placebo-controlled study of testosterone treatment in hypogonadal older men with subthreshold depression (dysthymia or minor depression). J Clin Psychiatry. 2009;70(7):1009–16.PubMedCrossRefGoogle Scholar
  129. 129.
    Shores MM, Moceri VM, Sloan KL, Matsumoto AM, Kivlahan DR. Low testosterone levels predict incident depressive illness in older men: effects of age and medical morbidity. J Clin Psychiatry. 2005;66(1):7–14.PubMedCrossRefGoogle Scholar
  130. 130.
    Zarrouf FA, Artz S, Griffith J, Sirbu C, Kommor M. Testosterone and depression: systematic review and meta-analysis. J Psychiatr Pract. 2009;15(4):289–305. doi:10.1097/01.pra.0000358315.88931.fc.PubMedCrossRefGoogle Scholar
  131. 131.
    McIntyre RS, Mancini D, Eisfeld BS, Soczynska JK, Grupp L, Konarski JZ, et al. Calculated bioavailable testosterone levels and depression in middle-aged men. Psychoneuroendocrinology. 2006;31(9):1029–35.PubMedCrossRefGoogle Scholar
  132. 132.
    Römer B, Gass P. Finasteride-induced depression: new insights into possible pathomechanisms. J Cosmet Dermatol. 2010;9(4):331–2.PubMedCrossRefGoogle Scholar
  133. 133.
    Römer B, Pfeiffer N, Lewicka S, Ben-Abdallah N, Vogt MA, Deuschle M, et al. Finasteride treatment inhibits adult hippocampal neurogenesis in male mice. Pharmacopsychiatry. 2010;43(5):174–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Roff CF, Strauss 3rd JF, Goldin E, Jaffe H, Patterson MC, Agritellis GC, et al. The murine Niemann-Pick type C lesion affects testosterone production. Endocrinology. 1993;133(6):2913–23.PubMedGoogle Scholar
  135. 135.
    Luchetti S, Bossers K, Frajese GV, Swaab DF. Neurosteroid biosynthetic pathway changes in substantia nigra and caudate nucleus in Parkinson’s disease. Brain Pathol. 2010;20(5):945–51.PubMedGoogle Scholar
  136. 136.
    Lin WL, Hsieh YW, Lin CL, Sung FC, Wu CH, Kao CH. A population-based nested case–control study: the use of 5-alpha-reductase inhibitors and the increased risk of osteoporosis diagnosis in patients with benign prostate hyperplasia. Clin Endocrinol (Oxf). 2015;82(4):503–8.CrossRefGoogle Scholar
  137. 137.
    Chou CH, Lin CL, Lin MC, Sung FC, Kao CH. 5α-Reductase inhibitors increase acute coronary syndrome risk in patients with benign prostate hyperplasia. J Endocrinol Investig. 2015;38(7):799–805.CrossRefGoogle Scholar
  138. 138.
    Naylor JC, Kilts JD, Hulette CM, Steffens DC, Blazer DG, Ervin JF, et al. Allopregnanolone levels are reduced in temporal cortex in patients with Alzheimer’s disease compared to cognitively intact control subjects. Biochim Biophys Acta. 2010;1801(8):951–9.PubMedCentralPubMedCrossRefGoogle Scholar
  139. 139.
    Wang JM, Singh C, Liu L, Irwin RW, Chen S, Chung EJ, et al. Allopregnanolone reverses neurogenic and cognitive deficits in mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2010;107(14):6498–503.PubMedCentralPubMedCrossRefGoogle Scholar
  140. 140.
    Tsuji Y, Nakayama T, Bono K, Kitamura M, Imafuku I. [Two cases of stroke associated with the use of finasteride, an approved drug for male-pattern hair loss in Japan]. Rinsho Shinkeigaku. 2014;54(5):423–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Gillespie CF, Almli LM, Smith AK, Bradley B, Kerley K, Crain DF, et al. Sex dependent influence of a functional polymorphism in steroid 5-α-reductase type 2 (SRD5A2) on post-traumatic stress symptoms. Am J Med Genet B Neuropsychiatr Genet. 2013;162B(3):283–92.PubMedCrossRefGoogle Scholar
  142. 142.
    Ali AK, Heran BS, Etminan M. Persistent sexual dysfunction and suicidal ideation in young men treated with low-dose finasteride: a pharmacovigilance study. Pharmacotherapy. 2015. doi:10.1002/phar.1612.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2015

Authors and Affiliations

  1. 1.Department of BiochemistryBoston University School of MedicineBostonUSA
  2. 2.Department of UrologyBoston University School of MedicineBostonUSA

Personalised recommendations