Current Rheumatology Reports

, Volume 1, Issue 2, pp 157–163

Biologic therapies in rheumatoid arthritis

  • Ken J. Bulpitt


Our growing understanding of the immune response mechanism has created a wave of novel biologic agents for the treatment of rheumatoid arthritis. The domain of biologic agents includes: 1) Recombinant regulatory cytokines; 2) engineered molecules and monoclonal antibodies that target proinflammatory cytokines; 3) monoclonal antibodies against lymphocyte cell-surface proteins; 4) fusion proteins and monoclonal antibodies that block the second signal and induce anergy; 5) vaccines comprised of specific proteins from lymphocytes and antigen presenting cells; 6) monoclonal antibodies that block intercellular adhesion; and 6) gene therapy whereby antiarthritis genes are introduced directly into the joint. Most treatments remain under investigation; however, in 1998 two antagonists of tumor necrosis factor were approved marking the first approvals of antirheumatic biologic agents. For the first time anti-rheumatic therapies are being designed instead of borrowed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Moreland LW, Morgan EE, Adamson TC, et al.: T cell receptor peptide vaccination in rheumatoid arthritis. Arthritis Rheum 1998, 41:1919–29.PubMedCrossRefGoogle Scholar
  2. 2.
    Moreland LW, Sewell KL, Trentham DE, et al. f Interleukin-2 diphtheria fusion protein (DAB486IL-2) in refractory rheuma-toid arthritis. A double-blind, placebo-controlled trial with open-label extension. Arthritis Rheum 1995, 38(9):1177–1186.PubMedCrossRefGoogle Scholar
  3. 3.
    Keffer J, Probert L, Cazlaris H, et al.: Transgenic mice express-ing human tumour necrosis factor: a predictive genetic model of arthritis. Embo Journal 1991, 1013:4025–4031. Elegant animal model in which overexpression of TNF results in an RA-like arthritis—compelling evidence that TNF has a key role in the development of inflammatory arthritis.Google Scholar
  4. 4.
    Crew MD, Effros RB, Walford RL, et al.: Transgenic mice express-ing a truncated Peromyscus leucopus TNF-alpha gene manifest an arthritis resembling ankylosing spondylitis. Journal of Inter-feron and Cytokine Research 1998, 18(4):219–225. A second animal model in which TNF overexpression, this time in a different genetic background, results in a spondylitis-like arthritis.CrossRefGoogle Scholar
  5. 5.
    Marino MW, Dunn A, Grail D, et al.: Characterization of tumor necrosis factor-deficient mice. Proc Nat Acad Sciences (U.S.) 1997, 94:8093–8098.CrossRefGoogle Scholar
  6. 6.
    Douni E, Akassoglou K, Alexopoulou L, et al.: Transgenic and knockout analyses of the role of TNF in immune regulation and disease pathogenesis. J Inflammation 1995-96, 47:27–38.Google Scholar
  7. 7.
    Peschon J, Stocking K, Otten-Evans C, et al.: Inflammatory responses in TNF receptor deficient mice. Arthritis Rheum 1996, 39(Suppl):S120.Google Scholar
  8. 8.
    Elliot MJ, Maini RN, Feldmann M, et al.: Treatment of rheuma-toid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum 1993, 12:1681–1690.CrossRefGoogle Scholar
  9. 9.
    Elliot MJ, Maini RN, Feldman M, et al.: Randomized double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 1994, 344:1105–1110. Controlled trial of the first anti-TNF agent (infliximab) to be tested in autoimmune disease. Dramatic antiinflammatory effects were documented in this and preceding studies. Infliximab became the first biologic approved for treatment of and autoimmune condition (Crohn’s disease).CrossRefGoogle Scholar
  10. 10.
    Maini RN, Breedveld FC, Kalden JR, et al.: Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum 1998, 41(9):1552–63. Combination therapy of infliximab with methotrexate results in improved efficacy, and decreased production of anti-drug antibodies.PubMedCrossRefGoogle Scholar
  11. 11.
    Moreland LW, Baumgartner SW, Schiff MH, et al.: Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N Eng J Med 1997, 337:141–147.CrossRefGoogle Scholar
  12. 12.
    Moreland LW, Schiff MH, Baumgartner SW, et al.: Etanercept therapy in rheumatoid arthritis. A randomized, controlled trial. Ann Intern Med 1999, 130:478–486. Pivotal trial of etanercept, the first approved biologic for the treat-ment of a rheumatic disease. This subcutaneously administered anti-TNF fusion protein was shown to be safe, effective, and reportedly did not stimulate the production of neutralizing antibodies.PubMedGoogle Scholar
  13. 13.
    Weinblatt ME, Kremer J, Bankhurst A, et al.: Phase II/III trial of TNF receptor p75 fusion protein in combination with meth-otrexate in RA patients. N Engl J Med 1999, 340:253–259. Etanercept was shown to be safe and effective as an adjunct to methotrexate therapy in patients whose arthritis was incompletely controlled by methotrexate alone.PubMedCrossRefGoogle Scholar
  14. 14.
    Furst DE, Weisman M, Paulus HE, et al.: Neutralization of TNF by Lenercept (TNF R55-IgG1) in patients with RA treated for 3 months: results of a US phase II trial. Arthritis Rheum 1996, 39(suppl.):S243.Google Scholar
  15. 15.
    Felson DT, Anderson JJ, Boers M, et al.: The American College of Rheumatology preliminary core set of disease activity measures for rheumatoid arthritis clinical trials. Th Committee on Outcome Measures in Rheumatoid Arthritis Clinical Trials. Arthritis Rheum 1993, 36(6):729–740.PubMedCrossRefGoogle Scholar
  16. 16.
    Felson DT, Anderson JJ, Lange ML, et al.: Should improvement in rheumatoid arthritis clinical trials be defined as fifty percent or seventy percent improvement in core set measures, rather than twenty percent? Arthritis Rheum 1998, 41(9):1564–1570.PubMedGoogle Scholar
  17. 17.
    Mohler KM, Sleath PR, Fitzner JN, et al.: Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing. Nature 1994, 370(6486):218–220.PubMedCrossRefGoogle Scholar
  18. 18.
    McGeehan GM, Becherer JD, Bast RC Jr, et al.: Regulation of tumour necrosis factor-alpha processing by a metallopro-teinase inhibitor. Nature 1994, 370(6490):558–561.PubMedCrossRefGoogle Scholar
  19. 19.
    Bresnihan B, Alvaro-Gracia JM, Cobb M, et al.: Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. Arthritis Rheum 1998, 41:2196–2204. This X-ray study of interleukin-1 receptor antagonist was the first to show retardation of radiographic damage by a biologic.PubMedCrossRefGoogle Scholar
  20. 20.
    Bendele A, McAbee T, Sennello G, et al.: Efficacy of sustained blood levels of interleukin-1 receptor antagonist in animal models of arthritis: comparison of efficacy in animal models with human clinical data. Arthritis Rheum 1999, 42(3):498–506.PubMedCrossRefGoogle Scholar
  21. 21.
    Butler DM, Maini RN, Feldmann M, et al.: Modulation of proinflammatory cytokine release in rheumatoid synovial membrane cell cultures. Comparison of monoclonal anti TNF-alpha antibody with the interleukin-1 receptor antago-nist. European Cytokine Network 1995, 6(4):225–230.PubMedGoogle Scholar
  22. 22.
    Yoshizaki K, Nishimoto N, Mihara M, et al.: Therapy of rheu-matoid arthritis by blocking IL-6 signal transduction with a humanized anti-IL-6 receptor antibody. Springer Seminars in Immunopathology 1998, 20(1–2):247–259.PubMedGoogle Scholar
  23. 23.
    Sasai M, Saeki Y, Ohshima S, et al.: Delayed onset and reduced severity of collagen-induced arthritis in interleukin-6-deficient mice. Arthritis Rheum 1999, 42(8):1635–1643.PubMedCrossRefGoogle Scholar
  24. 24.
    Wendling D, Racadot E, Wijdenes J. Treatment of severe rheumatoid arthritis by anti-interleukin 6 monoclonal antibody. J Rheumatol 1993, 20(2):259–262.PubMedGoogle Scholar
  25. 25.
    Matsuno H, Sawai T, Nezuka T, et al.: Treatment of rheumatoid synovitis with anti-reshaping human interleukin-6 receptor monoclonal antibody: use of rheumatoid arthritis tissue implants in the SCID mouse model. Arthritis Rheum 1998, 41(11):2014–2021.PubMedCrossRefGoogle Scholar
  26. 26.
    Maini RN, Paulus H, Breedveld FC, et al.: rHuIL-10 in subjects with active rehumatoid arthritis: A phase I and cytokine response study. Arthritis Rheum 1997, 40(suppl.):S224.Google Scholar
  27. 27.
    Van den Bosch F, Russell A, Chir B, et al.: rHuIL-4 in subjects with active rheumatoid arthritis: A phase I dose escalating safety study. Arthritis Rheum 1998, 41(suppl.):S56.Google Scholar
  28. 28.
    Veys EM, Menkes CJ, Emery P: A randomized, double-blind study comparing twenty-four-week treatment with recom-binant interferon-gamma versus placebo in the treatment of rheumatoid arthritis. Arthritis Rheum 1997, 40(1):62–68.PubMedCrossRefGoogle Scholar
  29. 29.
    Cannon GW, Emkey RD, Denes A, et al.: Prospective 5-year followup of recombinant interferon-gamma in rheumatoid arthritis. J Rheumatol 1993, 20(11):1867–1873.PubMedGoogle Scholar
  30. 30.
    Pratt W, Heck L, Moreland LW, et al.: Safety and immunogenic-ity of a single intramuscular injection of a synthetic HLA-DR4/ 1 peptide vaccine with alum adjuvant in rheumatoid arthritis patients. Arthritis Rheum 1995, 38(suppl.):S281.Google Scholar
  31. 31.
    Reiser H, Stadecker MJ: Costimulatory B7 molecules in the pathogenesis of infectious and autoimmune diseases. N Engl J Med 1996, 335:1369–1377.PubMedCrossRefGoogle Scholar
  32. 32.
    Sayegh MH, Turka LA: The role of T cell costimulatory activation in transplant rejection. N Engl J Med 1998, 338:1813–1821.PubMedCrossRefGoogle Scholar
  33. 33.
    Abrams JR, Lebwohl MG, Guzzo CA, et al. f CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J Clin Invest 1999, 103:1243–1252.PubMedCrossRefGoogle Scholar
  34. 34.
    Kavanaugh AF, Davis LS, Nichols LA, et al.: Treatment of refractory rheumatoid arthritis with a monoclonal antibody to intercellular adhesion molecule 1. Arthritis Rheum 1994, 37:992–999.PubMedCrossRefGoogle Scholar
  35. 35.
    Kavanaugh AF, Schulze-Koops H, Davis LS, et al.: Repeat treatment of rheumatoid arthritis patients with a murine anti-intercellular adhesion molecule 1 monoclonal antibody. Arthritis Rheum 1997, 40:849–853.PubMedCrossRefGoogle Scholar
  36. 36.
    Wendling D, Racadot E, Wigdenes J. The French investigator’s group: randomized double-blind, placebo-controlled multicentre trial of murine anti-CD4 monoclonal antibody therapy in rheumatoid arthritis. Arthritis Rheum 1996, 39(suppl.):S245.Google Scholar
  37. 37.
    Isaacs JD, Burrows N, Wing M, et al.: Humanized anti-CD4 monoclonal antibody therapy of autoimmune and inflammatory disease. Clinical and Experimental Immunology 1997, 110(2):158–166.PubMedCrossRefGoogle Scholar
  38. 38.
    Choy EH, Kingsley GH, Panayi GS. Monoclonal antibody therapy in rheumatoid arthritis. Br J Rheumatol 1998, 37(5):484–490.PubMedCrossRefGoogle Scholar
  39. 39.
    Weinblatt ME, Maddison PJ, Bulpitt KJ, et al.: CAMPATH-1H, a humanized monoclonal antibody, in refractory rheumatoid arthritis: an intravenous dose escalation study. Arthritis Rheum 1995, 18:1589–1594.CrossRefGoogle Scholar
  40. 40.
    Isaacs JD, Manna VK, Rapson N, et al.: Campath-1H in rheumatoid arthritis—An intravenous dose-ranging study. Br J Rheumatol 1996, 35:231–240.PubMedCrossRefGoogle Scholar
  41. 41.
    Kirkenhaus BW, Thien F, Pelton BK, et al.: Chimeric CD7 mon-oclonal antibody therapy in rheumatoid arthritis. J Rheumatol 1992, 19:1340.Google Scholar
  42. 42.
    Olsen NJ, Brooks RH, Cush JJ, et al.: A double-blind, placebo-controlled study of anti-CD5 immunoconjugate in patients with rheumatoid arthritis. The Xoma RA Investigator Group. Arthritis Rheum 1996, 39(7):1102–1108.PubMedCrossRefGoogle Scholar
  43. 43.
    Yocum DE, Solinger AM, Tesser J, et al.: Clinical and immuno-logic effects of a PRIMATIZED anti-CD4 monoclonal antibody in active rheumatoid arthritis: results of a phase I, single dose, dose escalating trial. J Rheumatol 1998, 25(7):1257–1262.PubMedGoogle Scholar
  44. 44.
    Schulze-Koops H, Davis LS, Haverty TP, et al.: Reduction of Th1 cell activity in the peripheral circulation of patients with rheumatoid arthritis after treatment with a non-depleting humanized monoclonal antibody to CD4. J Rheumatol 1998, 25(11):2065–2076.PubMedGoogle Scholar
  45. 45.
    Woods JM, Tokuhira M, Berry JC, et al.: Interleukin-4 adeno-viral gene therapy reduces production of inflammatory cytokines and prostaglandin E2 by rheumatoid arthritis synovium ex vivo. J Invest Med 1999, 47(6):285–292.Google Scholar
  46. 46.
    Evans CH, Ghivizzani C, Kang R, et al.: Gene therapy for rheumatic diseases. Arthritis Rheum 1999: 42:1–16. A review of the thought provoking area of gene therapy.PubMedCrossRefGoogle Scholar
  47. 47.
    Lechman ER, Jaffurs D, Ghivizzani SC, et al.: Direct adenoviral gene transfer of viral IL-10 to rabbit knees with experimental arthritis ameliorates disease in both injected and contralateral control knees. J Immunol 1999, 163(4):2202–2208.PubMedGoogle Scholar
  48. 48.
    Ghivizzani SC, Kang R, Muzzonigro T, et al.: Gene therapy for arthritis—treatment of the first three patients. Arthritis Rheum 1997, 40(suppl.):S223.Google Scholar
  49. 49.
    Mu H, Chen JJ, Jiang Y, et al.: Tumor necrosis factor a micro-satellite polymorphism is associated with rheumatoid arthri-tis severity through an interaction with the HLA-DRB1 shared epitope. Arthritis Rheum 1999, 42:438–442.PubMedCrossRefGoogle Scholar
  50. 50.
    Kaijzel EL, van Krugten MV, Brinkman BM, et al.: Functional analysis of a human tumor necrosis factor alpha promoter polymorphism related to joint damage in rheumatoid arthri-tis. Mol Med 1998, 4:724–733.PubMedGoogle Scholar
  51. 51.
    Brinkman BM, Huizinga TW, Kurban SS, et al.: Tumour necro-sis factor alpha gene polymorphisms in rheumatoid arthritis: association with susceptibility to, or severity of, disease? Br J Rheumatol 1997, 36:516–521.PubMedCrossRefGoogle Scholar
  52. 52.
    Cantagrel A, Navaux F, Loubet-Lescoulie P, et al.: Interleukin-1beta, interleukin-1 receptor antagonist, interleukin-4, and interleukin-10 gene polymorphisms: relationship to occur-rence and severity of rheumatoid arthritis. Arthritis Rheum 1999, 42(6):1093–1100.PubMedCrossRefGoogle Scholar
  53. 53.
    Fishman D, Faulds G, Jeffery R, et al.: The effect of novel poly-morphisms in the interleukin-6 (IL-6) gene on IL-6 tran-scription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest 1998, 102(7):1369–1376.PubMedGoogle Scholar

Copyright information

© Current Science Inc 1999

Authors and Affiliations

  • Ken J. Bulpitt
    • 1
  1. 1.Division of RheumatologyUniversity of California, Los Angeles, School of MedicineLos Angeles

Personalised recommendations