Advertisement

Eosinophilic Vasculitis

  • Karen L. Vega Villanueva
  • Luis R. EspinozaEmail author
Vasculitis (L Espinoza, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Vasculitis

Abstract

Purpose of Review

Eosinophilic granulomatosis with polyangiitis (EGPA) represents a rare clinical entity, which is getting increasing attention and relevance in view of our better understanding and newer insights into its pathogenesis. Concomitantly better recognition and understanding of the immune pathophysiologic role of eosinophils provide a solid ground of their role on systemic inflammatory disorders and defense against infectious triggers, especially parasites. This review will focus on describing the physiopathology of eosinophils, as well as providing an in depth description of the natural history, clinical spectrum, and therapy of EGPA.

Recent Findings

Several studies have aimed at finding useful biomarkers to monitor disease activity, and reported data have shown that eotaxin 3, IL25, IL33, and some eicosanoids to be promising options. Regarding therapeutic advances, recently published studies have revealed the efficacy of mepolizumab during induction and maintenance of EGPA. Recently published data confirmed earlier studies that the use of azathioprine during the induction phase is of no benefit during long-term follow-up. In addition, data from the REOVAS study, which uses rituximab, is still ongoing and apparently with promising results.

Summary

Eosinophils are involved in several systemic inflammatory disorders, and recent gathered data provide support for their role in triggering EGPA. Better understanding of its pathophysiology should generate newer insights into the pathogenesis, biomarkers of disease activity, and therapeutic targets.

Keywords

Eosinophils Biomarkers EGPA Hypereosinophilic syndrome Rituximab Mepolizumab 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    •• Wen T, Rothenberg ME. The regulatory function of eosinophils. Microbiol Spectr. 2016;4.  https://doi.org/10.1128/microbiolspec.MCHD-0020-2015 Very good review of the regulatory functions of eosinophils.
  2. 2.
    •• Khoury P, Grayson PC, Klion AD. Eosinophils in vasculitis: characteristics and roles in pathogenesis. Nat Rev Rheumatol. 2014;10(8):474–83 Very good review of the structural characteristics, and potential role of eosinophils in disease-related pathogenesis. PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Lee JJ, Jacobsen EA, McGarry MP, Schleimer RP, Lee NA. Eosinophils in health and disease: the LIAR hypothesis. Clin Exp Allergy. 2010;40:563–75.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Chu VT, Fröhlich A, Steinhauser G, Scheel T, Roch T, Fillatreau S, et al. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol. 2011;12:151–9.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 2011;332:243–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65:1–11.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Tefferi A, Patnaik MM, Pardanani A. Eosinophilia: secondary, clonal and idiopathic. Br J Haematol. 2006;133(5):468–92.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P, et al. Eosinophils: biological properties and role in health and disease. Clin Exp Allergy. 2008;38:709–50.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Melo RC, Paganoti GF, Dvorak AM, Weller PF. The internal architecture of leukocyte lipid body organelles captured by three-dimensional electron microscopy tomography. PLoS One. 2013;8:e59578.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    John AE, Thomas MS, Berlin AA, Lukacs NW. Temporal production of CCL28 corresponds to eosinophil accumulation and airway hyperreactivity in allergic airway inflammation. Am J Pathol. 2005;166:345–53.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Dallos T, Heiland GR, Strehl J, Karonitsch T, Gross WL, Moosig F, et al. CCL17/thymus and activation-related chemokine in Churg-Strauss syndrome. Arthritis Rheum. 2010;62:3496–503.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Nussbaum JC, van Dyken S, von Moltke J, Cheng LE, Mohapatra A, Molofsky AB, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502:245–8.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Melo RC, Spencer LA, Perez SA, Neves JS, Bafford SP, Morgan ES, et al. Vesicle-mediated secretion of human eosinophil granule-derived major basic protein. Lab Investig. 2009;89:769–81.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Zagai U, Dadfar E, Lundahl J, Venge P, Skold CM. Eosinophil cationic protein stimulates TGF-β1 release by human lung fibroblasts in vitro. Inflammation. 2007;30:153–60.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kanno K, Minami-Hori M, Honma < Ishida-Yamamoto A. Histopathological findings and increased D-dimer are predictive factors of systemic thromboses in eosinophilic granulomatosis with polyangiitis. Am J Dermatopathol 2018; 40: 879–883.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Pacholczak R, Bazan-Socha S, Iwaniec T, Zaręba L, Kielczewski S, Walocha JA, et al. Endothelial dysfunction in patients with eosinophilic granulomatosis with polyangiitis. Clin Rheumatol. 2019;38:417–24.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Kingham PJ, McLean W, Walsh MT, Fryer AD, Gleich GJ, Costello RW. Effects of eosinophils on nerve cell morphology and development: the role of reactive oxygen species and p38 MAP kinase. Am J Physiol Lung Cell Mol Physiol. 2003;285:L915–24.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kephart GM, et al. Marked deposition of eosinophil-derived neurotoxin in adult patients with eosinophilic esophagitis. Am J Gastroenterol. 2010;105:298–307.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Comarmond C, et al. Eosinophilic granulomatosis with polyangiitis (Churg–Strauss): clinical characteristics and long-term followup of the 383 patients enrolled in the French Vasculitis study group cohort. Arthritis Rheum. 2013;65:270–81.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Wilkins JH, et al. Hypereosinophilic syndrome: an update. Am J Hematol. 2005;80:148–57.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Simon HU, Rothenberg ME, Bochner BS, Weller PF, Wardlaw AJ, Wechsler ME, et al. Refining the definition of hypereosinophilic syndrome. J Allergy Clin Immunol. 2010;126:45–9.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Churg J, Strauss L. Allergic granulomatosis, allergic angiitis, and periarteritis nodosa. Am J Pathol. 1951;27:277–301.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Piram M, Maldini C, Mahr A. Effect of race/ethnicity on risk, presentation and course of connective tissue diseases and primary systemic vasculitides. Curr Opin Rheumatol. 2012;24:193–200.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Berti A, Cornec D, Crowson CS, Specks U, Matteson EL. The epidemiology of antineutrophil cytoplasmic autoantibody-associated vasculitis in Olmsted County, Minnesota: a twenty-year US population-based study. Arthritis Rheumatol. 2017;69:2338–50.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Vaglio A, Martorana D, Maggiore U, Grasselli C, Zanetti A, Pesci A, et al. HLA-DRB4 as a genetic risk factor for Churg-Strauss syndrome. Arthritis Rheum. 2007;56:3159–66.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Wieczorek S, Hellmich B, Gross WL, Epplen JT. Associations of Churg- Strauss syndrome with the HLA-DRB1 locus, and relationship to the genetics of antineutrophil cytoplasmic antibody-associated vasculitides: comment on the article by Vaglio et al. Arthritis Rheum. 2008;58:329–30.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Harrold LR, Patterson MK, Andrade SE, Dube T, Go AS, Buist AS, et al. Asthma drug use and the development of Churg-Strauss syndrome (CSS). Pharmacoepidemiol Drug Saf. 2007;16:620–6.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Hauser T, Mahr A, Metzler C, et al. The leucotriene receptor antagonist montelukast and the risk of Churg-Strauss syndrome: a case-crossover study. Thorax. 2008;63:677–82.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Kostianovsky A, Charles P, Alves JF, Goulet M, Pagnoux C, le Guern V, et al. Immunogenicity and safety of seasonal and 2009 pandemic a/H1N1 influenza vaccines for patients with autoimmune diseases: a prospective, monocentre trial on 199 patients. Clin Exp Rheumatol. 2012;30:S83–9.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Vaglio A, Buzio C, Zwerina J. Eosinophilic granulomatosis with polyangiitis (Churg-Strauss): state of the art. Allergy. 2013;68:261–73.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Ramentol-Sintas M, Martínez-Valle F, Solans-Laqué R. Churg–Strauss syndrome: an evolving paradigm. Autoimmun Rev. 2012;12:235–40.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Izquierdo-Domínguez A, Cordero A, Alobid I, Mullol J. Churg-Strauss syndrome or eosinophilic granulomatosis with polyangiitis. Sinusitis. 2016;1:24–43.  https://doi.org/10.3390/sinusitis1010024.CrossRefGoogle Scholar
  33. 33.
    Jakiela B, Sanak M, Szczeklik W, Sokolowska B, Plutecka H, Mastalerz L, et al. Both Th2 and Th17 responses are involved in the pathogenesis of Churg-Strauss syndrome. Clin Exp Rheumatol. 2011;29:S23–34.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Zwerina J, Bach C, Martorana D, Jatzwauk M, Hegasy G, Moosig F, et al. Eotaxin-3 in Churg–Strauss syndrome: a clinical and immunogenetic study. Rheumatology (Oxford). 2011;50:1823–7.CrossRefGoogle Scholar
  35. 35.
    Saito H, Tsurikisawa N, Tsuburai T, Akiyama K. Involvement of regulatory T cells in the pathogenesis of Churg–Strauss syndrome. Int Arch Allergy Immunol. 2008;146(Suppl 1):73–6.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Terrier B, Bieche I, Maisonobe T, Laurendeau I, Rosenzwajg M, Kahn JE, et al. Interleukin-25: a cytokine linking eosinophils and adaptive immunity in Churg–Strauss syndrome. Blood. 2010;116:4523–31.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Sinico RA, Bottero P, Guillevin L. Antineutrophil cytoplasmic autoantibodies and clinical phenotype in patients with Churg–Strauss syndrome. J Allergy Clin Immunol. 2012;130:1440.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Moosig F, et al. A vasculitis Centre based management strategy leads to improved outcome in eosinophilic granulomatosis and polyangiitis (Churg–Strauss, EGPA): monocentric experiences in 150 patients. Ann Rheum Dis. 2013;72:1011–7.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Vaglio A, et al. IgG4 immune response in Churg–Strauss syndrome. Ann Rheum Dis. 2012;71:390–3.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Perez Alamino R, Martinez C, Espinoza LR. IgG4-associatedd vasculitis. Curr Rheumatrol Rep. 2013;15:348–6.  https://doi.org/10.1007/s11926-013-0348-9.CrossRefGoogle Scholar
  41. 41.
    Perez Alamino R, Espinoza LR, Zea AH. The great mimicker: IgG4-related disease. Clin Rheumatol. 2013;32:1267–73.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Khoury P, Zagallo P, Talar-Williams C, Santos CS, Dinerman E, Holland NC, et al. Serum biomarkers are similar in Churg-Strauss syndrome and hypereosinophilic syndrome. Allergy. 2012;67:1149–56.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Vega LE, Espinoza LR. Predictors of poor outcome in ANCA-associated vasculitis (AAV). Curr Rheumatol Rep. 2016;18:70.  https://doi.org/10.1007/s11926-016-0619-3.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Saku A, Furuta S, Hiraguri M, Ikeda K, Kobayashi Y, Kagami SI, et al. Longterm outcomes of 188 Japanese patients with eosinophilic granulomatosis with polyangiitis. J Rheumatol. 2018;45:1159–66.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Polzer K, Karonitsch T, Neumann T, Eger G, Haberler C, Soleiman A, et al. Eotaxin-3 is involved in Churg–Strauss syndrome-a serum marker closely correlating with disease activity. Rheumatology (Oxford). 2008;47:804–8.CrossRefGoogle Scholar
  46. 46.
    Tsurikisawa N, Oshikata C, Watanabe M, Tsuburai T, Kaneko T, Saito H. Innate immune response reflects disease activity in eosinophilic granulomatosis with polyangiitis. Clin Exp Allergy. 2018;48:1305–16.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Higashi N, Taniguchi M, Mita H, Kawagishi Y, Ishii T, Higashi A, et al. Clinical features of asthmatic patients with increased urinary leukotriene E4 excretion (hyperleukotrienuria): involvement of chronic hyperplastic rhinosinusitis with nasal polyposis. J Allergy Clin Immunol. 2004;113:277–83.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Szczeklik W, Sanak M, Mastalerz L, Sokołowska BM, Gielicz A, Soja J, et al. 12-hydroxy-eicosatetraenoic acid (12-HETE): a biomarker of Churg–Strauss syndrome. Clin Exp Allergy. 2012;42:513–22.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Schroeder JW, Folci M, Losappio LM, Chevallard M, Sinico RA, Mirone C, et al. Anti-neutrophil cytoplasmic antibodies positivity and anti-leukotrienes in eosinophilic granulomatosis with polyangiitis: a retrospective monocentric study on 134 Italian patients. Int Arch Allergy Immunol. 2019;180:64–71.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    • Rodriguez-Pla A, Warner RL, Cuthberson D, Carette S, Khalidi NA, Koening CL, et al. Evaluation of potential biomarkers of disease activity in diverse forms of vasculitis. J Rheumatol. 2019.  https://doi.org/10.3899/jrheum.190093 Study attempting to assess potential biomarkers of disease activity in a variety of vasculitides including EGPA.
  51. 51.
    • Pagnoux C, Nair P, Khalidi NA, Carette S, Cuthbertson D, Grayson PC, et al. Serum cytokines and chemokine levels in patients with eosinophilic granulomatosis with polyangiitis, hypereosinophilic syndrome, or eosinophilic asthma. Clin Exp Rheumatol. 2019;37(Suppl 117):40–4 A variety of serum cytokynes and chemokines were evaluated as potential biomarkers in patients with EGPA.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Healy B, Bibby S, Steele R, et al. Antineutrophil cytoplasmic autoantibodies and myeloperoxidase autoantibodies in clinical expression of Churg-Strauss syndrome. J Allergy Clin Immunol 2013; 131:571–576; e1-6.CrossRefGoogle Scholar
  53. 53.
    Valent P, Klion AD, Horny HP, et al. Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J Allergy Clin Immunol 2012; 130:607–612; e9.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18:716–25.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Guillevin L, Lhote F, Gayraud M, Cohen P, Jarrousse B, Lortholary O, et al. Prognostic factors in polyarteritis nodosa and Churg-Strauss syndrome. A prospective study in 342 patients. Medicine. 1996;75:17–28.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Ribi C, Cohen P, Pagnoux C, Mahr A, Arène JP, Lauque D, et al. Treatment of Churg-Strauss syndrome without poor-prognosis factors: a multicenter, prospective, randomized, open-label study of seventy-two patients. Arthritis Rheum. 2008;58:586–94.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Holle JU, Gross WL. Treatment of ANCA-associated vasculitides (AAV). Autoimmun 733 Rev. 2013;12:483–6.CrossRefGoogle Scholar
  58. 58.
    Cohen P, et al. Churg-Strauss syndrome with poor prognosis factors: a prospective multicenter trial comparing glucocorticoids and six or twelve cyclophosphamide pulses in forty-eight patients. Arthritis Rheum. 2007.Google Scholar
  59. 59.
    Maritati F, Alberici F, Oliva E, Urban ML, Palmisano A, Santarsia F, et al. Methotrexate versus cyclophosphamide for remission maintenance in ANCA-associated vasculitis: a randomized trial. PLoS One. 2017 October 10;12(10):e0185880.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    • Puechal X, Pagnoux C, Baron G, Quemeneur T, Neel A, Agard C, et al. Adding azathioprine to remission-induction glucocorticoids for eosinophilic granulomatosis with polyangiitis (Churg-Strauss), microscopic polyangiitis, or polyarteritis nodosa without poor prognostic factors: a randomized, controlled trial. Arthritis Rheumatol. 2017;69:2175–86 Data presented showed that azathioprine is of no value when added to glucocorticoids to maintain remission at 1 year.PubMedCrossRefGoogle Scholar
  61. 61.
    • Puechal X, Pagnoux C, Baron G, Lifermann F, Geffray L, Quemeneur T, et al. Non-severe eosinophilic granulomatosis with polyangiitis: long-term outcomes after remission-induction trial. Rheumatology. 2019.  https://doi.org/10.1093/rheumatology/kez139 Data obtained revealed lack of efficacy for azathioprine to maintain glucocorticoid-induced remission beyon 1 year. PubMedCrossRefGoogle Scholar
  62. 62.
    Pepper RJ, et al. Rituximab is effective in the treatment of refractory Churg–Strauss syndrome and is associated with diminished T-cell interleukin-5 production. Rheumatology (Oxford). 2008;47:1104–5.CrossRefGoogle Scholar
  63. 63.
    Guillevin L, Pagnoux C, Karras A, et al. Rituximab versus azathioprine for maintenance in ANCA-associated vasculitis. N Engl J Med. 2014;371:1771–80.PubMedCrossRefGoogle Scholar
  64. 64.
    Mohammad AJ, Hot A, Arndt F, et al. Rituximab for the treatment of eosinophilic granulomatosis with polyangiitis (Churg–Strauss). Ann Rheum Dis 2014 in press DOI;  https://doi.org/10.1136/annrheumdis-2014-206095.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Thiel J, Troilo A, Salzer U, Schleyer T, Halmschlag K, Rizzi M, et al. Rituximab as induction therapy in eosinophilic granulomatosis with polyangiitis refractory to conventional immunosuppressive treatment: a 36-month follow-up analysis. J Allergy Clin Immunol Pract. 2017;5:1556–63.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Texeira V, Mahammad AJ, Jones RB, Smith R, Jayne D. Efficacy and safety of rituximab in the treatment of eosinophilic granulomatosis with polyangiitis. RMD Open. 2019;5:e000905.  https://doi.org/10.1136/rmdopen-2019-000905.CrossRefGoogle Scholar
  67. 67.
    • Emejuaiwe N. Treatment strategies in ANCA-associated vasculitis. Cuu Rheumatol Rep. 2019;21(7):33.  https://doi.org/10.1007/s11926-019-0835-8 Good review of treatment strategies to follow in the management of ANCA-associated vasculitis. CrossRefGoogle Scholar
  68. 68.
    Herrmann K, Gross WL, Moosig F. Extended follow-up after stopping mepolizumab in relapsing/refractory Churg–Strauss syndrome. Clin Exp Rheumatol. 2012;30(Suppl 70):S62–5.PubMedPubMedCentralGoogle Scholar
  69. 69.
    • Wechsler ME, Akuthota P, Jayne D, et al. Mepolizumab or placebo for eosinophilic granulomatosis with polyangiitis. N Engl J Med. 2017;376(20):1921–32.  https://doi.org/10.1056/NEJMoa1702079 Very good prospective, controlled study demonstrating the efficacy and safety of mepolizumab in the therapy of EGPA. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    • Steinfeld J, Bradford ES, Brown J, Mallett S, Yancey SW, Akuthota P, et al. Evaluation of clinical benefit from treatment with mepolizumab for patients with eosinophilic granulomatosis with polyangiitis. J Allergy Clin Immunol. 2018.  https://doi.org/10.1016/j.jaci.2018.11.041 Post hoc analysis of the MIRRA study demonstrating the efficacy and safety of mepolizumab in primary and secondary outcomes. PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Moosig F, Gross WL, Herrmann K, Bremer JP, Hellmich B. Targeting interleukin-5 in refractory and relapsing Churg-Strauss syndrome. Ann Intern Med. 2011;155:341–3.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Ennis D, Lee JK, Pagnoux C. Mepolizumab for the treatment of eosinophilic granulomatosis with polyangiitis. Exp Opin Biol Ther. 2019;19:617–30.CrossRefGoogle Scholar
  73. 73.
    Celebi Sozener Z, Gorgulu B, Mungan D, Sin BA, Misirligil Z, Aydin O, et al. Omalizumab in the treatment of eosinophilic granulomatosdis with polyangiitis (EGPA): single-center experience in 18 cases. World Allergy Organ J. 2018;11:39.  https://doi.org/10.1186/s40413-018-0217-0.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Aguirre-Valencia D, Posso-Osorio I, Bravo JC, Bonilla-Abadia F, Tobon GJ, Canas CA. Sequential rituximab and omalizumab for the treatment of eosinophilic granulomatosis with polyangiitis (Churg-Strauss syndrome). Clin Rheumatol. 2017;36:2159–62.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Danieli MG, Cappelli M, Malcangi G, Logullo F, Salvi A, Danieli G. Long term effectiveness of intravenous immunoglobulin in Churg-Strauss syndrome. Ann Rheum Dis. 2004;63:1649–54.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Iurlo A, Cattaneo D, Gianelli U. Hypereosinophilic syndromes in the precison medicine era: clinical, molecular aspects and therapeutic approaches (targeted therapies). Expert Rev Hematol. 2019.  https://doi.org/10.1080/17474086.2019.1677461.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Akuthota P, Neves JS, Ueki S. Editorial: severe eosinophilic disorders: mechanisms and clinical management. Front Immunol. 2019;10:2118.  https://doi.org/10.3389/fimmu.2019.02118.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Section of RheumatologyLSU Health Sciences CenterNew OrleansUSA

Personalised recommendations