Advertisement

The Pathogenesis of Ankylosing Spondylitis: an Update

  • Susanne Juhl PedersenEmail author
  • Walter P. Maksymowych
Spondyloarthritis (M Khan, Section Editor)

Abstract

Purpose of Review

Ankylosing spondyloarthritis (AS) is a chronic inflammatory disease that involves the axial joints and entheses. Extra-spinal manifestations such as anterior uveitis, psoriasis, and colitis also occur frequently. This review on the pathogenesis of AS includes an update on the recent discoveries within the field.

Recent Findings

HLA-B*27 is still considered of major importance in the pathogenesis, and it has recently been shown to profoundly affect the gut microbiome and its metabolites and the handling of bacteria during infection. Biochemical and biophysical properties of HLA-B*27 influence its ability to misfold, to induce an endoplasmic reticulum stress response, and to promote autophagy/unfolded protein responses (UPR). HLA-B*27 free heavy chains may induce inflammation through T cells, NK cells, and myeloid cells. Induction of UPR genes results in release of tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17), IL-23, and interferon-γ and increase in T helper (Th) 17 cells. Several other HLA-B and non-B molecules have been associated with AS, although their role in the pathogenesis is unknown.

Summary

Genotypes of endoplasmic reticulum aminopeptidases (ERAP) 1 and 2 have been associated with alterations in the antigenic pool expressed by HLA-B*27 molecules. In the gut, innate immune cells type 3 (ILC3) influence T cell expression of IL-17 and IL-22. Gamma-delta (γ/δ) T cells are induced by IL-23 to produce IL-17. IL-7 induces mucosa-associated invariant T (MAIT) cells to produce IL-17. Besides the microbiome, zonulin may be important through its effects on the permeability of tight junctions in the intestinal epithelial barrier.

Keywords

Ankylosing spondylitis Pathogenesis HLA-B*27 Genes Microbiome Immunology 

Notes

Compliance with Ethical Standards

Conflict of Interest

WPM has received research support and/or consultancy/speaker fees from Abbvie, Boehringer, Celgene, Eli-Lilly, Galapagos, Janssen, Merck, Novartis, Pfizer, and UCB. SJP has received honoraria for speaking from MSD, Pfizer, AbbVie, Novartis, and UCB, has been an advisory board member for AbbVie and Novartis, and has received research support from AbbVie, MSD, and Novartis.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Stolwijk C, Boonen A, van Tubergen A, Reveille JD. Epidemiology of spondyloarthritis. Rheum Dis Clin N Am. 2012;38(3):441–76.Google Scholar
  2. 2.
    de Blecourt J, Polman A, Blecourt-Meindersma d. Hereditary factors in rheumatoid arthritis and ankylosing spondylitis. Ann Rheum Dis. 1961;20:215–20.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Calin A, Marder A, Becks E, Burns T. Genetic differences between B27 positive patients with ankylosing spondylitis and B27 positive healthy controls. Arthritis Rheum. 1983;26:1460–4.PubMedGoogle Scholar
  4. 4.
    van der Linden S, Valkenburg H, Cats A. The risk of developing ankylosing spondylitis in HLA-B27 positive individuals: a family and population study. Br J Rheumatol. 1983;22(4 Suppl 2):18–9.PubMedGoogle Scholar
  5. 5.
    Brown MA, Kennedy LG, MacGregor AJ, Darke C, Duncan E, Shatford JL, et al. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum. 1997;40:1823–8.PubMedGoogle Scholar
  6. 6.
    Jarvinen P. Occurrence of ankylosing spondylitis in a nationwide series of twins. Arthritis Rheum. 1995;38:381–3.PubMedGoogle Scholar
  7. 7.
    Pedersen OB, Svendsen AJ, Ejstrup L, Skytthe A, Harris JR, Junker P. Ankylosing spondylitis in Danish and Norwegian twins: occurrence and the relative importance of genetic vs. environmental effectors in disease causation. Scand J Rheumatol. 2008;37:120–6.PubMedGoogle Scholar
  8. 8.
    Khan MA. An update on the genetic polymorphism of HLA-B*27 with 213 alleles encompassing 160 subtypes (and still counting). Curr Rheumatol Rep. 2017;19:9.PubMedGoogle Scholar
  9. 9.
    Mathieu A, Paladini F, Vacca A, Cauli A, Fiorillo MT, Sorrentino R. The interplay between the geographic distribution of HLA-B27 alleles and their role in infectious and autoimmune diseases: a unifying hypothesis. Autoimmun Rev. 2009;8:420–5.PubMedGoogle Scholar
  10. 10.
    D’Amato M, Fiorillo MT, Carcassi C, Mathieu A, Zuccarelli A, Bitti PP, et al. Relevance of residue 116 of HLA-B27 in determining susceptibility to ankylosing spondylitis. Eur J Immunol. 1995;25:3199–201.PubMedGoogle Scholar
  11. 11.
    Ostermeir K, Springer S, Zacharias M. Coupling between side chain interactions and binding pocket flexibility in HLA-B*44:02 molecules investigated by molecular dynamics simulations. Mol Immunol. 2015;63:312–9.PubMedGoogle Scholar
  12. 12.
    •• Guiliano DB, North H, Panayoitou E, Campbell EC, McHugh K, Cooke FG, et al. Polymorphisms in the F pocket of HLA-B27 subtypes strongly affect assembly, chaperone interactions, and heavy-chain misfolding. Arthritis Rheum. 2017;69:610–21. The study investigates the effects of polymorphism in the F pocket of HLA-B*27 on molecular characteristics, which differs among HLA-B*27 subtypes. Google Scholar
  13. 13.
    Benjamin R, Parham P. HLA-B27 and disease: a consequence of inadvertent antigen presentation? Rheum Dis Dis Clin North Am. 1992;18:11–21.Google Scholar
  14. 14.
    Mear JP, Schreiber KL, Munz C, Zhu X, Stevanovic S, Rammensee HG, et al. Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J Immunol (Baltimore, Md : 1950). 1999;163:6665–70.Google Scholar
  15. 15.
    Colbert RA, DeLay ML, Klenk EI, Layh-Schmitt G. From HLA-B27 to spondyloarthritis: a journey through the ER. Immunol Rev. 2010;233:181–202.PubMedPubMedCentralGoogle Scholar
  16. 16.
    DeLay ML, Turner MJ, Klenk EI, Smith JA, Sowders DP, Colbert RA. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum. 2009;60:2633–43.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Allen RL, O’Callaghan CA, McMichael AJ, Bowness P. Cutting edge: HLA-B27 can form a novel beta 2-microglobulin-free heavy chain homodimer structure. J Immunol (Baltimore, Md : 1950) 1999;162:5045–5048.Google Scholar
  18. 18.
    Wong-Baeza I, Ridley A, Shaw J, Hatano H, Rysnik O, McHugh K, et al. KIR3DL2 binds to HLA-B27 dimers and free H chains more strongly than other HLA class I and promotes the expansion of T cells in ankylosing spondylitis. J Immunol (Baltimore, Md : 1950). 2013;190:3216–24.Google Scholar
  19. 19.
    Giles J, Shaw J, Piper C, Wong-Baeza I, McHugh K, Ridley A, et al. HLA-B27 homodimers and free H chains are stronger ligands for leukocyte Ig-like receptor B2 than classical HLA class I. J Immunol (Baltimore, Md : 1950). 2012;188:6184–93.Google Scholar
  20. 20.
    Bowness P, Ridley A, Shaw J, Chan AT, Wong-Baeza I, Fleming M, et al. Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J Immunol (Baltimore, Md : 1950). 2011;186:2672–80.Google Scholar
  21. 21.
    Laitio P, Virtala M, Salmi M, Pelliniemi LJ, Yu DT, Granfors K. HLA-B27 modulates intracellular survival of Salmonella enteritidis in human monocytic cells. Eur J Immunol. 1997;27:1331–8.PubMedGoogle Scholar
  22. 22.
    •• Antoniou AN, Lenart I, Kriston-Vizi J, Iwawaki T, Turmaine M, McHugh K, et al. Salmonella exploits HLA-B27 and host unfolded protein responses to promote intracellular replication. Ann Rheum Dis. 2019;78:74–82. This study showed that HLA-B*27 misfolding is associated with enhanced Salmonella replication and that Salmonella exploits the UPR for replication. PubMedGoogle Scholar
  23. 23.
    Robinson WP, van der Linden SM, Khan MA, Rentsch HU, Cats A, Russell AS, et al. HLA Bw60 increases susceptibility to ankylosing spondylitis in HLA B27 positive individuals. Arthritis Rheum. 1989;32:1135–41.PubMedGoogle Scholar
  24. 24.
    van Gaalen FA, Verduijn W, Roelen DL, Bohringer S, Huizinga TW, van der Heijde DM, et al. Epistasis between two HLA antigens defines a subset of individuals at a very high risk for ankylosing spondylitis. Ann Rheum Dis. 2013;72:974–8.PubMedGoogle Scholar
  25. 25.
    •• Reveille JD, Zhou X, Lee M, Weisman MH, Yi L, Gensler LS, et al. HLA class I and II alleles in susceptibility to ankylosing spondylitis. Ann Rheum Dis. 2019;78:66–73. This is a study investigating HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQB1, and HLA-DPB1 alleles in AS to identify other risk alleles than HLA-B*27. PubMedGoogle Scholar
  26. 26.
    Wei JC, Tsai WC, Lin HS, Tsai CY, Chou CT. HLA-B60 and B61 are strongly associated with ankylosing spondylitis in HLA-B27-negative Taiwan Chinese patients. Rheumatology (Oxford, England). 2004;43:839–42.Google Scholar
  27. 27.
    Yamaguchi A, Tsuchiya N, Mitsui H, Shiota M, Ogawa A, Tokunaga K, et al. Association of HLA-B39 with HLA-B27-negative ankylosing spondylitis and pauciarticular juvenile rheumatoid arthritis in Japanese patients. Evidence for a role of the peptide-anchoring B pocket. Arthritis Rheum. 1995;38:1672–7.PubMedGoogle Scholar
  28. 28.
    Cortes A, Pulit SL, Leo PJ, Pointon JJ, Robinson PC, Weisman MH, et al. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1. Nat Commun. 2015;6:7146.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Khan MA, Kushner I, Braun WE. Association of HLA A2 with uveitis in HLA-B27 positive patients with ankylosing spondylitis. J Rheumatol. 1981;8:295–8.PubMedGoogle Scholar
  30. 30.
    Chen L, Shi H, Yuan J, Bowness P. Position 97 of HLA-B, a residue implicated in pathogenesis of ankylosing spondylitis, plays a key role in cell surface free heavy chain expression. Ann Rheum Dis. 2017;76:593–601.PubMedGoogle Scholar
  31. 31.
    Costantino F, Breban M, Garchon HJ. Genetics and Functional Genomics of Spondyloarthritis. Front Immunol. 2018;18(9):2933.Google Scholar
  32. 32.
    Ellinghaus D, Jostins L, Spain SL, Cortes A, Bethune J, Han B, et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet. 2016;48:510–8.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet. 2007;39:1329–37.PubMedGoogle Scholar
  34. 34.
    Evans DM, Spencer CC, Pointon JJ, Su Z, Harvey D, Kochan G, et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet. 2011;43:761–7.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T, Leo P, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. 2013;45:730–8.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Reveille JD, Sims AM, Danoy P, Evans DM, Leo P, Pointon JJ, et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat Genet. 2010;42:123– 7.PubMedPubMedCentralGoogle Scholar
  37. 37.
    • Vecellio M, Cortes A, Roberts AR, Ellis J, Cohen CJ, Knight JC, et al. Evidence for a second ankylosing spondylitis-associated RUNX3 regulatory polymorphism. RMD Open. 2018;4(1):e000628. This study includes the identification of association between AS and polymorphism in transcription factor RUNX3.PubMedPubMedCentralGoogle Scholar
  38. 38.
    • Cho SM, Jung SH, Chung YJ. A variant in RUNX3 is associated with the risk of ankylosing spondylitis in Koreans. Genomics Inform. 2017;15:65–8. This study includes the identification of association between AS and polymorphism in transcription factor RUNX3.Google Scholar
  39. 39.
    • Su W, Du L, Liu S, Deng J, Cao Q, Yuan G, et al. ERAP1/ERAP2 and RUNX3 polymorphisms are not associated with ankylosing spondylitis susceptibility in Chinese Han. Clin Exp Immunol. 2018;193:95–102. This study includes the investigation of RUNX3 in Chinese AS patients, where no association was found. PubMedPubMedCentralGoogle Scholar
  40. 40.
    • Ebihara T, Song C, Ryu SH, Plougastel-Douglas B, Yang L, Levanon D, et al. Runx3 specifies lineage commitment of innate lymphoid cells. Nat Immun. 2015;16:1124–33. This study investigates the role of RUNX3 in ILCs, and identifies it as a key transcription factor for lineage specific differentiation of ILC1 and ILC3. Google Scholar
  41. 41.
    Chang SC, Momburg F, Bhutani N, Goldberg AL. The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a “molecular ruler” mechanism. Proc Natl Acad Sci U S A. 2005;102:17107–12.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Martin-Esteban A, Guasp P, Barnea E, Admon A, Lopez de Castro JA. Functional interaction of the ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 2 with the HLA-B*27 peptidome in human cells. Arthritis Rheumatol. 2016;68:2466–75.PubMedGoogle Scholar
  43. 43.
    •• Martin-Esteban A, Sanz-Bravo A, Guasp P, Barnea E, Admon A, Lopez de Castro JA. Separate effects of the ankylosing spondylitis associated ERAP1 and ERAP2 aminopeptidases determine the influence of their combined phenotype on the HLA-B*27 peptidome. J Autoimmun. 2017;79:28–38. ERAP1 and ERAP2 influence the HLA-B27 peptidome, i.e., the pool of peptides processed by HLA-B*27. PubMedGoogle Scholar
  44. 44.
    Strange A, Capon F, Spencer CC, Knight J, Weale ME, Allen MH, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat genet. 2010;42:985–90.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Kirino Y, Bertsias G, Ishigatsubo Y, Mizuki N, Tugal-Tutkun I, Seyahi E, et al. Genome-wide association analysis identifies new susceptibility loci for Behcet’s disease and epistasis between HLA-B*51 and ERAP1. Nat genet. 2013;45:202–7.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Nguyen TT, Chang SC, Evnouchidou I, York IA, Zikos C, Rock KL, et al. Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1. Nat Struct Mol Biol. 2011;18:604–13.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Kochan G, Krojer T, Harvey D, Fischer R, Chen L, Vollmar M, et al. Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming. Proc Natl Acad Sci U S A. 2011;108:7745–50.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Tsui FW, Haroon N, Reveille JD, Rahman P, Chiu B, Tsui HW, et al. Association of an ERAP1 ERAP2 haplotype with familial ankylosing spondylitis. Ann Rheum Dis. 2010;69:733–6.PubMedGoogle Scholar
  49. 49.
    Haroon N, Tsui FW, Uchanska-Ziegler B, Ziegler A, Inman RD. Endoplasmic reticulum aminopeptidase 1 (ERAP1) exhibits functionally significant interaction with HLA-B27 and relates to subtype specificity in ankylosing spondylitis. Ann Rheum Dis. 2012;71:589–95.PubMedGoogle Scholar
  50. 50.
    •• Zhang Z, Ciccia F, Zeng F, Guggino G, Yee K, Abdullah H, et al. Brief report: functional interaction of endoplasmic reticulum aminopeptidase 2 and HLA-B27 activates the unfolded protein response. Arthritis Rheumatol. 2017;69:1009–15. Lack of ERAP2 in HLA-B*27-positive cells increased FHC and UPR. PubMedGoogle Scholar
  51. 51.
    •• Hanson AL, Cuddihy T, Haynes K, Loo D, Morton CJ, Oppermann U, et al. Genetic variants in ERAP1 and ERAP2 associated with immune-mediated diseases influence protein expression and the isoform profile. Arthritis Rheumatol. 2018;70:255–65. AS-associated gene polymorphism in ERAP1 and ERAP2 changed not only the gene expression but also the handling of the transcript and the products of the ERAP1 enzyme. PubMedGoogle Scholar
  52. 52.
    Edmunds L, Elswood J, Kennedy LG, Calin A. Primary ankylosing spondylitis, psoriatic and enteropathic spondyloarthropathy: a controlled analysis. J Rheumatol. 1991;18(5):696–8.PubMedGoogle Scholar
  53. 53.
    Mielants H, Veys EM, Cuvelier C, de Vos M. Ileocolonoscopic findings in seronegative spondylarthropathies. Br J Rheumatol. 1988;27(Suppl 2):95–105.PubMedGoogle Scholar
  54. 54.
    De Vos M, Mielants H, Cuvelier C, Elewaut A, Veys E. Long-term evolution of gut inflammation in patients with spondyloarthropathy. Gastroenterology. 1996;110:1696–703.PubMedGoogle Scholar
  55. 55.
    Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Parkes M, Cortes A, van Heel DA, Brown MA. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet. 2013;14:661–73.PubMedGoogle Scholar
  57. 57.
    • Ciccia F, Guggino G, Rizzo A, Alessandro R, Luchetti MM, Milling S, et al. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann Rheum Dis. 2017;76:1123–32. This study investigated the difference in gut intestinal barrier in patient with AS with ileitis versus healthy subjects.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Sturgeon C, Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue barriers. 2016;4:e1251384.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Baeten D, Moller HJ, Delanghe J, Veys EM, Moestrup SK, De Keyser F. Association of CD163+ macrophages and local production of soluble CD163 with decreased lymphocyte activation in spondylarthropathy synovitis. Arthritis Rheum. 2004;50:1611–23.PubMedGoogle Scholar
  60. 60.
    Ciccia F, Alessandro R, Rizzo A, Accardo-Palumbo A, Raimondo S, Raiata F, et al. Macrophage phenotype in the subclinical gut inflammation of patients with ankylosing spondylitis. Rheumatology (Oxford, England). 2014;53:104–13.Google Scholar
  61. 61.
    Milia AF, Ibba-Manneschi L, Manetti M, Benelli G, Messerini L, Matucci-Cerinic M. HLA-B27 transgenic rat: an animal model mimicking gut and joint involvement in human spondyloarthritides. Ann N Y Acad Sci. 2009;1173:570–4.PubMedGoogle Scholar
  62. 62.
    Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandez-Sueiro JL, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994;180:2359–64.PubMedGoogle Scholar
  63. 63.
    Costello ME, Ciccia F, Willner D, Warrington N, Robinson PC, Gardiner B, et al. Brief report: intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheum. 2015;67:686–91.Google Scholar
  64. 64.
    Tito RY, Cypers H, Joossens M, Varkas G, Van Praet L, Glorieus E, et al. Brief report: Dialister as a microbial marker of disease activity in spondyloarthritis. Arthritis Rheum. 2017;69:114–21.Google Scholar
  65. 65.
    Breban M, Tap J, Leboime A, Said-Nahal R, Langella P, Chiocchia G, et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann Rheum Dis. 2017;76:1614–22.PubMedGoogle Scholar
  66. 66.
    Lin P, Bach M, Asquith M, Lee AY, Akileswaran L, Stauffer P, et al. HLA-B27 and human beta2-microglobulin affect the gut microbiota of transgenic rats. PLoS One. 2014;9:e105684.PubMedPubMedCentralGoogle Scholar
  67. 67.
    •• Asquith M, Davin S, Stauffer P, Michell C, Janowitz C, Lin P, et al. Intestinal metabolites are profoundly altered in the context of HLA-B27 expression and functionally modulate disease in a rat model of spondyloarthritis. Arthritis Rheumatol. 2017;69:1984–95. This study investigates the influence of HLA-B*27 on intestinal metabolites. PubMedPubMedCentralGoogle Scholar
  68. 68.
    Asquith MJ, Stauffer P, Davin S, Mitchell C, Lin P, Rosenbaum JT. Perturbed mucosal immunity and dysbiosis accompany clinical disease in a rat model of spondyloarthritis. Arthritis Rheum. 2016;68:2151–62.Google Scholar
  69. 69.
    Gill T, Asquith M, Brooks SR, Rosenbaum JT, Colbert RA. Effects of HLA-B27 on gut microbiota in experimental spondyloarthritis implicate an ecological model of dysbiosis. Arthritis Rheum. 2018;70:555–65.Google Scholar
  70. 70.
    •• Asquith M, Sternes PR, Costello ME, Karstens L, Diamond S, Martin TM, et al. HLA alleles associated with risk of ankylosing spondylitis and rheumatoid arthritis influence the gut microbiome. Arthritis Rheumatol. 2019.  https://doi.org/10.1002/art.40917. This study investigates the impact of HLA alleles on the content of the gut microbiome.Google Scholar
  71. 71.
    Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells--a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13:145–9.PubMedGoogle Scholar
  72. 72.
    Cherrier M, Eberl G. The development of LTi cells. Curr Opin Immunol. 2012;24(2):178–83.PubMedGoogle Scholar
  73. 73.
    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.PubMedGoogle Scholar
  74. 74.
    Ciccia F, Accardo-Palumbo A, Alessandro R, Rizzo A, Principe S, Peralta S, et al. Interleukin-22 and interleukin-22-producing NKp44+ natural killer cells in subclinical gut inflammation in ankylosing spondylitis. Arthritis Rheum. 2012;64:1869–78.PubMedGoogle Scholar
  75. 75.
    Ciccia F, Guggino G, Rizzo A, Saieva L, Peralta S, Giardina A, et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann Rheum Dis. 2015;74:1739–47.PubMedGoogle Scholar
  76. 76.
    Villanova F, Flutter B, Tosi I, Grys K, Sreeneebus H, Perera GK, et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J Invest Dermatol. 2014;134:984–91.PubMedGoogle Scholar
  77. 77.
    Cuthbert RJ, Fragkakis EM, Dunsmuir R, Li Z, Coles M, Marzo-Ortega H, et al. Brief report: group 3 innate lymphoid cells in human enthesis. Arthritis Rheum. 2017;69:1816–22.Google Scholar
  78. 78.
    Forkel M, Mjosberg J. Dysregulation of group 3 innate lymphoid cells in the pathogenesis of inflammatory bowel disease. Curr Allergy Asthma Rep. 2016;16:73.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Paustian AMS, Paez-Cortez J, Bryant S, Westmoreland S, Waegell W, Kingsbury G. Continuous IL-23 stimulation drives ILC3 depletion in the upper GI tract and, in combination with TNFalpha, induces robust activation and a phenotypic switch of ILC3. PLoS One. 2017;12:e0182841.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Cuvelier CA, De Wever N, Mielants H, De Vos M, Veys EM, Roels H. Expression of T cell receptors alpha beta and gamma delta in the ileal mucosa of patients with Crohn’s disease and with spondylarthropathy. Clin Exp Immunol. 1992;90:275–9.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Jansen DT, Hameetman M, van Bergen J, Huizinga TW, van der Heijde D, Toes RE, et al. IL-17-producing CD4+ T cells are increased in early, active axial spondyloarthritis including patients without imaging abnormalities. Rheumatology (Oxford, England). 2015;54:728–35.Google Scholar
  82. 82.
    Kenna TJ, Davidson SI, Duan R, Bradbury LA, McFarlane J, Smith M, et al. Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive gamma/delta T cells in patients with active ankylosing spondylitis. Arthritis Rheum. 2012;64:1420–9.PubMedGoogle Scholar
  83. 83.
    Venken K, Jacques P, Mortier C, Labadia ME, Decruy T, Coudenys J, et al. RORgammat inhibition selectively targets IL-17 producing iNKT and gammadelta-T cells enriched in Spondyloarthritis patients. Nat Commun. 2019;10:9.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14:667–85.PubMedGoogle Scholar
  85. 85.
    Chiba A, Murayama G, Miyake S. Mucosal-associated invariant T cells in autoimmune diseases. Front Immunol. 2018;9:1333.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Sugimoto C, Konno T, Wakao R, Fujita H, Fujita H, Wakao H. Mucosal-associated invariant T cell is a potential marker to distinguish fibromyalgia syndrome from arthritis. PLoS One. 2015;10:e0121124.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Hayashi E, Chiba A, Tada K, Haga K, Kitagaichi M, Nakajima S, et al. Involvement of mucosal-associated invariant T cells in ankylosing spondylitis. J Rheumatol. 2016;43(9):1695–703.PubMedGoogle Scholar
  88. 88.
    • Gracey E, Qaiyum Z, Almaghlouth I, Lawson D, Karki S, Avvaru N, et al. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann Rheum Dis. 2016;75:2124–32. This study investigates IL-7 in AS patients and associates IL-7 with IL-17 in MAIT cells. PubMedGoogle Scholar
  89. 89.
    Cho YN, Kee SJ, Kim TJ, Jin HM, Kim MJ, Jung HJ, et al. Mucosal-associated invariant T cell deficiency in systemic lupus erythematosus. J Immunol (Baltimore, Md : 1950). 2014;193(8):3891–901.Google Scholar
  90. 90.
    Toussirot E, Laheurte C, Gaugler B, Gabriel D, Saas P. Increased IL-22- and IL-17A-producing mucosal-associated invariant T cells in the peripheral blood of patients with ankylosing spondylitis. Front Immunol. 2018;9:1610.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Appel H, Maier R, Wu P, Scheer R, Hempfing A, Kayser R, et al. Analysis of IL-17(+) cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. Arthritis Res Ther. 2011;13(3):R95.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Lubberts E, Joosten LA, Oppers B, van den Bersselaar L, Coenen-de Roo CJ, Kolls JK, et al. IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis. J Immunol (Baltimore, Md : 1950). 2001;167:1004–13.Google Scholar
  93. 93.
    Koenders MI, Lubberts E, Oppers-Walgreen B, van den Bersselaar L, Helsen MM, Di Padova FE, et al. Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am J Pathol. 2005;167:141–9.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Huang H, Kim HJ, Chang EJ, Lee ZH, Hwang SJ, Kim HM, et al. IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: implications for bone remodeling. Cell Death Differ. 2009;16:1332–43.PubMedGoogle Scholar
  95. 95.
    •• Ono T, Okamoto K, Nakashima T, Nitta T, Hori S, Iwakura Y, et al. IL-17-producing gammadelta T cells enhance bone regeneration. Nat Commun. 2016;7:10928. This is a study of the impact of gamma-delta T cells and IL-17A in bone remodeling. PubMedPubMedCentralGoogle Scholar
  96. 96.
    Goswami J, Hernandez-Santos N, Zuniga LA, Gaffen SL. A bone-protective role for IL-17 receptor signaling in ovariectomy-induced bone loss. Eur J Immunol. 2009;39:2831–9.PubMedPubMedCentralGoogle Scholar
  97. 97.
    •• van Tok M, van Duivenvoorde LM, Kramer I, Ingold P, Pfister S, Roth L, et al. Interleukin-17a inhibition diminishes inflammation and new bone formation in experimental spondyloarthritis. Arthritis Rheum. 2019;71:612–25. This is a study of inhibition of IL-17A in a rat model of SpA. Google Scholar
  98. 98.
    Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13:715–25.PubMedGoogle Scholar
  99. 99.
    Tan ZY, Bealgey KW, Fang Y, Gong YM, Bao S. Interleukin-23: immunological roles and clinical implications. Int J Biochem Cell Biol. 2009;41:733–5.PubMedGoogle Scholar
  100. 100.
    Becker C, Wirtz S, Blessing M, Pirhonen J, Strand D, Bechthold O, et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J Clin Invest. 2003;112:693–706.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Ciccia F, Bombardieri M, Principato A, Giardina A, Tripodo C, Porcasi R, et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 2009;60:955–65.PubMedGoogle Scholar
  102. 102.
    Benham H, Rehaume LM, Hasnain SZ, Velasco J, Baillet AC, Ruutu M, et al. Interleukin-23 mediates the intestinal response to microbial beta-1,3-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheum. 2014;66:1755–67.Google Scholar
  103. 103.
    Awasthi A, Riol-Blanco L, Jager A, Korn T, Pot C, Galileos G, et al. Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J Immunol (Baltimore, Md : 1950). 2009;182:5904–8.PubMedCentralGoogle Scholar
  104. 104.
    Kenna TJ, Brown MA. The role of IL-17-secreting mast cells in inflammatory joint disease. Nat Rev Rheumatol. 2013;9:375–9.PubMedGoogle Scholar
  105. 105.
    Sherlock JP, Joyce-Shaikh B, Turner SP, Chao CC, Sathe M, Grein J, et al. IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4-CD8- entheseal resident T cells. Nat Med. 2012;18:1069–76.PubMedGoogle Scholar
  106. 106.
    Reinhardt A, Yevsa T, Worbs T, Lienenklaus S, Sandrock I, Oberdorfer L, et al. Interleukin-23-dependent gamma/delta T cells produce interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice. Arthritis Rheum. 2016;68:2476–86.Google Scholar
  107. 107.
    Cuthbert R, Fragkakis EM, Bridgewood C, Dunsmuir R, Watad A, Rao A, et al. The Vδ2 subset of Γδt-cells are present at healthy human enthesis and have transcriptional and functional characteristics consistent with a capacity for IL-17A production in response to IL-23 [abstract]. Arthritis Rheum. 2018;70(suppl.)):1833.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Copenhagen Center for Arthritis Research (COPECARE), Center for Rheumatology and Spine DiseaseRigshospitaletGlostrupDenmark
  2. 2.Department of MedicineUniversity of AlbertaEdmontonCanada

Personalised recommendations