Advertisement

Use of Physical Activity Monitors in Rheumatic Populations

  • Christine A. Pellegrini
  • Sara M. Powell
  • Nicholas Mook
  • Katherine DeVivo
  • Linda Ehrlich-Jones
Chronic Pain (R Staud, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Chronic Pain

Abstract

Purpose of Review

The purpose of this review paper is to provide an overview of the recent research using physical activity monitors in rheumatic populations including those with osteoarthritis, rheumatoid arthritis, systemic lupus erythematosus, and fibromyalgia.

Recent Findings

Recent research demonstrates increased use of physical activity monitors in these populations, especially in those with osteoarthritis. Results from cross-sectional, longitudinal, and intervention studies highlight that physical activity levels are below recommended guidelines, yet evidence suggests benefits such as improving pain, fatigue, function, and overall well-being.

Summary

While the use of physical activity monitors in rheumatic populations is increasing, more research is needed to better understand physical activity levels in these populations, the effects of activity on relevant clinical outcomes, and how monitors can be used to help more individuals reach physical activity guidelines.

Keywords

Physical activity Technology Osteoarthritis Rheumatoid arthritis Systemic lupus erythematosus Fibromyalgia 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Barbour KE, Helmick CG, Boring M, Brady TJ. Vital signs: prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation - United States, 2013-2015. MMWR Morb Mortal Wkly Rep. 2017;66(9):246–53.CrossRefGoogle Scholar
  2. 2.
    Hootman JM, Helmick CG, Barbour KE, Theis KA, Boring MA. Updated projected prevalence of self-reported doctor-diagnosed arthritis and arthritis-attributable activity limitation among US adults, 2015-2040. Arthritis Rheumatol. 2016;68(7):1582–7.CrossRefGoogle Scholar
  3. 3.
    Cisternas MG, Murphy L, Sacks JJ, Solomon DH, Pasta DJ, Helmick CG. Alternative methods for defining osteoarthritis and the impact on estimating prevalence in a US population-based survey. Arthritis Care Res [Hoboken]. 2016;68(5):574–80.CrossRefGoogle Scholar
  4. 4.
    Hunter TM, Boytsov NN, Zhang X, Schroeder K, Michaud K, Araujo AB. Prevalence of rheumatoid arthritis in the United States adult population in healthcare claims databases, 2004-2014. Rheumatol Int. 2017;37(9):1551–7.CrossRefGoogle Scholar
  5. 5.
    Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum. 2008;58(1):15–25.CrossRefGoogle Scholar
  6. 6.
    Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58(1):26–35.CrossRefGoogle Scholar
  7. 7.
    Richmond J, Hunter D, Irrgang J, Jones MH, Snyder-Mackler L, Van Durme D, et al. American Academy of Orthopaedic surgeons clinical practice guideline on the treatment of osteoarthritis [OA] of the knee. J Bone Joint Surg Am. 2010;92(4):990–3.CrossRefGoogle Scholar
  8. 8.
    Zhang W, Nuki G, Moskowitz RW, Abramson S, Altman RD, Arden NK, et al. OARSI recommendations for the management of hip and knee osteoarthritis part III: changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthr Cartil. 2010;18(4):476–99.CrossRefGoogle Scholar
  9. 9.
    Busch AJ, Barber KA, Overend TJ, Peloso PM, Schachter CL. Exercise for treating fibromyalgia syndrome. Cochrane Database Syst Rev. 2007;4:CD003786.Google Scholar
  10. 10.
    Dall'Era M. Current rheumatology diagnosis and treatment. 3rd ed. New York: McGraw Hill; 2013.Google Scholar
  11. 11.
    Angel Garcia D, Martinez Nicolas I, Saturno Hernandez PJ. Clinical approach to fibromyalgia: synthesis of evidence-based recommendations, a systematic review. Reumatol Clin. 2016;12(2):65–71.CrossRefGoogle Scholar
  12. 12.
    US Department of Health and Human Services. 2008 Physical Activity Guidelines for Americans. 2008.Google Scholar
  13. 13.
    Roddy E, Zhang W, Doherty M. Aerobic walking or strengthening exercise for osteoarthritis of the knee? A systematic review. Ann Rheum Dis. 2005;64(4):544–8.CrossRefGoogle Scholar
  14. 14.
    Nicklas BJ, Beavers DP, Mihalko SL, Miller GD, Loeser RF, Messier SP. Relationship of objectively-measured habitual physical activity to chronic inflammation and fatigue in middle-aged and older adults. J Gerontol A Biol Sci Med Sci. 2016;71(11):1437–43.CrossRefGoogle Scholar
  15. 15.
    Mihalko SL, Cox P, Beavers DP, Miller GD, Nicklas BJ, Lyles M, et al. Effect of intensive diet and exercise on self-efficacy in overweight and obese adults with knee osteoarthritis: The IDEA randomized clinical trial. Transl Behav Med. 2018.Google Scholar
  16. 16.
    Cramp F, Hewlett S, Almeida C, Kirwan JR, Choy EHS, Chalder T, et al. Non-pharmacological interventions for fatigue in rheumatoid arthritis. Cochrane Database Syst Rev. 2013[8].Google Scholar
  17. 17.
    Rodríguez Huerta MD, Trujillo-Martín MM, Rúa-Figueroa Í, Cuellar-Pompa L, Quirós-López R, Serrano-Aguilar P. Healthy lifestyle habits for patients with systemic lupus erythematosus: a systemic review. Semin Arthritis Rheum. 2016;45(4):463–70.CrossRefGoogle Scholar
  18. 18.
    O'Dwyer T, Durcan L, Wilson F. Exercise and physical activity in systemic lupus erythematosus: a systematic review with meta-analyses. Semin Arthritis Rheum. 2017;47(2):204–15.CrossRefGoogle Scholar
  19. 19.
    Fontaine KR, Conn L, Clauw DJ. Effects of lifestyle physical activity on perceived symptoms and physical function in adults with fibromyalgia: results of a randomized trial. Arthritis Res Ther. 2010;12(2):R55.CrossRefGoogle Scholar
  20. 20.
    Busch AJ, Webber SC, Brachaniec M, Bidonde J, Bello-Haas VD, Danyliw AD, et al. Exercise therapy for fibromyalgia. Curr Pain Headache Rep. 2011;15(5):358–67.CrossRefGoogle Scholar
  21. 21.
    Welk GJ, Schaben JA, Morrow JR. Reliability of accelerometry-based activity monitors: a generalizability study. Med Sci Sports Exerc. 2004;36(9):1637–45.PubMedGoogle Scholar
  22. 22.
    Henriksen A, Mikalsen MH, Woldaregay AZ, Muzny M, Hartvigsen G, Hopstock LA, et al. Using fitness trackers and smartwatches to measure physical activity in research: analysis of consumer wrist-worn wearables. J Med Internet Res. 2018;20[3].Google Scholar
  23. 23.
    Lee IM, Shiroma EJ. Using accelerometers to measure physical activity in large-scale epidemiological studies: issues and challenges. Brit J Sport Med. 2014;48(3):197–201.CrossRefGoogle Scholar
  24. 24.
    Evenson KR, Goto MM, Furberg RD. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int J Behav Nutr Phys Act. 2015;12:159.CrossRefGoogle Scholar
  25. 25.
    Reid RER, Insogna JA, Carver TE, Comptour AM, Bewski NA, Sciortino C, et al. Validity and reliability of Fitbit activity monitors compared to ActiGraph GT3X+ with female adults in a free-living environment. J Sci Med Sport. 2017;20(6):578–82.CrossRefGoogle Scholar
  26. 26.
    Cadmus-Bertram LA, Marcus BH, Patterson RE, Parker BA, Morey BL. Randomized trial of a Fitbit-based physical activity intervention for women. Am J Prev Med. 2015;49(3):414–8.CrossRefGoogle Scholar
  27. 27.
    Bentley F, Tollmar K, Stephenson P, Levy L, Jones B, Robertson S, et al. Health mashups: presenting statistical patterns between wellbeing data and context in natural language to promote behavior change. Acm T Comput-Hum Int. 2013;20[5].Google Scholar
  28. 28.
    Thompson WG, Kuhle CL, Koepp GA, McCrady-Spitzer SK, Levine JA. “Go4Life” exercise counseling, accelerometer feedback, and activity levels in older people. Arch Gerontol Geriatr. 2014;58(3):314–9.CrossRefGoogle Scholar
  29. 29.
    Wang JB, Cadmus-Bertram LA, Natarajan L, White MM, Madanat H, Nichols JF, et al. Wearable sensor/device [Fitbit one] and SMS text-messaging prompts to increase physical activity in overweight and obese adults: a randomized controlled trial. Telemed J E Health. 2015;21(10):782–92.CrossRefGoogle Scholar
  30. 30.
    Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, et al. Sedentary behavior research network [SBRN] - terminology consensus project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75.CrossRefGoogle Scholar
  31. 31.
    Katzmarzyk PT, Church TS, Craig CL, Bouchard C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc. 2009;41(5):998–1005.CrossRefGoogle Scholar
  32. 32.
    Diaz KM, Howard VJ, Hutto B, Colabianchi N, Vena JE, Safford MM, et al. Patterns of sedentary behavior and mortality in U.S. middle-aged and older adults: a National Cohort Study. Ann Intern Med. 2017;167(7):465–75.CrossRefGoogle Scholar
  33. 33.
    Lee J, Chang RW, Ehrlich-Jones L, Kwoh CK, Nevitt M, Semanik PA, et al. Sedentary behavior and physical function: objective evidence from the osteoarthritis initiative. Arthritis Care Res. 2015;67(3):366–73.CrossRefGoogle Scholar
  34. 34.
    Garver MJ, Focht BC, Dials J, Rose M, Lucas AR, Devor ST, et al. Weight status and differences in mobility performance, pain symptoms, and physical activity in older, knee osteoarthritis patients. Arthritis. 2014;2014:375909.CrossRefGoogle Scholar
  35. 35.
    Kahn TL, Schwarzkopf R. Does total knee arthroplasty affect physical activity levels? Data from the osteoarthritis initiative. J Arthroplast. 2015;30(9):1521–5.CrossRefGoogle Scholar
  36. 36.
    Lee J, Song J, Hootman JM, Semanik PA, Chang RW, Sharma L, et al. Obesity and other modifiable factors for physical inactivity measured by accelerometer in adults with knee osteoarthritis. Arthritis Care Res [Hoboken]. 2013;65(1):53–61.CrossRefGoogle Scholar
  37. 37.
    Robbins SM, Jones GR, Birmingham TB, Maly MR. Quantity and quality of physical activity are influenced by outdoor temperature in people with knee osteoarthritis. Physiother Can. 2013;65(3):248–54.CrossRefGoogle Scholar
  38. 38.
    Song J, Hochberg MC, Chang RW, Hootman JM, Manheim LM, Lee J, et al. Racial and ethnic differences in physical activity guidelines attainment among people at high risk of or having knee osteoarthritis. Arthritis Care Res [Hoboken]. 2013;65(2):195–202.CrossRefGoogle Scholar
  39. 39.
    Manheim LM, Dunlop D, Song J, Semanik P, Lee J, Chang RW. Relationship between physical activity and health-related utility among knee osteoarthritis patients. Arthritis Care Res. 2012;64(7):1094–8.Google Scholar
  40. 40.
    Verlaan L, Bolink SA, Van Laarhoven SN, Lipperts M, Heyligers IC, Grimm B, et al. Accelerometer-based physical activity monitoring in patients with knee osteoarthritis: objective and ambulatory assessment of actual physical activity during daily life circumstances. Open Biomed Eng J. 2015;9:157–63.CrossRefGoogle Scholar
  41. 41.
    Sliepen M, Mauricio E, Lipperts M, Grimm B, Rosenbaum D. Objective assessment of physical activity and sedentary behaviour in knee osteoarthritis patients - beyond daily steps and total sedentary time. BMC Musculoskelet Disord. 2018;19(1):64.CrossRefGoogle Scholar
  42. 42.
    White DK, Tudor-Locke C, Felson DT, Gross KD, Niu JB, Nevitt M, et al. Do radiographic disease and pain account for why people with or at high risk of knee osteoarthritis do not meet physical activity guidelines? Arthritis Rheum. 2013;65(1):139–47.CrossRefGoogle Scholar
  43. 43.
    Semanik PA, Lee J, Song J, Chang RW, Sohn MW, Ehrlich-Jones LS, et al. Accelerometer-monitored sedentary behavior and observed physical function loss. Am J Public Health. 2015;105(3):560–6.CrossRefGoogle Scholar
  44. 44.
    Thoma LM, Dunlop D, Song J, Lee J, Tudor-Locke C, Aguiar EJ, et al. Are older adults with symptomatic knee osteoarthritis less active than the general population?: Analysis from the Osteoarthritis Initiative and NHANES. Arthritis Care Res [Hoboken]. 2018;70(10):1448–54.CrossRefGoogle Scholar
  45. 45.
    White DK, Lee J, Song J, Chang RW, Dunlop D. Potential functional benefit from light intensity physical activity in knee osteoarthritis. Am J Prev Med. 2017;53(5):689–96.CrossRefGoogle Scholar
  46. 46.
    Dunlop DD, Song J, Semanik PA, Chang RW, Sharma L, Bathon JM, et al. Objective physical activity measurement in the osteoarthritis initiative: are guidelines being met? Arthritis Rheum. 2011;63(11):3372–82.CrossRefGoogle Scholar
  47. 47.
    Felson DT, Lawrence RC, Hochberg MC, McAlindon T, Dieppe PA, Minor MA, et al. Osteoarthritis: new insights. Part 2: treatment approaches. Ann Intern Med. 2000;133(9):726–37.CrossRefGoogle Scholar
  48. 48.
    Twiggs J, Salmon L, Kolos E, Bogue E, Miles B, Roe J. Measurement of physical activity in the pre- and early post-operative period after total knee arthroplasty for osteoarthritis using a Fitbit flex device. Med Eng Phys. 2018;51:31–40.CrossRefGoogle Scholar
  49. 49.
    Chmelo E, Nicklas B, Davis C, Miller GD, Legault C, Messier S. Physical activity and physical function in older adults with knee osteoarthritis. J Phys Act Health. 2013;10(6):777–83.CrossRefGoogle Scholar
  50. 50.
    • Gilbert AL, Lee J, Ehrlich-Jones L, Semanik PA, Song J, Pellegrini CA, et al. A randomized trial of a motivational interviewing intervention to increase lifestyle physical activity and improve self-reported function in adults with arthritis. Semin Arthritis Rheum. 2018;47(5):732–40 The results suggest that a motivational interviewing based physical activity intervention shows promise in improving function and reducing pain in those with symptomatic knee osteoarthritis.CrossRefGoogle Scholar
  51. 51.
    Martire LM, Stephens MAP, Mogle J, Schulz R, Brach J, Keefe FJ. Daily spousal influence on physical activity in knee osteoarthritis. Ann Behav Med. 2013;45(2):213–23.CrossRefGoogle Scholar
  52. 52.
    Bossen D, Veenhof C, Van Beek KEC, Spreeuwenberg PMM, Dekker J, De Bakker DH. Effectiveness of a web-based physical activity intervention in patients with knee and/or hip osteoarthritis: randomized controlled Trial. J Med Intern Res. 2013;15[11].Google Scholar
  53. 53.
    Li LC, Sayre EC, Xie H, Falck RS, Best JR, Liu-Ambrose T, et al. Efficacy of a community-based technology-enabled physical activity counseling program for people with knee osteoarthritis: proof-of-concept study. J Med Internet Res. 2018;20(4):e159.CrossRefGoogle Scholar
  54. 54.
    Losina E, Collins JE, Deshpande BR, Smith SR, Michl GL, Usiskin IM, et al. Financial incentives and health coaching to improve physical activity following total knee replacement: a randomized controlled trial. Arthritis Care Res [Hoboken]. 2017.Google Scholar
  55. 55.
    Skrepnik N, Spitzer A, Altman R, Hoekstra J, Stewart J, Toselli R. Assessing the impact of a novel smartphone application compared with standard follow-up on mobility of patients with knee osteoarthritis following treatment with Hylan G-F 20: a randomized controlled trial. JMIR Mhealth Uhealth. 2017;5(5):e64.CrossRefGoogle Scholar
  56. 56.
    Fujita K, Makimoto K, Tanaka R, Mawatari M, Hotokebuchi T. Prospective study of physical activity and quality of life in Japanese women undergoing total hip arthroplasty. J Orthop Sci. 2013;18(1):45–53.CrossRefGoogle Scholar
  57. 57.
    Hermann A, Ried-Larsen M, Jensen AK, Holst R, Andersen LB, Overgaard S, et al. Low validity of the Sensewear Pro3 activity monitor compared to indirect calorimetry during simulated free living in patients with osteoarthritis of the hip. BMC Musculoskelet Disord. 2014;15.Google Scholar
  58. 58.
    Holsgaard-Larsen A, Roos EM. Objectively measured physical activity in patients with end stage knee or hip osteoarthritis. Eur J Phys Rehab Med. 2012;48(4):577–85.Google Scholar
  59. 59.
    Lin BA, Thomas P, Spiezia F, Loppini M, Maffulli N. Changes in daily physical activity before and after total hip arthroplasty. A pilot study using accelerometry. Surgeon. 2013;11(2):87–91.CrossRefGoogle Scholar
  60. 60.
    Timmermans EJ, Schaap LA, Visser M, van der Ploeg HP, Wagtendonk AJ, van der Pas S, et al. The association of the neighbourhood built environment with objectively measured physical activity in older adults with and without lower limb osteoarthritis. BMC Public Health. 2016;15:71.Google Scholar
  61. 61.
    Murphy SL, Alexander NB, Levoska M, Smith DM. Relationship between fatigue and subsequent physical activity among older adults with symptomatic osteoarthritis. Arthritis Care Res. 2013;65(10):1617–24.Google Scholar
  62. 62.
    Harding P, Holland AE, Delany C, Hinman RS. Do activity levels increase after total hip and knee arthroplasty? Clin Orthop Relat Res. 2014;472(5):1502–11.CrossRefGoogle Scholar
  63. 63.
    Mahieu MA, Ahn GE, Chmiel JS, Dunlop DD, Helenowski IB, Semanik P, et al. Serum adipokine levels and associations with patient-reported fatigue in systemic lupus erythematosus. Rheumatol Int. 2018;38(6):1053–61.CrossRefGoogle Scholar
  64. 64.
    • Mahieu MA, Ahn GE, Chmiel JS, Dunlop DD, Helenowski IB, Semanik P, et al. Fatigue, patient reported outcomes, and objective measurement of physical activity in systemic lupus erythematosus. Lupus. 2016;25(11):1190–9 The results demonostrate in persons with systemic lupus erythematosus, engaging in moderate/vigorous physical activity was associated with less fatigue and better physical function.CrossRefGoogle Scholar
  65. 65.
    Morillas-de-Laguno P, Vargas-Hitos JA, Rosales-Castillo A, Siez-Uran LM, Montalban-Mendez C, Gavilan-Carrera B, et al. Association of objectively measured physical activity and sedentary time with arterial stiffness in women with systemic lupus erythematosus with mild disease activity. PLoS One. 2018;13(4):e0196111.CrossRefGoogle Scholar
  66. 66.
    Legge A, Blanchard C, Hanly J. Physical activity and sedentary behaviour in patients with systemic lupus erythematosus and rheumatoid arthritis. J Rheumatol. 2017;44(6):880–1.Google Scholar
  67. 67.
    Tierney M, Fraser A, Purtill H, Kennedy N. Study to determine the criterion validity of the SenseWear armband as a measure of physical activity in people with rheumatoid arthritis. Arthritis Care Res. 2013;65(6):888–95.CrossRefGoogle Scholar
  68. 68.
    Backhouse MR, Hensor EM, White D, Keenan AM, Helliwell PS, Redmond AC. Concurrent validation of activity monitors in patients with rheumatoid arthritis. Clin Biomech [Bristol, Avon]. 2013;28(4):473–9.CrossRefGoogle Scholar
  69. 69.
    Huffman KM, Pieper CF, Hall KS, St Clair EW, Kraus WE. Self-efficacy for exercise, more than disease-related factors, is associated with objectively assessed exercise time and sedentary behaviour in rheumatoid arthritis. Scand J Rheumatol. 2015;44(2):106–10.CrossRefGoogle Scholar
  70. 70.
    Jacquemin C, Servy H, Molto A, Sellam J, Foltz V, Gandjbakhch F, et al. Physical activity assessment using an activity tracker in patients with rheumatoid arthritis and axial spondyloarthritis: prospective observational study. JMIR Mhealth Uhealth. 2018;6(1):e1.CrossRefGoogle Scholar
  71. 71.
    Esbensen BA, Thomsen T, Hetland ML, Beyer N, Midtgaard J, Loppenthin K, et al. The efficacy of motivational counseling and SMS-reminders on daily sitting time in patients with rheumatoid arthritis: protocol for a randomized controlled trial. Trials. 2015;16:23.CrossRefGoogle Scholar
  72. 72.
    • Thomsen T, Aadahl M, Beyer N, Hetland ML, Loppenthin K, Midtgaard J, et al. The efficacy of motivational counselling and SMS reminders on daily sitting time in patients with rheumatoid arthritis: a randomised controlled trial. Ann Rheum Dis. 2017;76(9):1603–6 The results indicate that an individually tailored, theory-based behavioral intervention can reduce sitting time and improve patient-reported outcomes in individuals with rheumatoid arthritis.CrossRefGoogle Scholar
  73. 73.
    • Salvat I, Zaldivar P, Monterde S, Montull S, Miralles I, Castel A. Functional status, physical activity level, and exercise regularity in patients with fibromyalgia after multidisciplinary treatment: retrospective analysis of a randomized controlled trial. Rheumatol Int. 2017;37(3):377–87 The results suggest that a multidisciplinary treatment can help to increase physical activity and functional status in those with fibromyalgia.CrossRefGoogle Scholar
  74. 74.
    Martin-Borras C, Gine-Garriga M, Martinez E, Martin-Cantera C, Puigdomenech E, Sola M, et al. Effectiveness of a primary care-based intervention to reduce sitting time in overweight and obese patients [SEDESTACTIV]: a randomized controlled trial; rationale and study design. BMC Public Health. 2014;14.Google Scholar
  75. 75.
    Doerr JM, Fischer S, Nater UM, Strahler J. Influence of stress systems and physical activity on different dimensions of fatigue in female fibromyalgia patients. J Psychosom Res. 2017;93:55–61.CrossRefGoogle Scholar
  76. 76.
    Benitez-Porres J, Delgado M, Ruiz JR. Comparison of physical activity estimates using International Physical Activity Questionnaire [IPAQ] and accelerometry in fibromyalgia patients: the Al-Andalus study. J Sports Sci. 2013;31(16):1741–52.CrossRefGoogle Scholar
  77. 77.
    Umeda M, Marino CA, Lee W, Hilliard SC. The association between exercise enjoyment and physical activity in women with fibromyalgia. Int J Sports Med. 2014;35(12):1044–50.CrossRefGoogle Scholar
  78. 78.
    Manning VL, Hurley MV, Scott DL, Bearne LM. Are patients meeting the updated physical activity guidelines? Physical activity participation, recommendation, and preferences among inner-city adults with rheumatic diseases. J Clin Rheumatol. 2012;18(8):399–404.CrossRefGoogle Scholar
  79. 79.
    Woodcock J, Franco OH, Orsini N, Roberts I. Non-vigorous physical activity and all-cause mortality: systematic review and meta-analysis of cohort studies. Int J Epidemiol. 2011;40(1):121–38.CrossRefGoogle Scholar
  80. 80.
    Sofi F, Capalbo A, Cesari F, Abbate R, Gensini GF. Physical activity during leisure time and primary prevention of coronary heart disease: an updated meta-analysis of cohort studies. Eur J Cardiovasc Prev Rehabil. 2008;15(3):247–57.CrossRefGoogle Scholar
  81. 81.
    Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065–79.CrossRefGoogle Scholar
  82. 82.
    Imboden MT, Nelson MB, Kaminsky LA, Montoye AH. Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure. Br J Sports Med. 2018;52(13):844–50.CrossRefGoogle Scholar
  83. 83.
    Michie S, West R, Sheals K, Godinho CA. Evaluating the effectiveness of behavior change techniques in health-related behavior: a scoping review of methods used. Transl Behav Med. 2018;8(2):212–24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Christine A. Pellegrini
    • 1
    • 2
  • Sara M. Powell
    • 2
  • Nicholas Mook
    • 2
  • Katherine DeVivo
    • 2
  • Linda Ehrlich-Jones
    • 3
  1. 1.Department of Exercise ScienceUniversity of South CarolinaColumbiaUSA
  2. 2.Arnold School of Public Health, Department of Exercise ScienceUniversity of South CarolinaColumbiaUSA
  3. 3.Shirley Ryan Ability LaboratoryCenter for Rehabilitation Outcomes ResearchChicagoUSA

Personalised recommendations