Advertisement

Update on the Gastrointestinal Microbiome in Systemic Sclerosis

  • Chiara Bellocchi
  • Elizabeth R. Volkmann
Scleroderma (J Varga, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Scleroderma

Abstract

Purpose of Review

Accumulating evidence suggests that gut microbiota affect the development and function of the immune system and may play a role in the pathogenesis of autoimmune diseases. The purpose of this review is to summarize recent studies reporting gastrointestinal microbiota aberrations associated with the systemic sclerosis disease state.

Recent Findings

The studies described herein have identified common changes in gut microbial composition. Specifically, patients with SSc have decreased abundance of beneficial commensal genera (e.g., Faecalibacterium, Clostridium, and Bacteroides) and increased abundance of pathobiont genera (e.g., Fusobacterium, Prevotella, Erwinia). In addition, some studies have linked specific genera with the severity of gastrointestinal symptoms in systemic sclerosis.

Summary

More research is needed to further characterize the gastrointestinal microbiota in systemic sclerosis and understand how microbiota perturbations can affect inflammation, fibrosis, and clinical outcomes. Interventional studies aimed at addressing/correcting these perturbations, either through dietary modification, pro/pre-biotic supplementation, or fecal transplantation, may lead to improved outcomes for patients with systemic sclerosis.

Keywords

Systemic sclerosis Microbiota Gastrointestinal involvement Immune system 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. 1.
    Sallam H, McNearney TA, Chen JDZ. Systematic review: pathophysiology and management of gastrointestinal dysmotility in systemic sclerosis (scleroderma). Aliment Pharmacol Ther [Internet]. 2006;23:691–712. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16556171.
  2. 2.
    Marie I. Gastrointestinal involvement in systemic sclerosis]. Presse Med [Internet]. 2006;35:1952–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17159722.
  3. 3.
    Franck-Larsson K, Graf W, Rönnblom A. Lower gastrointestinal symptoms and quality of life in patients with systemic sclerosis: a population-based study. Eur J Gastroenterol Hepatol [Internet]. 2009;21:176–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19212206.
  4. 4.
    Bodukam V, Hays RD, Maranian P, Furst DE, Seibold JR, Impens A, Mayes MD, Clements PJ, Khanna D Association of gastrointestinal involvement and depressive symptoms in patients with systemic sclerosis. Rheumatology (Oxford) [Internet]. 2011;50:330–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20884655.
  5. 5.
    Omair MA, Lee P. Effect of gastrointestinal manifestations on quality of life in 87 consecutive patients with systemic sclerosis. J Rheumatol [Internet]. 2012;39:992–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22467930.
  6. 6.
    Sekirov I, Russell S, Antunes L. Gut microbiota in health and disease. Physiol Rev [Internet]. 2010;90:859–904. Available from: http://physrev.physiology.org/content/90/3/859.short.
  7. 7.
    Chiller K, Selkin BA, Murakawa GJ. Skin microflora and bacterial infections of the skin. J Investig dermatology Symp Proc [internet]. Elsevier Masson SAS; 2001;6:170–4. Available from:  https://doi.org/10.1046/j.0022-202x.2001.00043.x.
  8. 8.
    Guy-Grand D, DiSanto JP, Henchoz P, Malassis-Séris M, Vassalli P. Small bowel enteropathy: role of intraepithelial lymphocytes and of cytokines (IL-12, IFN-gamma, TNF) in the induction of epithelial cell death and renewal. Eur J Immunol [Internet]. 1998;28:730–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9521083.
  9. 9.
    Cerf-Bensussan N, Guy-Grand D, Griscelli C. Intraepithelial lymphocytes of human gut: isolation, characterisation and study of natural killer activity. Gut. 1985;26:81–8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dominguez-bello MG, De Jesus-laboy KM, Shen N, Cox LM, Amir A, Gonzalez A, et al. HHS Public Access. 2016;22:250–3.Google Scholar
  11. 11.
    Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci [Internet]. 2010;107:11971–5. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1002601107.
  12. 12.
    Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C. Mode of delivery affects the bacterial community in the newborn gut. Early Hum Dev [Internet]. Elsevier Ltd; 2010;86:13–5. Available from:  https://doi.org/10.1016/j.earlhumdev.2010.01.004
  13. 13.
    Sprockett D, Fukami T, Relman DA. Role of priority effects in the early-life assembly of the gut microbiota. Nat Rev Gastroenterol Hepatol [Internet]. Nature Publishing Group; 2018; Available from: http://www.nature.com/doifinder/10.1038/nrgastro.2017.173.
  14. 14.
    Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5:1556–73.CrossRefGoogle Scholar
  15. 15.
    Mariat D, Firmesse O, Levenez F, Guimarǎes VD, Sokol H, Doré J, et al. The firmicutes/bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:1–6.CrossRefGoogle Scholar
  16. 16.
    Zeevaart JG, Wang L, Thakur V V, Leung CS, Tirado J, Bailey CM, et al. Diversity of the human intestinal microbial flora paul. 2009;130:9492–9.Google Scholar
  17. 17.
    Wang X, Heazlewood SP, Krause DO, Florin THJ. Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. J Appl Microbiol [Internet]. 2003;95:508–20. Available from: http://doi.wiley.com/10.1046/j.1365-2672.2003.02005.x.
  18. 18.
    Mukherji A, Kobiita A, Ye T, Chambon P. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell. 2013;153:812–27.CrossRefPubMedGoogle Scholar
  19. 19.
    Umesaki Y, Setoyama H, Matsumoto S, Okada Y. Expansion of axf T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology. 1993;79:32–7.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Macpherson AJ, Harris NL. Opinion: interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol [Internet]. 2004;4:478–85. Available from: http://www.nature.com/doifinder/10.1038/nri1373.
  21. 21.
    Bouskra D, Brézillon C, Bérard M, Werts C, Varona R, Boneca IG, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008;456:507–10.CrossRefPubMedGoogle Scholar
  22. 22.
    Ishikawa H, Tanaka K, Maeda Y, Aiba Y, Hata A, Tsuji NM, et al. Effect of intestinal microbiota on the induction of regulatory CD25 + CD4+ T cells. Clin Exp Immunol. 2008;153:127–35.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mazmanian SK, Cui HL, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122:107–18.CrossRefPubMedGoogle Scholar
  24. 24.
    Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila A. T, et al. the toll-like receptor pathway establishes commensal gut colonization. Science. 2011;332:974–7.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol. 2007;19:59–69.CrossRefPubMedGoogle Scholar
  26. 26.
    An D, Oh SF, Olszak T, Neves JF, Avci FY, Erturk-Hasdemir D, et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell. 2014;156:123–33.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lundin A, Bok CM, Aronsson L, Björkholm B, Gustafsson JÅ, Pott S, et al. Gut flora, toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine. Cell Microbiol. 2008;10:1093–103.CrossRefPubMedGoogle Scholar
  28. 28.
    Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol [Internet]. 2000;1:113–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11248802.
  29. 29.
    Chang YC, Ching YH, Chiu CC, Liu JY, Hung SW, Huang WC, et al. TLR2 and interleukin-10 are involved in Bacteroides fragilis-mediated prevention of DSS-induced colitis in gnotobiotic mice. PLoS One. 2017;12:1–16.Google Scholar
  30. 30.
    Palm NW, de Zoete MR, Flavell RA. Immune-microbiota interactions in health and disease. Clin Immunol [Internet]. 2015 [cited 2017 Jun 27];159:122–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1521661615001990
  31. 31.
    Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science (80- ). 2010.Google Scholar
  32. 32.
    Balzola F, Bernstein C, Van Assche G. Nod2 is required for the regulation of commensal microbiota in the intestine: commentary. Inflamm Bowel Dis Monit. 2010;10:100–1.Google Scholar
  33. 33.
    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell [Internet]. 2009;139:485–98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19836068.
  34. 34.
    He B, Xu W, Santini PA, Polydorides AD, Chiu A, Estrella J, et al. Intestinal Bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity. 2007;26:812–26.CrossRefPubMedGoogle Scholar
  35. 35.
    Maruya M, Kawamoto S, Kato LM, Fagarasan S. Impaired selection of IgA and intestinal dysbiosis associated with PD-1-deficiency. Gut Microbes [Internet]. 2013;4:165–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23333864.
  36. 36.
    Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic Bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;2:328–39.CrossRefPubMedGoogle Scholar
  37. 37.
    Cullender TC, Chassaing B, Janzon A, Kumar K, Muller CE, Werner JJ, Angenent LT, Bell ME, Hay AG, Peterson DA, Walter J, Vijay-Kumar M, Gewirtz AT, Ley RE Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe [Internet]. Elsevier Inc.; 2013;14:571–81. Available from:  https://doi.org/10.1016/j.chom.2013.10.009.
  38. 38.
    Suzuki K, Maruya M, Kawamoto S, Sitnik K, Kitamura H, Agace WW, Fagarasan S The sensing of environmental stimuli by follicular dendritic cells promotes immunoglobulin a generation in the gut. Immunity [Internet]. 2010 [cited 2017 Jun 27];33:71–83. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761310002451.
  39. 39.
    Tanoue T, Atarashi K, Honda K. Development and maintenance of intestinal regulatory T cells. Nat rev Immunol [Internet]. Nat Publ Group; 2016;16:295–309. Available from:  https://doi.org/10.1038/nri.2016.36.
  40. 40.
    Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A [Internet]. 2010;107:12204–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20566854.
  41. 41.
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, Honda K Induction of colonic regulatory T cells by indigenous Clostridium species. Science [Internet]. 2011;331:337–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21205640.
  42. 42.
    Ivanov II, De Llanos Frutos R, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, et al. Specific microbiota direct the differentiation of Th17 cells in the mucosa of the small intestine. 2008;4:337–49. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597589/pdf/nihms-76775.pdf.
  43. 43.
    Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc [Internet]. 2003;62:67–72. Available from: http://www.journals.cambridge.org/abstract_S0029665103000120.
  44. 44.
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature [internet]. Nat Publ Group; 2013;504:446–50. Available from:  https://doi.org/10.1038/nature12721.
  45. 45.
    Arpaia N, Campbell C, Fan X, Dikiy S, Van Der Veeken J, Deroos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature [Internet]. Nat Publ Group; 2013;504:451–5. Available from:  https://doi.org/10.1038/nature12726.
  46. 46.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science [Internet]. 2013;341:569–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23828891.
  47. 47.
    Nastasi C, Candela M, Bonefeld CM, Geisler C, Hansen M, Krejsgaard T, Biagi E, Andersen MH, Brigidi P, Ødum N, Litman T, Woetmann A The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci Rep [Internet]. Nat Publ Group; 2015;5:1–10. Available from:  https://doi.org/10.1038/srep16148.
  48. 48.
    Liu B, Qian J, Wang Q, Wang F, Zhenyu M, Qiao Y. Butyrate protects rat liver against total hepatic ischemia reperfusion injury with bowel congestion. PLoS One. 2014;9:2–9.Google Scholar
  49. 49.
    Kyner D, Zabos P, Christman J, Acs G. Effect of sodium butyrate on lymphocyte activation. J Exp Med [Internet]. 1976;144:1674–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1003108.
  50. 50.
    Ho KJ, Varga J. Early-life gut dysbiosis: a driver of later-life fibrosis? J Invest Dermatol [Internet]. 2017;137:2253–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29055411.
  51. 51.
    Mehta H, Goulet P-O, Mashiko S, Desjardins J, Pérez G, Koenig M, et al. Early-life antibiotic exposure causes intestinal dysbiosis and exacerbates skin and lung pathology in experimental systemic sclerosis. J Invest Dermatol [Internet]. 2017;137:2316–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28757138.
  52. 52.
    Park J-S, Choi J, Jhun J, Kwon JY, Lee B-I, Yang CW, et al. Lactobacillus acidophilus improves intestinal inflammation in an acute colitis mouse model by regulation of Th17 and Treg cell balance and fibrosis development. J Med Food [Internet]. 2018;0:jmf.2017.3990. Available from: http://online.liebertpub.com/doi/10.1089/jmf.2017.3990.
  53. 53.
    Gómez-Hurtado I, Santacruz A, Peiró G, Zapater P, Gutiérrez A, Pérez-Mateo M, Sanz Y, Francés R Gut microbiota dysbiosis is associated with inflammation and bacterial translocation in mice with CCl4-induced fibrosis. PLoS One [Internet]. 2011;6:e23037. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21829583.
  54. 54.
    Mazagova M, Wang L, Anfora AT, Wissmueller M, Lesley SA, Miyamoto Y, et al. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. FASEB J [Internet]. 2015;29:1043–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25466902.
  55. 55.
    Eom T, Kim YS, Choi CH, Sadowsky MJ, Unno T. Current understanding of microbiota- and dietary-therapies for treating inflammatory bowel disease. J Microbiol [Internet]. 2018;56:189–98. Available from: http://link.springer.com/10.1007/s12275-018-8049-8.
  56. 56.
    Seksik P, Rigottier-Gois L, Gramet G, Sutren M, Pochart P, Marteau P, et al. Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease of the colon. (Inflammation and Inflammatory Bowel Disease). Gut [Internet]. 2003;52:237(6). Available from: http://find.galegroup.com/gtx/infomark.do?&contentSet=IAC-Documents&type=retrieve&tabID=T002&prodId=ITOF&docId=A97188207&source=gale&srcprod=ITOF&userGroupName=massey&version=1.0.
  57. 57.
    Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55:205–11.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Frank DN, Robertson CE, Hamm CM, Kpadeh Z, Zhang T, Chen H, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17:1–12.CrossRefGoogle Scholar
  59. 59.
    Pozuelo M, Panda S, Santiago A, Mendez S, Accarino A, Santos J, Guarner F, Azpiroz F, Manichanh C Reduction of butyrate- and methane-producing microorganisms in patients with irritable bowel syndrome. Sci Rep [Internet]. Nat Publ Group; 2015;5:1–12. Available from:  https://doi.org/10.1038/srep12693.
  60. 60.
    Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, et al. Low counts of faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15:1183–9.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    D’Souza WN, Douangpanya J, Mu S, Jaeckel P, Zhang M, Maxwell JR, et al. Differing roles for short chain fatty acids and GPR43 agonism in the regulation of intestinal barrier function and immune responses. PLoS One. 2017;12:1–15.Google Scholar
  62. 62.
    Zhang M, Zhou Q, Dorfman RG, Huang X, Fan T, Zhang H, Zhang J, Yu C Butyrate inhibits interleukin-17 and generates Tregs to ameliorate colorectal colitis in rats. BMC Gastroenterol [Internet]. 2016;16:1–9. Available from:  https://doi.org/10.1186/s12876-016-0500-x.
  63. 63.
    Hevia A, Milani C, López P, Cuervo A, Arboleya S, Duranti S, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. 2014.Google Scholar
  64. 64.
    Rojo D, Hevia A, Bargiela R, López P, Cuervo A, González S, et al. Ranking the impact of human health disorders on gut metabolism: systemic lupus erythematosus and obesity as study cases. Sci Rep. 2015;5:1–9.CrossRefGoogle Scholar
  65. 65.
    Chen J, Wright K, Davis JM, Jeraldo P, Marietta E V., Murray J, Nelson H, Matteson EL, Taneja V An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med [Internet]. 2016;8:1–14. Available from:  https://doi.org/10.1186/s13073-016-0299-7.
  66. 66.
    Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis Elife [Internet]. 2013;2:1–20. Available from: http://elifesciences.org/lookup/doi/10.7554/eLife.01202.
  67. 67.
    López P, de Paz B, Rodríguez-Carrio J, Hevia A, Sánchez B, Margolles A, et al. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep [Internet]. 2016 [cited 2017 Jun 27];6:24072. Available from: http://www.nature.com/articles/srep24072.
  68. 68.
    Luo XM, Edwards MR, Mu Q, Yu Y, Vieson MD, Reilly CM, et al. Gut microbiota in human SLE and a mouse model of lupus. Appl Environ Microbiol [Internet]. 2017;84:AEM.02288–17. Available from: http://aem.asm.org/lookup/doi/10.1128/AEM.02288-17.
  69. 69.
    Mu Q, Tavella VJ, Kirby JL, Cecere TE, Chung M, Lee J, Li S, Ahmed SA, Eden K, Allen IC, Reilly CM, Luo XM Antibiotics ameliorate lupus-like symptoms in mice. Sci Rep [Internet]. Springer US; 2017;7:1–14. Available from:  https://doi.org/10.1038/s41598-017-14223-0.
  70. 70.
    Maeda Y, Kurakawa T, Umemoto E, Motooka D, Ito Y, Gotoh K, et al. Dysbiosis contributes to arthritis development via activation of autoreactive t cells in the intestine. Arthritis Rheumatol (Hoboken, NJ) [Internet]. 2016 [cited 2017 Jun 27];68:2646–61. Available from: http://doi.wiley.com/10.1002/art.39783.
  71. 71.
    •• Andréasson K, Alrawi Z, Persson A, Jönsson G, Marsal J. Intestinal dysbiosis is common in systemic sclerosis and associated with gastrointestinal and extraintestinal features of disease. Arthritis Res Ther [Internet]. 2016;18:278. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27894337. This is the largest study to characterize lower gastrointestinal microbiota in systemic sclerosis and demonstrated that the extent of dysbiosis is correlated with the extent of upper gastrointestinal tract dysmotility.
  72. 72.
    • Volkmann ER, Chang Y-L, Barroso N, Furst DE, Clements PJ, Gorn AH, et al. Association of systemic sclerosis with a unique colonic microbial consortium. Arthritis Rheumatol (Hoboken, NJ) [Internet]. 2016;68:1483–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26749064. This is the first study to demonstrate that patients with systemic sclerosis have decreased lower gastrointestinal commensal genera and increased lower gastrointestinal pathobiont genera compared with healthy controls.
  73. 73.
    • Volkmann ER, Hoffmann-Vold A-M, Chang Y-L, Jacobs JP, Tillisch K, Mayer EA, et al. Systemic sclerosis is associated with specific alterations in gastrointestinal microbiota in two independent cohorts. BMJ Open Gastroenterol [Internet]. 2017;4:e000134. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28761687. This is the first study to compare lower gastrointestinal microbiota in two independent systemic sclerosis cohorts and found that patients in Norway had less dysbiosis compared with patients in the US.
  74. 74.
    Bosello S, Paroni Sterbini F, Natalello G, Canestrari G, Parisi F, Sanguinetti M et al. The intestinal involvement in systemic sclerosis is characterized by a peculiar gut microbiota [abstract]. Arthritis Rheumatol. 2016;68:(suppl).Google Scholar
  75. 75.
    Patrone V, Puglisi E, Cardinali M, Schnitzler TS, Svegliati S, Festa A, Gabrielli A, Morelli L Gut microbiota profile in systemic sclerosis patients with and without clinical evidence of gastrointestinal involvement. Sci Rep [Internet]. 2017;7:14874. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29093509.
  76. 76.
    Bellocchi C, Fernández-Ochoa Á, Montanelli G, Vigone B, Santaniello A, Milani C, Quirantes-Piné R, Borrás-Linares I, Ventura M, Segura-Carrettero A, Alarcón-Riquelme ME, Beretta L Microbial and metabolic multi’omic correlations in systemic sclerosis patients. Ann N Y Acad Sci. 2018. [Accepted for publication].Google Scholar
  77. 77.
    Walter J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol [Internet]. 2008;74:4985–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18539818.
  78. 78.
    Lim LH, Li HY, Huang CH, Lee BW, Lee YK, Chua KY. The effects of heat-killed wild-type lactobacillus casei Shirota on allergic immune responses in an allergy mouse model. Int Arch Allergy Immunol [Internet]. 2009;148:297–304. Available from: https://www.karger.com/Article/FullText/170383.
  79. 79.
    Kunze WA, Mao Y-K, Wang B, Huizinga JD, Ma X, Forsythe P, et al. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med [Internet]. 2009;13:2261–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19210574.
  80. 80.
    Ojetti V, Ianiro G, Tortora A, D’Angelo G, Di Rienzo TA, Bibbò S, et al. The effect of lactobacillus reuteri supplementation in adults with chronic functional constipation: a randomized, double-blind, placebo-controlled trial. J Gastrointestin Liver Dis [Internet]. 2014;23:387–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25531996.
  81. 81.
    Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer R-J. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther [Internet]. 2008 [cited 2017 Jun 27];27:104–19. Available from: http://doi.wiley.com/10.1111/j.1365-2036.2007.03562.x
  82. 82.
    Kang S, Denman SE, Morrison M, Yu Z, Dore J, Leclerc M, et al. Dysbiosis of fecal microbiota in Crohn’s disease patients as revealed by a custom phylogenetic microarray. Inflamm Bowel Dis [Internet]. 2010;16:2034–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20848492.
  83. 83.
    Werner T, Wagner SJ, Martínez I, Walter J, Chang J-S, Clavel T, et al. Depletion of luminal iron alters the gut microbiota and prevents Crohn’s disease-like ileitis. Gut [Internet]. 2011 [cited 2017 Jun 27];60:325–33. Available from: http://gutbmj.com/cgi/doi/10.1136/gut.2010.216929.
  84. 84.
    Jia W, Whitehead RN, Griffiths L, Dawson C, Bai H, Waring RH, Ramsden DB, Hunter JO, Cauchi M, Bessant C, Fowler DP, Walton C, Turner C, Cole JA Diversity and distribution of sulphate-reducing bacteria in human faeces from healthy subjects and patients with inflammatory bowel disease. FEMS Immunol Med Microbiol [Internet]. 2012;65:55–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22309113.
  85. 85.
    Everard A, Lazarevic V, Gaïa N, Johansson M, Ståhlman M, Backhed F, Delzenne NM, Schrenzel J, François P, Cani PD Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J [Internet]. 2014;8:2116–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24694712.
  86. 86.
    •• Kugathasan S, Denson LA, Walters TD, Kim M-O, Marigorta UM, Schirmer M, et al. Prediction of complicated disease course for children newly diagnosed with Crohn’s disease: a multicentre inception cohort study. Lancet (London, England) [Internet]. 2017;389:1710–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28259484. This study identifies microbial correlates of intestinal fibrosis in Crohn's disease. The organisms associated with the fibrotic (stenosing) phenotype of Crohn's disease may play a role in perpetuating fibrosis in systemic sclerosis.
  87. 87.
    Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, Mujagic Z, Vila AV, Falony G, Vieira-Silva S, Wang J, Imhann F, Brandsma E, Jankipersadsing SA, Joossens M, Cenit MC, Deelen P, Swertz MA, LifeLines cohort study, Weersma RK, Feskens EJM, Netea MG, Gevers D, Jonkers D, Franke L, Aulchenko YS, Huttenhower C, Raes J, Hofker MH, Xavier RJ, Wijmenga C, Fu J Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science [Internet]. 2016;352:565–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27126040.
  88. 88.
    Khanna D, Hays RD, Maranian P, Seibold JR, Impens A, Mayes MD, Clements PJ, Getzug T, Fathi N, Bechtel A, Furst DE Reliability and validity of the University of California, Los Angeles Scleroderma Clinical Trial Consortium Gastrointestinal Tract Instrument. Arthritis Rheum [Internet]. 2009;61:1257–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19714600.
  89. 89.
    Volkmann ER, Hoffmann-Vold A-H, Chang Y-L, et al. Longitudinal analysis of the gastrointestinal microbiota in systemic sclerosis [Abstract]. Ann Rheum Dis. 2017;76:87.Google Scholar
  90. 90.
    Ohkusa T, Sato N, Ogihara T, Morita K, Ogawa M, Okayasu I. Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species-specific antibody. J Gastroenterol Hepatol [Internet]. 2002;17:849–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12164960.
  91. 91.
    Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe [Internet]. 2014;15:382–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24629344.
  92. 92.
    De Cruz P, Kang S, Wagner J, Buckley M, Sim WH, Prideaux L, et al. Association between specific mucosa-associated microbiota in Crohn’s disease at the time of resection and subsequent disease recurrence: a pilot study. J Gastroenterol Hepatol [Internet]. 2015;30:268–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25087692.
  93. 93.
    Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol [Internet]. 2014;11:506–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24912386.
  94. 94.
    Lee MJ, Kang MJ, Lee SY, Lee E, Kim K, Won S, et al. Perturbations of gut microbiome genes in infants with atopic dermatitis according to feeding type. J Allergy Clin Immunol [Internet]. Elsevier Inc.; 2018;1–10. Available from:  https://doi.org/10.1016/j.jaci.2017.11.045.
  95. 95.
    Gupta P, Andrew H, Kirschner BS, Guandalini S. Is lactobacillus GG helpful in children with Crohn’s disease? Results of a preliminary, open-label study. J Pediatr Gastroenterol Nutr [Internet]. 2000;31:453–7. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11045848.
  96. 96.
    Frech TM, Khanna D, Maranian P, Frech EJ, Sawitzke AD, Murtaugh MA. Probiotics for the treatment of systemic sclerosis-associated gastrointestinal bloating/ distention. Clin Exp Rheumatol [Internet]. 29:S22–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21586214.
  97. 97.
    Liu M, Li S, Zhang Q, Xu Z, Wang J, Sun H. Oral engineered Bifidobacterium longum expressing rhMnSOD to suppress experimental colitis. Int Immunopharmacol [Internet]. Elsevier; 2018;57:25–32. Available from:  https://doi.org/10.1016/j.intimp.2018.02.004.
  98. 98.
    Madsen KL, Doyle JS, Jewell LD, Tavernini MM, Fedorak RN. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology. 1999;116:1107–14.CrossRefPubMedGoogle Scholar
  99. 99.
    Hayes SR, Vargas AJ. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Explor J Sci Heal [Internet]. Elsevier; 2016;12:463–6. Available from:  https://doi.org/10.1016/j.explore.2016.08.015.
  100. 100.
    Aponte GB. Cochrane review: probiotics for treating persistent diarrhoea in children. … -Based Child Heal … [Internet]. 2011; Available from: http://onlinelibrary.wiley.com/doi/10.1002/ebch.867/full.
  101. 101.
    Allen SJ, Martinez EG, Gregorio G V, Dans LF. Cochrane review: probiotics for treating acute infectious diarrhoea. Evid Based Child Health A Cochrane Rev J [Internet]. 2011;6:1894–2021. Available from: http://doi.wiley.com/10.1002/ebch.873.
  102. 102.
    Govender M, Choonara YE, Kumar P, du Toit LC, van Vuuren S, Pillay V. A review of the advancements in probiotic delivery: conventional vs. non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech [Internet]. 2014;15:29–43. Available from: http://link.springer.com/10.1208/s12249-013-0027-1.
  103. 103.
    Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol [Internet]. 2017;14:491–502. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28611480.
  104. 104.
    Vandeputte D, Falony G, Vieira-Silva S, Wang J, Sailer M, Theis S, et al. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut. 2017;66:1968–74.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Cheng W, Lu J, Lin W, Wei X, Li H, Zhao X, et al. Effects of a galacto-oligosaccharide-rich diet on fecal microbiota and metabolite profiles in mice. Food Funct. 2018.Google Scholar
  106. 106.
    Healey G, Murphy R, Butts C, Brough L, Whelan K, Coad J. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. Br J Nutr. 2018;1–14.Google Scholar
  107. 107.
    Mano MCR, Neri-Numa IA, da Silva JB, Paulino BN, Pessoa MG, Pastore GM. Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Appl Microbiol Biotechnol. 2018;102:17–37.CrossRefPubMedGoogle Scholar
  108. 108.
    Cherbut C, Michel C, Lecannu G. The prebiotic characteristics of fructooligosaccharides are necessary for reduction of TNBS-induced colitis in rats. J Nutr [Internet]. 2003;133:21–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12514261.
  109. 109.
    Park J-S, Choi J, Kwon JY, Jung K-A, Yang CW, Park S-H, Cho ML A probiotic complex, rosavin, zinc, and prebiotics ameliorate intestinal inflammation in an acute colitis mouse model. J Transl Med [Internet]. BioMed Central; 2018;16:37. Available from: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-018-1410-1.
  110. 110.
    Benjamin JL, Hedin CRH, Koutsoumpas A, Ng SC, McCarthy NE, Hart AL, et al. Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn’s disease. Gut [Internet]. 2011;60:923–9. Available from: http://gut.bmj.com/cgi/doi/10.1136/gut.2010.232025.
  111. 111.
    Kanauchi O, Mitsuyama K, Homma T, Takahama K, Fujiyama Y, Andoh A, et al. Treatment of ulcerative colitis patients by long-term administration of germinated barley foodstuff: multi-center open trial. Int J Mol Med. 2003;12:701–4.PubMedGoogle Scholar
  112. 112.
    Lindsay JO, Whelan K, Stagg AJ, Gobin P, Al-Hassi HO, Rayment N, et al. Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn’s disease. Gut [Internet]. 2006;55:348–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16162680.
  113. 113.
    De Preter V, Joossens M, Ballet V, Shkedy Z, Rutgeerts P, Vermeire S, et al. Metabolic profiling of the impact of oligofructose-enriched inulin in Crohn’s disease patients: a double-blinded randomized controlled trial. Clin Transl Gastroenterol [Nternet]. Nat Publ Group; 2013;4:e30–11. Available from:  https://doi.org/10.1038/ctg.2012.24.
  114. 114.
    Gori A, Rizzardini G, Van’T Land B, Amor KB, Van Schaik J, Torti C, et al. Specific prebiotics modulate gut microbiota and immune activation in HAART-naive HIV-infected adults: results of the “cOPA” pilot randomized trial. Mucosal Immunol. 2011;4:554–63.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Serrano-Villar S, Vázquez-Castellanos JF, Vallejo A, Latorre A, Sainz T, Ferrando-Martínez S, et al. The effects of prebiotics on microbial dysbiosis, butyrate production and immunity in HIV-infected subjects. Mucosal Immunol. 2017;10:1279–93.CrossRefPubMedGoogle Scholar
  116. 116.
    Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr [Internet]. 2011;93:1062–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21389180.
  117. 117.
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD Linking long-term dietary patterns with gut microbial enterotypes. Science [Internet]. 2011;334:105–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21885731.
  118. 118.
    McIntosh K, Reed DE, Schneider T, Dang F, Keshteli AH, De Palma G, et al. FODMAPs alter symptoms and the metabolome of patients with IBS: a randomised controlled trial. Gut [Internet]. 2017;66:1241–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26976734.
  119. 119.
    Bennet SMP, Böhn L, Störsrud S, Liljebo T, Collin L, Lindfors P, et al. Multivariate modelling of faecal bacterial profiles of patients with IBS predicts responsiveness to a diet low in FODMAPs. Gut [Internet]. 2017; Available from: http://www.ncbi.nlm.nih.gov/pubmed/28416515.
  120. 120.
    Moayyedi P. Fecal transplantation: any real hope for inflammatory bowel disease? Curr Opin Gastroenterol [Internet]. 2016;32:282–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27152872.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di MilanoUniversity of MilanMilanItaly
  2. 2.Division of Rheumatology, Department of Medicine, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations