Advertisement

Differential Effects of Inflammation on Bone and Response to Biologics in Rheumatoid Arthritis and Spondyloarthritis

  • Zheni Stavre
  • Katherine Upchurch
  • Jonathan Kay
  • Ellen M. Gravallese
Spondyloarthritis (M Khan, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Spondyloarthritis

Abstract

Purpose of review

We review the pathways, cytokines, and concepts important to the pathogenesis of bone resorption and formation in rheumatoid arthritis (RA) and spondyloarthritis (SpA).

Recent findings

Research in bone biology has shed light on the pathogenesis of the joint destruction that occurs in RA and in peripheral SpA. However, understanding the mechanisms behind the bone formation seen in peripheral and axial SpA has been challenging. Mouse models have been used to gain an understanding of key signaling pathways, cytokines and cells regulating inflammation in these diseases. Biologic therapies directed against these targets have been developed to control both inflammation and effects on bone.

Summary

Although biologic therapies improve joint inflammation in both RA and SpA, leading to a decrease in pain and improving quality of life for patients, the long-term effects of such therapies must also be evaluated by assessing their impact on structural progression. Inhibition of radiographic progression in both RA and peripheral SpA has been easier to demonstrate than in axial SpA. Here, we discuss the similarities and differences among biologic therapies as they pertain to radiographic progression.

Keywords

Rheumatoid arthritis Spondyloarthritis Bone Biologics Radiographic imaging 

Notes

Compliance with Ethical Standards

Conflicts of Interest

EG reports grants from AbbVie Inc, personal fees from AbbVie Inc, Eli Lilly and Company, GlaxoSmithKline PLC, Novartis Pharmaceuticals Corporation, Sanofi, and UpToDate.

JK reports grants and personal fees from AbbVie Inc, Genentech Inc, GlaxoSmithKline PLC, UCB Inc, Eli Lilly and Company, Pfizer Inc, Roche Laboratories Inc, personal fees from Amgen, Inc, Boehringer Ingelheim GmbH, Bristol-Myers Squibb Company, Crescendo Bioscience Inc, Epirus Biopharmaceuticals Inc, Hospira Inc, Janssen Biotech Inc, Merck Sharp & Dohme Corp, Novartis Pharmaceuticals Corporation, Regeneron Pharmaceuticals Inc, Samsung Bioepis, Sandoz Inc, and UpToDate.

KU and ZS declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any primary studies with human or animal subjects performed by the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Baum R, Gravallese EM. Bone as a Target Organ in Rheumatic Disease: Impact on Osteoclasts and Osteoblasts. Clin Rev Allergy Immunol. 2015. doi: 10.1007/s12016-015-8515-6.Google Scholar
  2. 2.
    •Gravallese EM, Goldering S, Schett G. Role of the immune system in the local and systemic bone loss in inflammatory arthritis. In: Osteoimmunology. Second ed. Elsevier; 2014. A comprehensive review of the role of cytokines, osteoblasts and osteoclasts, and their effects on bone in inflammatory arthritis.Google Scholar
  3. 3.
    Gravallese EM, Manning C, Tsay A, Naito A, Pan C, Amento E, et al. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum. 2000;43(2):250–8. doi: 10.1002/1529-0131(200002)43:2<250::AID-ANR3>3.0.CO;2-P.PubMedCrossRefGoogle Scholar
  4. 4.
    Haynes DR, Crotti TN, Loric M, Bain GI, Atkins GJ, Findlay DM. Osteoprotegerin and receptor activator of nuclear factor kappaB ligand (RANKL) regulate osteoclast formation by cells in the human rheumatoid arthritic joint. Rheumatology (Oxford). 2001;40(6):623–30.CrossRefGoogle Scholar
  5. 5.
    Pettit AR, Ji H, von Stechow D, Müller R, Goldring SR, Choi Y, et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol. 2001;159(5):1689–99. doi: 10.1016/S0002-9440(10)63016-7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Redlich K, Hayer S, Ricci R, David JP, Tohidast-Akrad M, Kollias G, et al. Osteoclasts are essential for TNF-alpha-mediated joint destruction. J Clin Invest. 2002;110(10):1419–27. doi: 10.1172/JCI15582.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Haynes D, Crotti T, Weedon H, Slavotinek J, Au V, Coleman M, et al. Modulation of RANKL and osteoprotegerin expression in synovial tissue from patients with rheumatoid arthritis in response to disease-modifying antirheumatic drug treatment and correlation with radiologic outcome. Arthritis Rheum. 2008;59(7):911–20. doi: 10.1002/art.23818.PubMedCrossRefGoogle Scholar
  8. 8.
    Lerner UH, Ohlsson C. The WNT system: background and its role in bone. J Intern Med. 2015;277(6):630–49. doi: 10.1111/joim.12368.PubMedCrossRefGoogle Scholar
  9. 9.
    Walsh NC, Reinwald S, Manning CA, Condon KW, Iwata K, Burr DB, et al. Osteoblast function is compromised at sites of focal bone erosion in inflammatory arthritis. J Bone Miner Res. 2009;24(9):1572–85. doi: 10.1359/jbmr.090320.PubMedCrossRefGoogle Scholar
  10. 10.
    Matzelle MM, Gallant MA, Condon KW, Walsh NC, Manning CA, Stein GS, et al. Resolution of inflammation induces osteoblast function and regulates the Wnt signaling pathway. Arthritis Rheum. 2012;64(5):1540–50. doi: 10.1002/art.33504.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 2007;13(2):156–63. doi: 10.1038/nm1538.PubMedCrossRefGoogle Scholar
  12. 12.
    Heiland GR, Zwerina K, Baum W, Kireva T, Distler JH, Grisanti M, et al. Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression. Ann Rheum Dis. 2010;69(12):2152–9. doi: 10.1136/ard.2010.132852.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang SY, Liu YY, Ye H, Guo JP, Li R, Liu X, et al. Circulating Dickkopf-1 is correlated with bone erosion and inflammation in rheumatoid arthritis. J Rheumatol. 2011;38(5):821–7. doi: 10.3899/jrheum.100089.PubMedCrossRefGoogle Scholar
  14. 14.
    Yeremenko N, Zwerina K, Rigter G, Pots D, Fonseca JE, Zwerina J, et al. Tumor necrosis factor and interleukin-6 differentially regulate Dkk-1 in the inflamed arthritic joint. Arthritis Rheumatol. 2015;67(8):2071–5. doi: 10.1002/art.39183.PubMedCrossRefGoogle Scholar
  15. 15.
    Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev. 2008;29(4):403–40. doi: 10.1210/er.2007-0038.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Gilbert L, He X, Farmer P, Rubin J, Drissi H, van Wijnen AJ, et al. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J Biol Chem. 2002;277(4):2695–701. doi: 10.1074/jbc.M106339200.PubMedCrossRefGoogle Scholar
  17. 17.
    Redlich K, Hayer S, Maier A, Dunstan CR, Tohidast-Akrad M, Lang S, et al. Tumor necrosis factor alpha-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin. Arthritis Rheum. 2002;46(3):785–92. doi: 10.1002/art.10097.PubMedCrossRefGoogle Scholar
  18. 18.
    Shaw AT, Gravallese EM. Mediators of inflammation and bone remodeling in rheumatic disease. Semin Cell Dev Biol. 2016;49:2–10. doi: 10.1016/j.semcdb.2015.10.013.PubMedCrossRefGoogle Scholar
  19. 19.
    Osta B, Benedetti G, Miossec P. Classical and Paradoxical Effects of TNF-α on Bone Homeostasis. Front Immunol. 2014;5:48. doi: 10.3389/fimmu.2014.00048.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Hirano T, Matsuda T, Turner M, Miyasaka N, Buchan G, Tang B, et al. Excessive production of interleukin 6/B cell stimulatory factor-2 in rheumatoid arthritis. Eur J Immunol. 1988;18(11):1797–801. doi: 10.1002/eji.1830181122.PubMedCrossRefGoogle Scholar
  21. 21.
    Srirangan S, Choy EH. The role of interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther Adv Musculoskelet Dis. 2010;2(5):247–56. doi: 10.1177/1759720X10378372.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Liu XH, Kirschenbaum A, Yao S, Levine AC. Cross-talk between the interleukin-6 and prostaglandin E(2) signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-{kappa}B (RANK) ligand/RANK system. Endocrinology. 2005;146(4):1991–8. doi: 10.1210/en.2004-1167.PubMedCrossRefGoogle Scholar
  23. 23.
    Nowell MA, Richards PJ, Horiuchi S, Yamamoto N, Rose-John S, Topley N, et al. Soluble IL-6 receptor governs IL-6 activity in experimental arthritis: blockade of arthritis severity by soluble glycoprotein 130. J Immunol. 2003;171(6):3202–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Ohshima S, Saeki Y, Mima T, Sasai M, Nishioka K, Nomura S, et al. Interleukin 6 plays a key role in the development of antigen-induced arthritis. Proc Natl Acad Sci U S A. 1998;95(14):8222–6.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Alonzi T, Fattori E, Lazzaro D, Costa P, Probert L, Kollias G, et al. Interleukin 6 is required for the development of collagen-induced arthritis. J Exp Med. 1998;187(4):461–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Tokuda H, Kanno Y, Ishisaki A, Takenaka M, Harada A, Kozawa O. Interleukin (IL)-17 enhances tumor necrosis factor-alpha-stimulated IL-6 synthesis via p38 mitogen-activated protein kinase in osteoblasts. J Cell Biochem. 2004;91(5):1053–61. doi: 10.1002/jcb.20004.PubMedCrossRefGoogle Scholar
  27. 27.
    Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999;103(9):1345–52. doi: 10.1172/JCI5703.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Zhang F, Tanaka H, Kawato T, Kitami S, Nakai K, Motohashi M, et al. Interleukin-17A induces cathepsin K and MMP-9 expression in osteoclasts via celecoxib-blocked prostaglandin E2 in osteoblasts. Biochimie. 2011;93(2):296–305. doi: 10.1016/j.biochi.2010.10.001.PubMedCrossRefGoogle Scholar
  29. 29.
    Ziolkowska M, Koc A, Luszczykiewicz G, Ksiezopolska-Pietrzak K, Klimczak E, Chwalinska-Sadowska H, et al. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J Immunol. 2000;164(5):2832–8.PubMedCrossRefGoogle Scholar
  30. 30.
    ••Lubberts E. The IL-23-IL-17 axis in inflammatory arthritis. Nat Rev Rheumatol. 2015;11(10):562. doi: 10.1038/nrrheum.2015.128. Review of current basic research on the IL-23/IL-17 axis and its importance in the pathogenesis of both SpA and RA. This article also presents the hypothesis that IL-17/IL-23 inhibition might more likely be effective in early, rather than established, RA.PubMedCrossRefGoogle Scholar
  31. 31.
    Rasmussen TK, Andersen T, Hvid M, Hetland ML, Hørslev-Petersen K, Stengaard-Pedersen K, et al. Increased interleukin 21 (IL-21) and IL-23 are associated with increased disease activity and with radiographic status in patients with early rheumatoid arthritis. J Rheumatol. 2010;37(10):2014–20. doi: 10.3899/jrheum.100259.PubMedCrossRefGoogle Scholar
  32. 32.
    Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med. 2003;198(12):1951–7. doi: 10.1084/jem.20030896.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ratsimandresy RA, Duvallet E, Assier E, Semerano L, Delavallée L, Bessis N, et al. Active immunization against IL-23p19 improves experimental arthritis. Vaccine. 2011;29(50):9329–36. doi: 10.1016/j.vaccine.2011.09.134.PubMedCrossRefGoogle Scholar
  34. 34.
    Cornelissen F, Asmawidjaja PS, Mus AM, Corneth O, Kikly K, Lubberts E. IL-23 dependent and independent stages of experimental arthritis: no clinical effect of therapeutic IL-23p19 inhibition in collagen-induced arthritis. PLoS ONE. 2013;8(2), e57553. doi: 10.1371/journal.pone.0057553.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Quinn JM, Sims NA, Saleh H, Mirosa D, Thompson K, Bouralexis S, et al. IL-23 inhibits osteoclastogenesis indirectly through lymphocytes and is required for the maintenance of bone mass in mice. J Immunol. 2008;181(8):5720–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Ju JH, Cho ML, Moon YM, Oh HJ, Park JS, Jhun JY, et al. IL-23 induces receptor activator of NF-kappaB ligand expression on CD4+ T cells and promotes osteoclastogenesis in an autoimmune arthritis model. J Immunol. 2008;181(2):1507–18.PubMedCrossRefGoogle Scholar
  37. 37.
    Mus AM, Cornelissen F, Asmawidjaja PS, van Hamburg JP, Boon L, Hendriks RW, et al. Interleukin-23 promotes Th17 differentiation by inhibiting T-bet and FoxP3 and is required for elevation of interleukin-22, but not interleukin-21, in autoimmune experimental arthritis. Arthritis Rheum. 2010;62(4):1043–50. doi: 10.1002/art.27336.PubMedCrossRefGoogle Scholar
  38. 38.
    ••Sherlock JP, Joyce-Shaikh B, Turner SP, Chao CC, Sathe M, Grein J, et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4-CD8- entheseal resident T cells. Nat Med. 2012;18(7):1069–76. doi: 10.1038/nm.2817. This study established a role for IL-23 in the pathogenesis of SpA and identified a unique T cell expressing the IL-23R at enthesial sites.PubMedCrossRefGoogle Scholar
  39. 39.
    Krausz S, Boumans MJ, Gerlag DM, Lufkin J, van Kuijk AW, Bakker A, et al. Brief report: a phase IIa, randomized, double-blind, placebo-controlled trial of apilimod mesylate, an interleukin-12/interleukin-23 inhibitor, in patients with rheumatoid arthritis. Arthritis Rheum. 2012;64(6):1750–5. doi: 10.1002/art.34339.PubMedCrossRefGoogle Scholar
  40. 40.
    McGonagle D, Gibbon W, Emery P. Classification of inflammatory arthritis by enthesitis. Lancet. 1998;352(9134):1137–40. doi: 10.1016/S0140-6736(97)12004-9.PubMedCrossRefGoogle Scholar
  41. 41.
    McGonagle D, Lories RJ, Tan AL, Benjamin M. The concept of a "synovio-entheseal complex" and its implications for understanding joint inflammation and damage in psoriatic arthritis and beyond. Arthritis Rheum. 2007;56(8):2482–91. doi: 10.1002/art.22758.PubMedCrossRefGoogle Scholar
  42. 42.
    Heiland GR, Appel H, Poddubnyy D, Zwerina J, Hueber A, Haibel H, et al. High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Ann Rheum Dis. 2012;71(4):572–4. doi: 10.1136/annrheumdis-2011-200216.PubMedCrossRefGoogle Scholar
  43. 43.
    Appel H, Ruiz-Heiland G, Listing J, Zwerina J, Herrmann M, Mueller R, et al. Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum. 2009;60(11):3257–62. doi: 10.1002/art.24888.PubMedCrossRefGoogle Scholar
  44. 44.
    •Chen XX, Baum W, Dwyer D, Stock M, Schwabe K, Ke HZ, et al. Sclerostin inhibition reverses systemic, periarticular and local bone loss in arthritis. Ann Rheum Dis. 2013;72(10):1732–6. doi: 10.1136/annrheumdis-2013-203345. These data support the use of anti-sclerostin antibodies to treat bone loss in inflammatory arthritis.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    ••Wehmeyer C, Frank S, Beckmann D, Böttcher M, Cromme C, König U, et al. Sclerostin inhibition promotes TNF-dependent inflammatory joint destruction. Sci Transl Med. 2016;8(330):330ra35. doi: 10.1126/scitranslmed.aac4351. This demonstrates that inflammation worsens after administration of an anti-sclerostin antibody in TNF-driven animal models of arthritis and raises questions as to the role of sclerostin inhibition in inflammatory arthritis.PubMedCrossRefGoogle Scholar
  46. 46.
    Mei Y, Pan F, Gao J, Ge R, Duan Z, Zeng Z, et al. Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis. Clin Rheumatol. 2011;30(2):269–73. doi: 10.1007/s10067-010-1647-4.PubMedCrossRefGoogle Scholar
  47. 47.
    Ritchlin C, Rahman P, Kavanaugh A, McInnes IB, Puig L, Li S, et al. Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial. Ann Rheum Dis. 2014;73(6):990–9. doi: 10.1136/annrheumdis-2013-204655.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    McInnes IB, Kavanaugh A, Gottlieb AB, Puig L, Rahman P, Ritchlin C, et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet. 2013;382(9894):780–9. doi: 10.1016/S0140-6736(13)60594-2.PubMedCrossRefGoogle Scholar
  49. 49.
    Poddubnyy D, Hermann KG, Callhoff J, Listing J, Sieper J. Ustekinumab for the treatment of patients with active ankylosing spondylitis: results of a 28-week, prospective, open-label, proof-of-concept study (TOPAS). Ann Rheum Dis. 2014;73(5):817–23. doi: 10.1136/annrheumdis-2013-204248.PubMedCrossRefGoogle Scholar
  50. 50.
    Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314(5804):1461–3. doi: 10.1126/science.1135245.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Rahman P, Inman RD, Maksymowych WP, Reeve JP, Peddle L, Gladman DD. Association of interleukin 23 receptor variants with psoriatic arthritis. J Rheumatol. 2009;36(1):137–40. doi: 10.3899/jrheum.080458.PubMedGoogle Scholar
  52. 52.
    Colbert RA, DeLay ML, Klenk EI, Layh-Schmitt G. From HLA-B27 to spondyloarthritis: a journey through the ER. Immunol Rev. 2010;233(1):181–202. doi: 10.1111/j.0105-2896.2009.00865.x.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Goodall JC, Wu C, Zhang Y, McNeill L, Ellis L, Saudek V, et al. Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proc Natl Acad Sci U S A. 2010;107(41):17698–703. doi: 10.1073/pnas.1011736107.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol. 2009;10(3):314–24. doi: 10.1038/ni.1698.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kolls JK, Lindén A. Interleukin-17 family members and inflammation. Immunity. 2004;21(4):467–76. doi: 10.1016/j.immuni.2004.08.018.PubMedCrossRefGoogle Scholar
  56. 56.
    Jandus C, Bioley G, Rivals JP, Dudler J, Speiser D, Romero P. Increased numbers of circulating polyfunctional Th17 memory cells in patients with seronegative spondylarthritides. Arthritis Rheum. 2008;58(8):2307–17. doi: 10.1002/art.23655.PubMedCrossRefGoogle Scholar
  57. 57.
    Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity. 2009;31(2):331–41. doi: 10.1016/j.immuni.2009.08.001.PubMedCrossRefGoogle Scholar
  58. 58.
    •Ono T, Okamoto K, Nakashima T, Nitta T, Hori S, Iwakura Y, et al. IL-17-producing γδ T cells enhance bone regeneration. Nat Commun. 2016;7:10928. doi: 10.1038/ncomms10928. Study highlighting the role of IL-17 in bone homeostasis, showing that IL-17 promotes osteoblast mesenchymal progenitor cell differentiation in a mouse model of bone fracture repair.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    •Uluçkan Ö, Jimenez M, Karbach S, Jeschke A, Graña O, Keller J, et al. Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of Wnt signaling in osteoblasts. Sci Transl Med. 2016;8(330):330ra37. doi: 10.1126/scitranslmed.aad899. Study highlighting the complex function of IL-17 in bone homeostasis and demonstrating that IL-17A inhibits osteoblast differentiation and promotes systemic bone loss.PubMedCrossRefGoogle Scholar
  60. 60.
    McInnes IB, Mease PJ, Kirkham B, Kavanaugh A, Ritchlin CT, Rahman P, et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;386(9999):1137–46. doi: 10.1016/S0140-6736(15)61134-5.PubMedCrossRefGoogle Scholar
  61. 61.
    Mease PJ, McInnes IB, Kirkham B, Kavanaugh A, Rahman P, van der Heijde D, et al. Secukinumab Inhibition of Interleukin-17A in Patients with Psoriatic Arthritis. N Engl J Med. 2015;373(14):1329–39. doi: 10.1056/NEJMoa1412679.PubMedCrossRefGoogle Scholar
  62. 62.
    Baeten D, Sieper J, Braun J, Baraliakos X, Dougados M, Emery P, et al. Secukinumab, an Interleukin-17A Inhibitor, in Ankylosing Spondylitis. N Engl J Med. 2015;373(26):2534–48. doi: 10.1056/NEJMoa1505066.PubMedCrossRefGoogle Scholar
  63. 63.
    Davis JC, van der Heijde DM, Braun J, Dougados M, Cush J, Clegg D, et al. Sustained durability and tolerability of etanercept in ankylosing spondylitis for 96 weeks. Ann Rheum Dis. 2005;64(11):1557–62. doi: 10.1136/ard.2004.035105.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    van der Heijde D, Kivitz A, Schiff MH, Sieper J, Dijkmans BA, Braun J, et al. Efficacy and safety of adalimumab in patients with ankylosing spondylitis: results of a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2006;54(7):2136–46. doi: 10.1002/art.21913.PubMedCrossRefGoogle Scholar
  65. 65.
    Inman RD, Davis JC, Heijde D, Diekman L, Sieper J, Kim SI, et al. Efficacy and safety of golimumab in patients with ankylosing spondylitis: results of a randomized, double-blind, placebo-controlled, phase III trial. Arthritis Rheum. 2008;58(11):3402–12. doi: 10.1002/art.23969.PubMedCrossRefGoogle Scholar
  66. 66.
    Sieper J, Landewé R, Rudwaleit M, van der Heijde D, Dougados M, Mease PJ, et al. Effect of certolizumab pegol over ninety-six weeks in patients with axial spondyloarthritis: results from a phase III randomized trial. Arthritis Rheumatol. 2015;67(3):668–77. doi: 10.1002/art.38973.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Braun J, Brandt J, Listing J, Zink A, Alten R, Golder W, et al. Treatment of active ankylosing spondylitis with infliximab: a randomised controlled multicentre trial. Lancet. 2002;359(9313):1187–93.PubMedCrossRefGoogle Scholar
  68. 68.
    Dougados M, van der Heijde D, Sieper J, Braun J, Maksymowych WP, Citera G, et al. Symptomatic efficacy of etanercept and its effects on objective signs of inflammation in early nonradiographic axial spondyloarthritis: a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 2014;66(8):2091–102. doi: 10.1002/art.38721.PubMedCrossRefGoogle Scholar
  69. 69.
    Sieper J, van der Heijde D, Dougados M, Maksymowych WP, Scott BB, Boice JA, et al. A randomized, double-blind, placebo-controlled, sixteen-week study of subcutaneous golimumab in patients with active nonradiographic axial spondyloarthritis. Arthritis Rheumatol. 2015;67(10):2702–12. doi: 10.1002/art.39257.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Sieper J, van der Heijde D, Dougados M, Mease PJ, Maksymowych WP, Brown MA, et al. Efficacy and safety of adalimumab in patients with non-radiographic axial spondyloarthritis: results of a randomised placebo-controlled trial (ABILITY-1). Ann Rheum Dis. 2013;72(6):815–22. doi: 10.1136/annrheumdis-2012-201766.PubMedCrossRefGoogle Scholar
  71. 71.
    Landewé R, Braun J, Deodhar A, Dougados M, Maksymowych WP, Mease PJ, et al. Efficacy of certolizumab pegol on signs and symptoms of axial spondyloarthritis including ankylosing spondylitis: 24-week results of a double-blind randomised placebo-controlled Phase 3 study. Ann Rheum Dis. 2014;73(1):39–47. doi: 10.1136/annrheumdis-2013-204231.PubMedCrossRefGoogle Scholar
  72. 72.
    Haroon NN, Sriganthan J, Al Ghanim N, Inman RD, Cheung AM. Effect of TNF-alpha inhibitor treatment on bone mineral density in patients with ankylosing spondylitis: a systematic review and meta-analysis. Semin Arthritis Rheum. 2014;44(2):155–61. doi: 10.1016/j.semarthrit.2014.05.008.PubMedCrossRefGoogle Scholar
  73. 73.
    Maksymowych WP, Chiowchanwisawakit P, Clare T, Pedersen SJ, Østergaard M, Lambert RG. Inflammatory lesions of the spine on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis: evidence of a relationship between inflammation and new bone formation. Arthritis Rheum. 2009;60(1):93–102. doi: 10.1002/art.24132.PubMedCrossRefGoogle Scholar
  74. 74.
    Pedersen SJ, Chiowchanwisawakit P, Lambert RG, Østergaard M, Maksymowych WP. Resolution of inflammation following treatment of ankylosing spondylitis is associated with new bone formation. J Rheumatol. 2011;38(7):1349–54. doi: 10.3899/jrheum.100925.PubMedCrossRefGoogle Scholar
  75. 75.
    Baraliakos X, Heldmann F, Callhoff J, Listing J, Appelboom T, Brandt J, et al. Which spinal lesions are associated with new bone formation in patients with ankylosing spondylitis treated with anti-TNF agents? A long-term observational study using MRI and conventional radiography. Ann Rheum Dis. 2014;73(10):1819–25. doi: 10.1136/annrheumdis-2013-203425.PubMedCrossRefGoogle Scholar
  76. 76.
    •Maksymowych WP. Evidence in support of the validity of the TNF brake hypothesis. Ann Rheum Dis. 2013;72(12):e31. doi: 10.1136/annrheumdis-2013-204485. Opinion piece on the “TNF brake hypothesis”.PubMedCrossRefGoogle Scholar
  77. 77.
    Haroon N, Inman RD, Learch TJ, Weisman MH, Lee M, Rahbar MH, et al. The impact of tumor necrosis factor α inhibitors on radiographic progression in ankylosing spondylitis. Arthritis Rheum. 2013;65(10):2645–54. doi: 10.1002/art.38070.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Grossman RM, Krueger J, Yourish D, Granelli-Piperno A, Murphy DP, May LT, et al. Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc Natl Acad Sci U S A. 1989;86(16):6367–71.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Partsch G, Steiner G, Leeb BF, Dunky A, Bröll H, Smolen JS. Highly increased levels of tumor necrosis factor-alpha and other proinflammatory cytokines in psoriatic arthritis synovial fluid. J Rheumatol. 1997;24(3):518–23.PubMedGoogle Scholar
  80. 80.
    van Kuijk AW, Reinders-Blankert P, Smeets TJ, Dijkmans BA, Tak PP. Detailed analysis of the cell infiltrate and the expression of mediators of synovial inflammation and joint destruction in the synovium of patients with psoriatic arthritis: implications for treatment. Ann Rheum Dis. 2006;65(12):1551–7. doi: 10.1136/ard.2005.050963.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Alenius GM, Eriksson C, Rantapää DS. Interleukin-6 and soluble interleukin-2 receptor alpha-markers of inflammation in patients with psoriatic arthritis? Clin Exp Rheumatol. 2009;27(1):120–3.PubMedGoogle Scholar
  82. 82.
    Karmakar S, Kay J, Gravallese EM. Bone damage in rheumatoid arthritis: mechanistic insights and approaches to prevention. Rheum Dis Clin North Am. 2010;36(2):385–404. doi: 10.1016/j.rdc.2010.03.003.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Braun J. et al. Achievement of Remission of Inflammation in the Spine and Sacroiliac Joints Measured by Magnetic Resonance Imaging (MRI) in Patients with Axial Spondyloarthritis, and Associations Between MRI and Clinical Remission, Over 96 Weeks of Treatment with Certolizumab Pegol EULAR; 2015; Rome, Italy. Oral presentation: OP0171.Google Scholar
  84. 84.
    Baraliakos X, editor. Effect of Interleukin-17A Inhibition on Spinal Radiographic Changes through 2 Years in Patients with Active Ankylosing Spondylitis: Results of a Phase 3 Study with Secukinumab. ACR/ARHP Annual Meeting; 2015; San Francisco, California.Google Scholar
  85. 85.
    Thorne C. et al. Response and Radiographic Progression in Biologic-naive and Biologic-experienced Patients with Rheumatoid Arthritis Treated with Sirukumab. EULAR; 2016; London, UK; Abstract # SAT0158.Google Scholar
  86. 86.
    Landewé R, Dougados M, Mielants H, van der Tempel H, van der Heijde D. Physical function in ankylosing spondylitis is independently determined by both disease activity and radiographic damage of the spine. Ann Rheum Dis. 2009;68(6):863–7. doi: 10.1136/ard.2008.091793.PubMedCrossRefGoogle Scholar
  87. 87.
    Wanders AJ, Landewé RB, Spoorenberg A, Dougados M, van der Linden S, Mielants H, et al. What is the most appropriate radiologic scoring method for ankylosing spondylitis? A comparison of the available methods based on the Outcome Measures in Rheumatology Clinical Trials filter. Arthritis Rheum. 2004;50(8):2622–32. doi: 10.1002/art.20446.PubMedCrossRefGoogle Scholar
  88. 88.
    Creemers MC, Franssen MJ, van’t Hof MA, Gribnau FW, van de Putte LB, van Riel PL. Assessment of outcome in ankylosing spondylitis: an extended radiographic scoring system. Ann Rheum Dis. 2005;64(1):127–9. doi: 10.1136/ard.2004.020503.PubMedCrossRefGoogle Scholar
  89. 89.
    Althoff CE, Sieper J, Song IH, Haibel H, Weiß A, Diekhoff T, et al. Active inflammation and structural change in early active axial spondyloarthritis as detected by whole-body MRI. Ann Rheum Dis. 2013;72(6):967–73. doi: 10.1136/annrheumdis-2012-201545.PubMedCrossRefGoogle Scholar
  90. 90.
    van der Heijde D. How to read radiographs according to the Sharp/van der Heijde method. J Rheumatol. 2000;27(1):261–3.PubMedGoogle Scholar
  91. 91.
    Østergaard M, Edmonds J, McQueen F, Peterfy C, Lassere M, Ejbjerg B, et al. An introduction to the EULAR-OMERACT rheumatoid arthritis MRI reference image atlas. Ann Rheum Dis. 2005;64 Suppl 1:i3–7. doi: 10.1136/ard.2004.031773.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Keystone EC, Kavanaugh AF, Sharp JT, Tannenbaum H, Hua Y, Teoh LS, et al. Radiographic, clinical, and functional outcomes of treatment with adalimumab (a human anti-tumor necrosis factor monoclonal antibody) in patients with active rheumatoid arthritis receiving concomitant methotrexate therapy: a randomized, placebo-controlled, 52-week trial. Arthritis Rheum. 2004;50(5):1400–11. doi: 10.1002/art.20217.PubMedCrossRefGoogle Scholar
  93. 93.
    Lipsky PE, van der Heijde DM, St Clair EW, Furst DE, Breedveld FC, Kalden JR, et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N Engl J Med. 2000;343(22):1594–602. doi: 10.1056/NEJM200011303432202.PubMedCrossRefGoogle Scholar
  94. 94.
    Klareskog L, van der Heijde D, de Jager JP, Gough A, Kalden J, Malaise M, et al. Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. Lancet. 2004;363(9410):675–81. doi: 10.1016/S0140-6736(04)15640-7.PubMedCrossRefGoogle Scholar
  95. 95.
    Emery P, Fleischmann R, van der Heijde D, Keystone EC, Genovese MC, Conaghan PG, et al. The effects of golimumab on radiographic progression in rheumatoid arthritis: results of randomized controlled studies of golimumab before methotrexate therapy and golimumab after methotrexate therapy. Arthritis Rheum. 2011;63(5):1200–10. doi: 10.1002/art.30263.PubMedCrossRefGoogle Scholar
  96. 96.
    Keystone E, Heijde D, Mason D, Landewé R, Vollenhoven RV, Combe B, et al. Certolizumab pegol plus methotrexate is significantly more effective than placebo plus methotrexate in active rheumatoid arthritis: findings of a fifty-two-week, phase III, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum. 2008;58(11):3319–29. doi: 10.1002/art.23964.PubMedCrossRefGoogle Scholar
  97. 97.
    Smolen J, Landewé RB, Mease P, Brzezicki J, Mason D, Luijtens K, et al. Efficacy and safety of certolizumab pegol plus methotrexate in active rheumatoid arthritis: the RAPID 2 study. A randomised controlled trial. Ann Rheum Dis. 2009;68(6):797–804. doi: 10.1136/ard.2008.101659.PubMedCrossRefGoogle Scholar
  98. 98.
    Kavanaugh A, Antoni CE, Gladman D, Wassenberg S, Zhou B, Beutler A, et al. The Infliximab Multinational Psoriatic Arthritis Controlled Trial (IMPACT): results of radiographic analyses after 1 year. Ann Rheum Dis. 2006;65(8):1038–43. doi: 10.1136/ard.2005.045658.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Mease PJ, Kivitz AJ, Burch FX, Siegel EL, Cohen SB, Ory P, et al. Continued inhibition of radiographic progression in patients with psoriatic arthritis following 2 years of treatment with etanercept. J Rheumatol. 2006;33(4):712–21.PubMedGoogle Scholar
  100. 100.
    Gladman DD, Mease PJ, Ritchlin CT, Choy EH, Sharp JT, Ory PA, et al. Adalimumab for long-term treatment of psoriatic arthritis: forty-eight week data from the adalimumab effectiveness in psoriatic arthritis trial. Arthritis Rheum. 2007;56(2):476–88. doi: 10.1002/art.22379.PubMedCrossRefGoogle Scholar
  101. 101.
    van der Heijde D, Fleischmann R, Wollenhaupt J, Deodhar A, Kielar D, Woltering F, et al. Effect of different imputation approaches on the evaluation of radiographic progression in patients with psoriatic arthritis: results of the RAPID-PsA 24-week phase III double-blind randomised placebo-controlled study of certolizumab pegol. Ann Rheum Dis. 2014;73(1):233–7. doi: 10.1136/annrheumdis-2013-203697.PubMedCrossRefGoogle Scholar
  102. 102.
    Kavanaugh A, van der Heijde D, McInnes IB, Mease P, Krueger GG, Gladman DD, et al. Golimumab in psoriatic arthritis: one-year clinical efficacy, radiographic, and safety results from a phase III, randomized, placebo-controlled trial. Arthritis Rheum. 2012;64(8):2504–17. doi: 10.1002/art.34436.PubMedCrossRefGoogle Scholar
  103. 103.
    Baraliakos X, Haibel H, Listing J, Sieper J, Braun J. Continuous long-term anti-TNF therapy does not lead to an increase in the rate of new bone formation over 8 years in patients with ankylosing spondylitis. Ann Rheum Dis. 2014;73(4):710–5. doi: 10.1136/annrheumdis-2012-202698.PubMedCrossRefGoogle Scholar
  104. 104.
    Emery P, Keystone E, Tony HP, Cantagrel A, van Vollenhoven R, Sanchez A, et al. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. Ann Rheum Dis. 2008;67(11):1516–23. doi: 10.1136/ard.2008.092932.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Baillet A, Gossec L, Paternotte S, Etcheto A, Combe B, Meyer O, et al. Evaluation of serum interleukin-6 level as a surrogate marker of synovial inflammation and as a factor of structural progression in early rheumatoid arthritis: results from a French national multicenter cohort. Arthritis Care Res (Hoboken). 2015;67(7):905–12. doi: 10.1002/acr.22513.CrossRefGoogle Scholar
  106. 106.
    Kremer JM, Blanco R, Brzosko M, Burgos-Vargas R, Halland AM, Vernon E, et al. Tocilizumab inhibits structural joint damage in rheumatoid arthritis patients with inadequate responses to methotrexate: results from the double-blind treatment phase of a randomized placebo-controlled trial of tocilizumab safety and prevention of structural joint damage at one year. Arthritis Rheum. 2011;63(3):609–21. doi: 10.1002/art.30158.PubMedCrossRefGoogle Scholar
  107. 107.
    Burmester GR, Rigby WF, van Vollenhoven RF, Kay J, Rubbert-Roth A, Kelman A, et al. Tocilizumab in early progressive rheumatoid arthritis: FUNCTION, a randomised controlled trial. Ann Rheum Dis. 2016;75(6):1081–91. doi: 10.1136/annrheumdis-2015-207628.PubMedCrossRefGoogle Scholar
  108. 108.
    Genovese MC, Fleischmann R, Kivitz AJ, Rell-Bakalarska M, Martincova R, Fiore S, et al. Sarilumab Plus Methotrexate in Patients With Active Rheumatoid Arthritis and Inadequate Response to Methotrexate: Results of a Phase III Study. Arthritis Rheumatol. 2015;67(6):1424–37. doi: 10.1002/art.39093.PubMedCrossRefGoogle Scholar
  109. 109.
    Sieper J, Porter-Brown B, Thompson L, Harari O, Dougados M. Assessment of short-term symptomatic efficacy of tocilizumab in ankylosing spondylitis: results of randomised, placebo-controlled trials. Ann Rheum Dis. 2014;73(1):95–100. doi: 10.1136/annrheumdis-2013-203559.PubMedCrossRefGoogle Scholar
  110. 110.
    Sieper J, Braun J, Kay J, Badalamenti S, Radin AR, Jiao L, et al. Sarilumab for the treatment of ankylosing spondylitis: results of a Phase II, randomised, double-blind, placebo-controlled study (ALIGN). Ann Rheum Dis. 2015;74(6):1051–7. doi: 10.1136/annrheumdis-2013-204963.PubMedCrossRefGoogle Scholar
  111. 111.
    Mease P, Gottlieb AB, Berman A, Drescher E, Xing J, Wong R, et al. The Efficacy and Safety of Clazakizumab, an Anti-Interleukin-6 Monoclonal Antibody, in a Phase 2b Study of Adults with Active Psoriatic Arthritis. Arthritis Rheumatol. 2016. doi: 10.1002/art.39700.PubMedCentralGoogle Scholar
  112. 112.
    Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Mazurov V, et al. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann Rheum Dis. 2013;72(6):863–9. doi: 10.1136/annrheumdis-2012-201601.PubMedCrossRefGoogle Scholar
  113. 113.
    Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Aelion JA, et al. One-year efficacy and safety results of secukinumab in patients with rheumatoid arthritis: phase II, dose-finding, double-blind, randomized, placebo-controlled study. J Rheumatol. 2014;41(3):414–21. doi: 10.3899/jrheum.130637.PubMedCrossRefGoogle Scholar
  114. 114.•
    Tlustochowicz W, Rahman P, Seriolo B, Krammer G, Porter B, Widmer A, et al. Efficacy and Safety of Subcutaneous and Intravenous Loading Dose Regimens of Secukinumab in Patients with Active Rheumatoid Arthritis: Results from a Randomized Phase II Study. J Rheumatol. 2016;43(3):495–503. doi: 10.3899/jrheum.150117. Study of IL-17 inhibition in RA patients inadequately responsive to treatment with methotrexate.PubMedCrossRefGoogle Scholar
  115. 115.•
    Genovese MC, Braun DK, Erickson JS, Berclaz PY, Banerjee S, Heffernan MP, et al. Safety and Efficacy of Open-label Subcutaneous Ixekizumab Treatment for 48 Weeks in a Phase II Study in Biologic-naive and TNF-IR Patients with Rheumatoid Arthritis. J Rheumatol. 2016;43(2):289–97. doi: 10.3899/jrheum.140831. Study of treatment with another IL-17 inhibitor in RA patients.PubMedCrossRefGoogle Scholar
  116. 116.
    Pavelka K, Chon Y, Newmark R, Lin SL, Baumgartner S, Erondu N. A study to evaluate the safety, tolerability, and efficacy of brodalumab in subjects with rheumatoid arthritis and an inadequate response to methotrexate. J Rheumatol. 2015;42(6):912–9. doi: 10.3899/jrheum.141271.PubMedCrossRefGoogle Scholar
  117. 117.
    Alzabin S, Abraham SM, Taher TE, Palfreeman A, Hull D, McNamee K, et al. Incomplete response of inflammatory arthritis to TNFα blockade is associated with the Th17 pathway. Ann Rheum Dis. 2012;71(10):1741–8. doi: 10.1136/annrheumdis-2011-201024.PubMedCrossRefGoogle Scholar
  118. 118.
    •Fischer JA, Hueber AJ, Wilson S, Galm M, Baum W, Kitson C, et al. Combined inhibition of tumor necrosis factor α and interleukin-17 as a therapeutic opportunity in rheumatoid arthritis: development and characterization of a novel bispecific antibody. Arthritis Rheumatol. 2015;67(1):51–62. doi: 10.1002/art.38896. Study supporting the hypothesis that combined inhibition of TNF and IL-17 may be more effective than IL-17 inhibition alone.PubMedCrossRefGoogle Scholar
  119. 119.
    van der Heijde D, Landewé RB, Mease PJ, McInnes IB, Conaghan PG, Pricop L, et al. Secukinumab Provides Significant and Sustained Inhibition of Joint Structural Damage in a Phase III Study of Active Psoriatic Arthritis. Arthritis Rheumatol. 2016. doi: 10.1002/art.39685.Google Scholar
  120. 120.
    Mease PJ, Genovese MC, Greenwald MW, Ritchlin CT, Beaulieu AD, Deodhar A, et al. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N Engl J Med. 2014;370(24):2295–306. doi: 10.1056/NEJMoa1315231.PubMedCrossRefGoogle Scholar
  121. 121.
    Mease PJ, van der Heijde D, Ritchlin CT, Okada M, Cuchacovich RS, Shuler CL, et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann Rheum Dis. 2016. doi: 10.1136/annrheumdis-2016-209709.Google Scholar
  122. 122.
    Shaw AT, Maeda Y, Gravallese EM. IL-17A deficiency promotes periosteal bone formation in a model of inflammatory arthritis. Arthritis Res Ther. 2016;18(1):104. doi: 10.1186/s13075-016-0998-x.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Osta B, Lavocat F, Eljaafari A, Miossec P. Effects of Interleukin-17A on Osteogenic Differentiation of Isolated Human Mesenchymal Stem Cells. Front Immunol. 2014;5:425. doi: 10.3389/fimmu.2014.00425.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Kavanaugh A, Ritchlin C, Rahman P, Puig L, Gottlieb AB, Li S, et al. Ustekinumab, an anti-IL-12/23 p40 monoclonal antibody, inhibits radiographic progression in patients with active psoriatic arthritis: results of an integrated analysis of radiographic data from the phase 3, multicentre, randomised, double-blind, placebo-controlled PSUMMIT-1 and PSUMMIT-2 trials. Ann Rheum Dis. 2014;73(6):1000–6. doi: 10.1136/annrheumdis-2013-204741.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Kavanaugh A, Puig L, Gottlieb AB, Ritchlin C, Li S, Wang Y, et al. Maintenance of Clinical Efficacy and Radiographic Benefit Through Two Years of Ustekinumab Therapy in Patients With Active Psoriatic Arthritis: Results From a Randomized, Placebo-Controlled Phase III Trial. Arthritis Care Res (Hoboken). 2015;67(12):1739–49. doi: 10.1002/acr.22645.CrossRefGoogle Scholar
  126. 126.
    Cohen SB, Emery P, Greenwald MW, Dougados M, Furie RA, Genovese MC, et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 2006;54(9):2793–806. doi: 10.1002/art.22025.PubMedCrossRefGoogle Scholar
  127. 127.
    Keystone E, Emery P, Peterfy CG, Tak PP, Cohen S, Genovese MC, et al. Rituximab inhibits structural joint damage in patients with rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitor therapies. Ann Rheum Dis. 2009;68(2):216–21. doi: 10.1136/ard.2007.085787.PubMedCrossRefGoogle Scholar
  128. 128.
    Cohen SB, Keystone E, Genovese MC, Emery P, Peterfy C, Tak PP, et al. Continued inhibition of structural damage over 2 years in patients with rheumatoid arthritis treated with rituximab in combination with methotrexate. Ann Rheum Dis. 2010;69(6):1158–61. doi: 10.1136/ard.2009.119222.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Tak PP, Rigby W, Rubbert-Roth A, Peterfy C, van Vollenhoven RF, Stohl W, et al. Sustained inhibition of progressive joint damage with rituximab plus methotrexate in early active rheumatoid arthritis: 2-year results from the randomised controlled trial IMAGE. Ann Rheum Dis. 2012;71(3):351–7. doi: 10.1136/annrheumdis-2011-200170.PubMedCrossRefGoogle Scholar
  130. 130.
    Song IH, Heldmann F, Rudwaleit M, Listing J, Appel H, Braun J, et al. Different response to rituximab in tumor necrosis factor blocker-naive patients with active ankylosing spondylitis and in patients in whom tumor necrosis factor blockers have failed: a twenty-four-week clinical trial. Arthritis Rheum. 2010;62(5):1290–7. doi: 10.1002/art.27383.PubMedCrossRefGoogle Scholar
  131. 131.
    Wendling D, Dougados M, Berenbaum F, Brocq O, Schaeverbeke T, Mazieres B, et al. Rituximab treatment for spondyloarthritis. A nationwide series: data from the AIR registry of the French Society of Rheumatology. J Rheumatol. 2012;39(12):2327–31. doi: 10.3899/jrheum.120201.PubMedCrossRefGoogle Scholar
  132. 132.
    Song IH, Heldmann F, Rudwaleit M, Haibel H, Weiss A, Braun J, et al. Treatment of active ankylosing spondylitis with abatacept: an open-label, 24-week pilot study. Ann Rheum Dis. 2011;70(6):1108–10. doi: 10.1136/ard.2010.145946.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zheni Stavre
    • 1
    • 2
  • Katherine Upchurch
    • 1
    • 2
  • Jonathan Kay
    • 1
    • 2
  • Ellen M. Gravallese
    • 1
    • 2
  1. 1.Department of Medicine, Division of RheumatologyUMass Memorial Medical CenterWorcesterUSA
  2. 2.University of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations