Advertisement

Cystine Growth Inhibition Through Molecular Mimicry: a New Paradigm for the Prevention of Crystal Diseases

  • Michael H. Lee
  • Amrik Sahota
  • Michael D. Ward
  • David S. GoldfarbEmail author
Crystal Arthritis (MH Pillinger and S Krasnokutsky, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Crystal Arthritis

Abstract

Cystinuria is a genetic disease marked by recurrent kidney stone formation, usually at a young age. It frequently leads to chronic kidney disease. Treatment options for cystinuria have been limited despite comprehensive understanding of its genetic pathophysiology. Currently available therapies suffer from either poor clinical adherence to the regimen or potentially serious adverse effects. Recently, we employed atomic force miscopy (AFM) to identify l-cystine dimethylester (CDME) as an effective molecular imposter of l-cystine, capable of inhibiting crystal growth in vitro. More recently, we demonstrated CDME’s efficacy in inhibiting l-cystine crystal growth in vivo utilizing a murine model of cystinuria. The application of AFM to discover inhibitors of crystal growth through structural mimicry suggests a novel approach to preventing and treating crystal diseases.

Keywords

Kidney stones Cystinuria l-cystine Atomic force microscopy Molecular imposter l-cystine dimethylester l-cystine methylester 

Notes

Acknowledgments

This work was supported in part by a pilot project grant (no. 434056) from the Rare Kidney Stone Consortium (U54KD083908), which is a part of the NIH Rare Diseases Clinical Research Network, supported through collaboration between the NIH Office of Rare Diseases Research at the National Center for Advancing Translational Sciences and National Institute of Diabetes and Digestive and Kidney Disease.

Compliance with Ethics Guidelines

Conflict of Interest

Michael H. Lee declares no conflict of interest. Amrik Sahota declares the following: co-author of patent application, US patent application number 14/146,103; consultant, Omnia Diagnostics, North Brunswick, NJ. Michael D. Ward declares the following: Holder of patent US 20120316236 A1 David S. Goldfarb declares that he is a consultant to Astra Zeneca and Retrophin and owner of Ravine Group.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Dello Strologo L, Pras E, Pontesilli C, et al. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J Am Soc Nephrol. 2002;13:2547–53.CrossRefPubMedGoogle Scholar
  2. 2.
    Levy FL, Adams-Huet B, Pak CY. Ambulatory evaluation of nephrolithiasis: an update of a 1980 protocol. Am J Med. 1995;98:50–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Pahira JJ. Management of the patient with cystinuria. Urol Clin N Am. 1987;14:339–46.Google Scholar
  4. 4.
    Milliner DS, Murphy ME. Urolithiasis in pediatric patients. Mayo Clin Proc. 1993;68:241–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Ahmed K, Dasgupta P, Khan MS. Cystine calculi: challenging group of stones. Postgrad Med J. 2006;82:799–801.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Gambaro G, Favaro S, D’Angelo A. Risk for renal failure in nephrolithiasis. Am J Kidney Dis. 2001;37:233–43.CrossRefPubMedGoogle Scholar
  7. 7.
    Knoll T, Zollner A, Wendt-Nordahl G, Michel MS, Alken P. Cystinuria in childhood and adolescence: recommendations for diagnosis, treatment, and follow-up. Pediatr Nephrol. 2005;20:19–24.CrossRefPubMedGoogle Scholar
  8. 8.
    Wollaston WH. On cystic oxide, a new species of urinary calculus. Philos Trans R Soc Lond. 1810;100:223–30.CrossRefGoogle Scholar
  9. 9.
    Ng CS, Streem SB. Contemporary management of cystinuria. J Endourol. 1999;13:647–51.CrossRefPubMedGoogle Scholar
  10. 10.
    Thier S, Fox M, Segal S, Rosenberg LE. Cystinuria: in vitro demonstration of an intestinal transport defect. Science. 1964;143:482–4.CrossRefPubMedGoogle Scholar
  11. 11.
    Thier SO, Segal S, Fox M, Blair A, Rosenberg LE. Cystinuria: defective intestinal transport of dibasic amino acids and cystine. J Clin Invest. 1965;44:442–8.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    McCarthy CF, Borland Jr JL, Lynch Jr HJ, Owen EE, Tyor MP. Defective uptake of basic amino acids and L-cystine by intestinal mucosa of patients with cystinuria. J Clin Invest. 1964;43:1518–24.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Rosenberg LE, Durant JL, Holland JM. Intestinal absorption and renal extraction of cystine and cysteine in cystinuria. N Engl J Med. 1965;273:1239–45.CrossRefPubMedGoogle Scholar
  14. 14.
    Daniel H. Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol. 2004;66:361–84.CrossRefPubMedGoogle Scholar
  15. 15.
    Chillaron J, Font-Llitjos M, Fort J, et al. Pathophysiology and treatment of cystinuria. Nat Rev Nephrol. 2010;6:424–34.CrossRefPubMedGoogle Scholar
  16. 16.
    Harnevik L, Fjellstedt E, Molbaek A, Denneberg T, Soderkvist P. Mutation analysis of SLC7A9 in cystinuria patients in Sweden. Genet Test. 2003;7:13–20.CrossRefPubMedGoogle Scholar
  17. 17.
    Peters T, Thaete C, Wolf S, et al. A mouse model for cystinuria type I. Hum Mol Genet. 2003;12:2109–20.CrossRefPubMedGoogle Scholar
  18. 18.
    Feliubadalo L, Arbones ML, Manas S, et al. Slc7a9-deficient mice develop cystinuria non-I and cystine urolithiasis. Hum Mol Genet. 2003;12:2097–108.CrossRefPubMedGoogle Scholar
  19. 19.
    Ercolani M, Sahota A, Schuler C, et al. Bladder outlet obstruction in male cystinuria mice. Int Urol Nephrol. 2010;42:57–63.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Jaeger P, Portmann L, Saunders A, Rosenberg LE, Thier SO. Anticystinuric effects of glutamine and of dietary sodium restriction. N Engl J Med. 1986;315:1120–3.CrossRefPubMedGoogle Scholar
  21. 21.
    Lindell A, Denneberg T, Edholm E, Jeppsson JO. The effect of sodium intake on cystinuria with and without tiopronin treatment. Nephron. 1995;71:407–15.CrossRefPubMedGoogle Scholar
  22. 22.
    Rodriguez LM, Santos F, Malaga S, Martinez V. Effect of a low sodium diet on urinary elimination of cystine in cystinuric children. Nephron. 1995;71:416–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Goldfarb DS, Coe FL, Asplin JR. Urinary cystine excretion and capacity in patients with cystinuria. Kidney Int. 2006;69:1041–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Rodman JS, Blackburn P, Williams JJ, Brown A, Pospischil MA, Peterson CM. The effect of dietary protein on cystine excretion in patients with cystinuria. Clin Nephrol. 1984;22:273–8.PubMedGoogle Scholar
  25. 25.
    Dent CE, Friedman M, Green H, Watson LC. Treatment of cystinuria. Br Med J. 1965;1:403–8.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Sumorok N, Goldfarb DS. Update on cystinuria. Curr Opin Nephrol Hypertens. 2013;22:427–31.CrossRefPubMedGoogle Scholar
  27. 27.
    Dolin DJ, Asplin JR, Flagel L, Grasso M, Goldfarb DS. Effect of cystine-binding thiol drugs on urinary cystine capacity in patients with cystinuria. J Endourol. 2005;19:429–32.CrossRefPubMedGoogle Scholar
  28. 28.
    Dent CE, Senior B. Studies on the treatment of cystinuria. Br J Urol. 1955;27:317–32.CrossRefPubMedGoogle Scholar
  29. 29.
    Nakagawa Y, Asplin JR, Goldfarb DS, Parks JH, Coe FL. Clinical use of cystine supersaturation measurements. J Urol. 2000;164:1481–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Fjellstedt E, Denneberg T, Jeppsson JO, Tiselius HG. A comparison of the effects of potassium citrate and sodium bicarbonate in the alkalinization of urine in homozygous cystinuria. Urol Res. 2001;29:295–302.CrossRefPubMedGoogle Scholar
  31. 31.
    Lotz M, Bartter FC. Stone dissolution with D-penicillamine in cystinuria. Br Med J. 1965;2:1408–9.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Pak CY, Fuller C, Sakhaee K, Zerwekh JE, Adams BV. Management of cystine nephrolithiasis with alpha-mercaptopropionylglycine. J Urol. 1986;136:1003–8.PubMedGoogle Scholar
  33. 33.
    Chen CJ. Introduction to scanning tunneling microscopy. Monographs on the physics and chemistry of materials. 2nd ed. New York: Oxford University Press; 2008.Google Scholar
  34. 34.
    Ward MD, White HS. Scanning tunneling and atomic force microscopy of electrochemical interfaces. In: Vanýsek P, editor. Modern techniques in electroanalysis. New York: Wiley; 1996. p. 107–49.Google Scholar
  35. 35.
    Binnig G, Rohrer H, Gerber C, Weibel E. Surface studies by scanning tunneling microscopy. Phys Rev Lett. 1982;49:57.CrossRefGoogle Scholar
  36. 36.
    Tersoff J, Hamann DR. Theory of the scanning tunneling microscope. Phys Rev B Condens Matter. 1985;31:805–13.CrossRefPubMedGoogle Scholar
  37. 37.
    Baro AM, Miranda R, Alaman J, et al. Determination of surface topography of biological specimens at high resolution by scanning tunnelling microscopy. Nature. 1985;315:253–4.CrossRefPubMedGoogle Scholar
  38. 38.
    Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986;56:930–3.CrossRefPubMedGoogle Scholar
  39. 39.
    Sheng X, Ward MD, Wesson JA. Adhesion between molecules and calcium oxalate crystals: critical interactions in kidney stone formation. J Am Chem Soc. 2003;125:2854–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Wesson JA, Ward MD. Role of crystal surface adhesion in kidney stone disease. Curr Opin Nephrol Hypertens. 2006;15:386–93.CrossRefPubMedGoogle Scholar
  41. 41.
    Sheng X, Jung T, Wesson JA, Ward MD. Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents. Proc Natl Acad Sci U S A. 2005;102:267–72.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Sheng X, Ward MD, Wesson JA. Crystal surface adhesion explains the pathological activity of calcium oxalate hydrates in kidney stone formation. J Am Soc Nephrol. 2005;16:1904–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Hillier AC, Ward MD. Atomic force microscopy of the electrochemical nucleation and growth of molecular crystals. Science. 1994;263:1261–4.CrossRefPubMedGoogle Scholar
  44. 44.•
    Rimer JD, An Z, Zhu Z, et al. Crystal growth inhibitors for the prevention of L-cystine kidney stones through molecular design. Science. 2010;330:337–41. Demonstrates the ability to analyze real-time crystal growth in the presence of molecular imposters via atomic force microscopy.CrossRefPubMedGoogle Scholar
  45. 45.
    Sizemore JP, Doherty MF. A new model for the effect of molecular imposters on the shape of faceted molecular crystals. Cryst Growth Des. 2009;9:2637–45.CrossRefGoogle Scholar
  46. 46.
    Liou YC, Tocilj A, Davies PL, Jia Z. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature. 2000;406:322–4.CrossRefPubMedGoogle Scholar
  47. 47.
    Guo S, Ward MD, Wesson JA. Direct visualization of calcium oxalate monohydrate crystallization and dissolution with atomic force microscopy and the role of polymeric additives. Langmuir. 2002;18:4284–91.CrossRefGoogle Scholar
  48. 48.
    Jung T, Sheng X, Choi CK, Kim WS, Wesson JA, Ward MD. Probing crystallization of calcium oxalate monohydrate and the role of macromolecule additives with in situ atomic force microscopy. Langmuir. 2004;20:8587–96.CrossRefPubMedGoogle Scholar
  49. 49.•
    Sahota A, Parihar JS, Capaccione KM, et al. Novel cystine ester mimics for the treatment of cystinuria-induced urolithiasis in a knockout mouse model. Urology. 2014;84:1249. e9-. e15. Translates the inhibitory effect of CDME on cystine crystal growth from in vitro to in vivo settings utilizing a knockout mouse model.CrossRefPubMedGoogle Scholar
  50. 50.
    Kessler A, Biasibetti M, da Silva Melo DA, et al. Antioxidant effect of cysteamine in brain cortex of young rats. Neurochem Res. 2008;33:737–44.CrossRefPubMedGoogle Scholar
  51. 51.
    Figueiredo VC, Feksa LR, Wannmacher CM. Cysteamine prevents inhibition of adenylate kinase caused by cystine in rat brain cortex. Metab Brain Dis. 2009;24:723–31.CrossRefPubMedGoogle Scholar
  52. 52.
    Rech VC, Feksa LR, Arevalo do Amaral MF, et al. Promotion of oxidative stress in kidney of rats loaded with cystine dimethyl ester. Pediatr Nephrol. 2007;22:1121–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Ben-Nun A, Bashan N, Potashnik R, Cohen-Luria R, Moran A. Cystine loading induces Fanconi’s syndrome in rats: in vivo and vesicle studies. Am J Physiol. 1993;265:F839–44.PubMedGoogle Scholar
  54. 54.
    Foreman JW, Bowring MA, Lee J, States B, Segal S. Effect of cystine dimethylester on renal solute handling and isolated renal tubule transport in the rat: a new model of the Fanconi syndrome. Metabolism. 1987;36:1185–91.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2015

Authors and Affiliations

  • Michael H. Lee
    • 1
  • Amrik Sahota
    • 2
  • Michael D. Ward
    • 3
  • David S. Goldfarb
    • 1
    • 4
    • 5
  1. 1.NYU Langone Medical CenterNew YorkUSA
  2. 2.Department of GeneticsRutgers UniversityPiscatawayUSA
  3. 3.Department of ChemistryNew York UniversityNew YorkUSA
  4. 4.Nephrology SectionNew York Harbor VA Healthcare SystemNew YorkUSA
  5. 5.Medicine and PhysiologyNew York University School of MedicineNew YorkUSA

Personalised recommendations