Advertisement

Current Rheumatology Reports

, 16:400 | Cite as

The Crystallization of Monosodium Urate

  • Miguel A. Martillo
  • Lama Nazzal
  • Daria B. CrittendenEmail author
CRYSTAL ARTHRITIS (MH PILLINGER, SECTION EDITOR)
Part of the following topical collections:
  1. Topical Collection on Crystal Arthritis

Abstract

Gout is a common crystal-induced arthritis, in which monosodium urate (MSU) crystals precipitate within joints and soft tissues and elicit an inflammatory response. The causes of elevated serum urate and the inflammatory pathways activated by MSU crystals have been well studied, but less is known about the processes leading to crystal formation and growth. Uric acid, the final product of purine metabolism, is a weak acid that circulates as the deprotonated urate anion under physiologic conditions, and combines with sodium ions to form MSU. MSU crystals are known to have a triclinic structure, in which stacked sheets of purine rings form the needle-shaped crystals that are observed microscopically. Exposed, charged crystal surfaces are thought to allow for interaction with phospholipid membranes and serum factors, playing a role in the crystal-mediated inflammatory response. While hyperuricemia is a clear risk factor for gout, local factors have been hypothesized to play a role in crystal formation, such as temperature, pH, mechanical stress, cartilage components, and other synovial and serum factors. Interestingly, several studies suggest that MSU crystals may drive the generation of crystal-specific antibodies that facilitate future MSU crystallization. Here, we review MSU crystal biology, including a discussion of crystal structure, effector function, and factors thought to play a role in crystal formation. We also briefly compare MSU biology to that of uric acid stones causing nephrolithasis, and consider the potential treatment implications of MSU crystal biology.

Keywords

Monosodium urate Crystallization Gout Synovial fluid Uric acid Kidney stones 

Notes

Acknowledgments

The authors thank David Goldfarb and Michael Pillinger for helpful input with the text, and Michael Ward for reviewing the accuracy of the figures.

Compliance with Ethics Guidelines

Conflict of Interest

This work was supported in part by grants from the Arthritis Foundation and New York Academy of Medicine (to Daria B. Crittenden), and by grant UL1 TR000038 from the National Center for Advancing Translational Sciences, National Institutes of Health.

Miguel A. Martillo, Lama Nazzal, and Daria B. Crittenden declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Lawrence RC et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States Part II. Arthritis Rheum. 2008;58(1):26–35.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Roddy E, Doherty M. Epidemiology of gout. Arthritis Res Ther. 2010;12(6):21.CrossRefGoogle Scholar
  3. 3.
    Choi HK et al. Pathogenesis of gout. Ann Intern Med. 2005;143(7):499–516.PubMedCrossRefGoogle Scholar
  4. 4.
    Burns CM, Wortmann RL. Disorders of purine and pyramidine metabolism. In: Fauci AS, Longo DL, Kasper DL, Hauser SL, Jameson JL, Loscalzo J, editors. Harrison’s Priciples of Internal Medicine. New York: McGraw-Hill; 2012.Google Scholar
  5. 5.
    Wu XW et al. Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol. 1992;34(1):78–84.PubMedCrossRefGoogle Scholar
  6. 6.
    Wu XW et al. Urate oxidase: primary structure and evolutionary implications. Proc Natl Acad Sci U S A. 1989;86(23):9412–6.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Oda M et al. Loss of urate oxidase activity in hominoids and its evolutionary implications. Mol Biol Evol. 2002;19(5):640–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Huang HY et al. The effects of vitamin C supplementation on serum concentrations of uric acid: results of a randomized controlled trial. Arthritis Rheum. 2005;52(6):1843–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Sebesta I. Genetic disorders resulting in hyper- or hypouricemia. Adv Chronic Kidney Dis. 2012;19(6):398–403.PubMedCrossRefGoogle Scholar
  10. 10.
    Busso N, So A. Microcrystals as DAMPs and their role in joint inflammation. Rheumatology (Oxford). 2012;51(7):1154–60.CrossRefGoogle Scholar
  11. 11.
    Martinon F et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–41.PubMedCrossRefGoogle Scholar
  12. 12.
    Pettipher ER, Higgs GA, Henderson B. Interleukin 1 induces leukocyte infiltration and cartilage proteoglycan degradation in the synovial joint. Proc Natl Acad Sci U S A. 1986;83(22):8749–53.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Weinberger A, Schumacher HR, Agudelo CA. Urate crystals in asymptomatic metatarsophalangeal joints. Ann Intern Med. 1979;91(1):56–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Lin KC, Lin HY, Chou P. The interaction between uric acid level and other risk factors on the development of gout among asymptomatic hyperuricemic men in a prospective study. J Rheumatol. 2000;27(6):1501–5.PubMedGoogle Scholar
  15. 15.
    Hall AP et al. Epidemiology of gout and hyperuricemia. A long-term population study. Am J Med. 1967;42(1):27–37.PubMedCrossRefGoogle Scholar
  16. 16.
    Schlesinger N, Norquist JM, Watson DJ. Serum urate during acute gout. J Rheumatol. 2009;36(6):1287–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Mandel NS, Mandel GS. Monosodium urate monohydrate, the gout culprit. J Am Chem Soc. 1976;98(8):2319–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Frincu MC, Fogarty CE, Swift JA. Epitaxial relationships between uric acid crystals and mineral surfaces: a factor in urinary stone formation. Langmuir. 2004;20(16):6524–9.PubMedCrossRefGoogle Scholar
  19. 19.
    •• Perrin CM et al. Monosodium urate monohydrate crystallization. CrystEngComm. 2011;13(4):1111–7. Modern-day work in which in situ atomic force microscopy and dynamic light scattering were used to elucidate the growth of monosodium urate crystals on a molecular level.CrossRefGoogle Scholar
  20. 20.
    Ortiz-Bravo E, Sieck MS, Schumacher Jr HR. Changes in the proteins coating monosodium urate crystals during active and subsiding inflammation. Immunogold studies of synovial fluid from patients with gout and of fluid obtained using the rat subcutaneous air pouch model. Arthritis Rheum. 1993;36(9):1274–85.PubMedCrossRefGoogle Scholar
  21. 21.
    Cherian PV, Schumacher Jr HR. Immunochemical and ultrastructural characterization of serum proteins associated with monosodium urate crystals (MSU) in synovial fluid cells from patients with gout. Ultrastruct Pathol. 1986;10(3):209–19.PubMedCrossRefGoogle Scholar
  22. 22.
    Kozin F, McCarty DJ. Molecular orientation of immunoglobulin G adsorbed to microcrystalline monosodium urate monohydrate. J Lab Clin Med. 1980;95(1):49–58.PubMedGoogle Scholar
  23. 23.
    Terkeltaub R et al. Plasma protein binding by monosodium urate crystals. Analysis by two-dimensional gel electrophoresis. Arthritis Rheum. 1983;26(6):775–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Mullin JW. Nucleation In Crystallization. Oxford: Butterworth-Heinemann; 1993. p. 172–201.Google Scholar
  25. 25.
    Fiddis RW, Vlachos N, Calvert PD. Studies of urate crystallisation in relation to gout. Ann Rheum Dis. 1983;42 Suppl 1:12–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Shoji A, Yamanaka H, Kamatani N. A retrospective study of the relationship between serum urate level and recurrent attacks of gouty arthritis: evidence for reduction of recurrent gouty arthritis with antihyperuricemic therapy. Arthritis Rheum. 2004;51(3):321–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Allen DJ, Milosovich G, Mattocks AM. Inhibition of monosodium urate needle crystal growth. Arthritis Rheum. 1965;8(6):1123–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Loeb JN. The influence of temperature on the solubility of monosodium urate. Arthritis Rheum. 1972;15(2):189–92.PubMedCrossRefGoogle Scholar
  29. 29.
    Wilcox WR et al. Solubility of uric acid and monosodium urate. Med Biol Eng. 1972;10(4):522–31.PubMedCrossRefGoogle Scholar
  30. 30.
    Wilcox WR, Khalaf AA. Nucleation of monosodium urate crystals. Ann Rheum Dis. 1975;34(4):332–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Seegmiller JE. The acute attack of gouty arthritis. Arthritis Rheum. 1965;8(5):714–25.PubMedCrossRefGoogle Scholar
  32. 32.
    Abrams B. Sleep apnea as a cause of gout flares. Medscape J Med. 2009;11(1):3.PubMedCentralPubMedGoogle Scholar
  33. 33.
    McGill NW, Dieppe PA. Evidence for a promoter of urate crystal formation in gouty synovial fluid. Ann Rheum Dis. 1991;50(8):558–61.PubMedCrossRefGoogle Scholar
  34. 34.
    Tak HK, Cooper SM, Wilcox WR. Studies on the nucleation of monosodium urate at 37 degrees c. Arthritis Rheum. 1980;23(5):574–80.PubMedCrossRefGoogle Scholar
  35. 35.
    Burt HM, Dutt YC. Growth of monosodium urate monohydrate crystals: effect of cartilage and synovial fluid components on in vitro growth rates. Ann Rheum Dis. 1986;45(10):858–64.PubMedCrossRefGoogle Scholar
  36. 36.
    Laurent TC. Solubility of Sodium Urate in the Presence of Chondroitin-4-Sulphate. Nature. 1964;202:1334.PubMedCrossRefGoogle Scholar
  37. 37.
    • Pascual E, Martinez A, Ordonez S. Gout: the mechanism of urate crystal nucleation and growth. A hypothesis based in facts. Joint Bone Spine. 2013;80(1):1–4. A recent review that summarizes information gleaned from current imaging of gouty joints, and a hypothesis regarding what this may teach us about monosodium urate crystallization.PubMedCrossRefGoogle Scholar
  38. 38.
    Katz WA. Role of proteoglycans in the development of gouty arthritis. In: Weiner IM, Kelley WN, editors. Handbook of Experimental Pharmacology. New York: Springer; 1978. p. 347–64.Google Scholar
  39. 39.
    Kippen I et al. Factors affecting urate solubility in vitro. Ann Rheum Dis. 1974;33(4):313–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Perl-Treves D, Addadi L. A structural approach to pathological crystallizations. Gout: the possible role of albumin in sodium urate crystallization. Proc R Soc Lond B Biol Sci. 1988;235(1279):145–59.PubMedCrossRefGoogle Scholar
  41. 41.
    Kaneko K, Maru M. Determination of urate crystal formation using flow cytometry and microarea X-ray diffractometry. Anal Biochem. 2000;281(1):9–14.PubMedCrossRefGoogle Scholar
  42. 42.
    Kam M et al. Antibodies against crystals. Faseb J. 1992;6(8):2608–13.PubMedGoogle Scholar
  43. 43.
    Kam M et al. Specificity in the recognition of crystals by antibodies. J Mol Recognit. 1994;7(4):257–64.PubMedCrossRefGoogle Scholar
  44. 44.
    Kanevets U et al. A role of IgM antibodies in monosodium urate crystal formation and associated adjuvanticity. J Immunol. 2009;182(4):1912–8.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Terkeltaub R et al. Low density lipoprotein inhibits the physical interaction of phlogistic crystals and inflammatory cells. Arthritis Rheum. 1986;29(3):363–70.PubMedCrossRefGoogle Scholar
  46. 46.
    Scanu A et al. High-density lipoproteins downregulate CCL2 production in human fibroblast-like synoviocytes stimulated by urate crystals. Arthritis Res Ther. 2010;12(1):11.CrossRefGoogle Scholar
  47. 47.
    McGill NW, Hayes A, Dieppe PA. Morphological evidence for biological control of urate crystal formation in vivo and in vitro. Scand J Rheumatol. 1992;21(5):215–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Thiele RG. Role of ultrasound and other advanced imaging in the diagnosis and management of gout. Curr Rheumatol Rep. 2011;13(2):146–53.PubMedCrossRefGoogle Scholar
  49. 49.
    Howard RG et al. Reproducibility of musculoskeletal ultrasound for determining monosodium urate deposition: Concordance between readers. Arthritis Care & Research. 2011;63(10):1456–62.CrossRefGoogle Scholar
  50. 50.
    Hesse A et al. Uric acid dihydrate as urinary calculus component. Invest Urol. 1975;12(5):405–9.PubMedGoogle Scholar
  51. 51.
    Sakhaee K et al. Assessment of the pathogenetic role of physical exercise in renal stone formation. J Clin Endocrinol Metab. 1987;65(5):974–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Asplin JR. Uric acid stones. Semin Nephrol. 1996;16(5):412–24.PubMedGoogle Scholar
  53. 53.
    Sakhaee K et al. Pathophysiologic basis for normouricosuric uric acid nephrolithiasis. Kidney Int. 2002;62(3):971–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Pak CY et al. Biochemical profile of idiopathic uric acid nephrolithiasis. Kidney Int. 2001;60(2):757–61.PubMedCrossRefGoogle Scholar
  55. 55.
    Grover PK, Marshall VR, Ryall RL. Dissolved urate salts out calcium oxalate in undiluted human urine in vitro: implications for calcium oxalate stone genesis. Chem Biol. 2003;10(3):271–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Ettinger B et al. Randomized trial of allopurinol in the prevention of calcium oxalate calculi. N Engl J Med. 1986;315(22):1386–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Curhan GC, Taylor EN. 24-h uric acid excretion and the risk of kidney stones. Kidney Int. 2008;73(4):489–96.PubMedCrossRefGoogle Scholar
  58. 58.
    Pak CY et al. Mechanism for calcium urolithiasis among patients with hyperuricosuria: supersaturation of urine with respect to monosodium urate. J Clin Invest. 1977;59(3):426–31.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Pascual E, Sivera F. Time required for disappearance of urate crystals from synovial fluid after successful hypouricaemic treatment relates to the duration of gout. Ann Rheum Dis. 2007;66(8):1056–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Thiele RG, Schlesinger N. Ultrasonography shows disappearance of monosodium urate crystal deposition on hyaline cartilage after sustained normouricemia is achieved. Rheumatol Int. 2010;30(4):495–503.PubMedCrossRefGoogle Scholar
  61. 61.
    Becker MA, Chohan S. We can make gout management more successful now. Curr Opin Rheumatol. 2008;20(2):167–72.PubMedCrossRefGoogle Scholar
  62. 62.
    Rimer JD et al. Crystal growth inhibitors for the prevention of L-cystine kidney stones through molecular design. Science. 2010;330(6002):337–41.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Miguel A. Martillo
    • 1
    • 3
  • Lama Nazzal
    • 2
    • 4
  • Daria B. Crittenden
    • 1
    • 3
    • 5
    Email author
  1. 1.Divisions of Rheumatology, Department of MedicineNYU School of MedicineNew YorkUSA
  2. 2.Divisions of Nephrology, Department of MedicineNYU School of MedicineNew YorkUSA
  3. 3.Sections of Rheumatology, Department of MedicineNew York Harbor Health VA Care SystemNew YorkUSA
  4. 4.Sections of Nephrology, Department of MedicineNew York Harbor Health VA Care SystemNew YorkUSA
  5. 5.Department of RheumatologyNYU Hospital for Joint DiseasesNew YorkUSA

Personalised recommendations