HFE-Related Hemochromatosis: An Update for the Rheumatologist

  • Emma Husar-Memmer
  • Andreas Stadlmayr
  • Christian Datz
  • Jochen Zwerina
ORPHAN DISEASES (B MANGER, SECTION EDITOR)
Part of the following topical collections:
  1. Topical Collection on Orphan Diseases

Abstract

Hereditary hemochromatosis is a frequent disease in Caucasian populations. It leads to progressive iron overload in a variety of organs. The most common cause is the C282Y homozygous mutation in the HFE gene. The classical triad of skin hyperpigmentation, diabetes, and liver cirrhosis is nowadays rare but musculoskeletal symptoms are common in HFE-related hemochromatosis. Typically the second and third metacarpophalangeal joints, and the wrist, hip, and ankle joints are affected. Clinical symptoms include osteoarthritis-like symptoms, pseudogout attacks, and synovitis sometimes resembling rheumatoid arthritis. Radiographs show degenerative changes with joint space narrowing, osteophytes, and subchondral cysts. Chondrocalcinosis in the wrist and knee joints is seen in up to 50 % of patients. Although most other organ manifestations regress during phlebotomy, musculoskeletal symptoms often persist or even become worse. Importantly, patients are at an increased risk of severe large-joint arthritis necessitating joint replacement surgery. Therefore, future research should focus on the pathogenesis and treatment options for HH arthropathy.

Keywords

Hemochromatosis HFE gene Iron overload Arthropathy Chondrocalcinosis Diagnosis Clinical presentation Screening 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Jochen Zwerina was supported by a Start Up Grant of the German Society of Rheumatology (DGRh) and is a member of the medical board of the German Hemochromatosis Patient Organization. Emma Husar-Memmer, Andreas Stadlmayr, and Christian Datz declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. With regard to the authors’ research cited in this paper, all procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Janssen MC, Swinkels DW. Hereditary haemochromatosis. Best Pract Res Clin Gastroenterol. 2009;23:171–83.PubMedCrossRefGoogle Scholar
  2. 2.
    Trousseau A. Glycosurie, diabète sucré. Clinique médicale de l’Hôtel-Dieu de Paris. 1865;2:663–98.Google Scholar
  3. 3.
    Feder JN, Gnirke A, Thomas W, et al. A novel MHC class 1-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996;13:399–408.PubMedCrossRefGoogle Scholar
  4. 4.
    Niederau C, Fischer R, Sonnenberg A, et al. Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis. N Engl J Med. 1985;313:1256–62.PubMedCrossRefGoogle Scholar
  5. 5.
    Datz C, Lalloz MR, Vogel W, et al. Predominance of the HLA-H Cys282Tyr mutation in Austrian patients with genetic haemochromatosis. J Hepatol. 1997;27:773–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Nielsen P, Carpinteiro S, Fischer R, et al. Prevalence of the C282Y and H63D mutations in the HFE gene in patients with hereditary haemochromatosis and in control subjects from Northern Germany. Br J Haematol. 1998;103:842–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Pedersen P, Milman N. Genetic screening for HFE hemochromatosis in 6,020 Danish men: penetrance of C282Y, H63D, and S65C variants. Ann Hematol. 2009;88:775–84.PubMedCrossRefGoogle Scholar
  8. 8.
    Sassi R, Hmida S, Kaabi H, et al. Prevalence of C282Y and H63D mutations in the haemochromatosis (HFE) gene in Tunisian population. Ann Genet. 2004;47:325–30.PubMedCrossRefGoogle Scholar
  9. 9.
    Viprakasit V, Vathesathokit P, Chinchang W, et al. Prevalence of HFE mutations among the Thai population and correlation with iron loading in haemoglobin E disorder. Eur J Haematol. 2004;73:43–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Castiella A, Zapata E, de Juan MD, et al. Significance of H63D homozygosity in a Basque population with hemochromatosis. J Gastroenterol Hepatol. 2010;25:1295–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Walsh A, Dixon JL, Ramm GA, et al. The clinical relevance of compound heterozygosity for the C282Y and H63D substitutions in hemochromatosis. Clin Gastroenterol Hepatol. 2006;4:1403–10.PubMedCrossRefGoogle Scholar
  12. 12.
    Gleeson F, Ryan E, Barrett S, Crowe J. Clinical expression of haemochromatosis in Irish C282Y homozygotes identified through family screening. Eur J Gastroenterol Hepatol. 2004;16:859–63.PubMedCrossRefGoogle Scholar
  13. 13.
    Powell LW, Dixon JL, Ramm GA, et al. Screening for hemochromatosis in asymptomatic subjects with or without a family history. Arch Intern Med. 2006;166:294–301.PubMedCrossRefGoogle Scholar
  14. 14.
    Allen KJ, Gurrin LC, Constantine CC, et al. Iron-overload-related disease in HFE hereditary hemochromatosis. N Engl J Med. 2008;358(3):221–30.PubMedCrossRefGoogle Scholar
  15. 15.
    Fletcher LM, Dixon JL, Purdie DM, et al. Excess alcohol greatly increases the prevalence of cirrhosis in hereditary hemochromatosis. Gastroenterology. 2002;122:281–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Diwakaran HH, Befeler AS, Britton RS, et al. Accelerated hepatic fibrosis in patients with combined hereditary hemochromatosis and chronic hepatitis C infection. J Hepatol. 2002;36:687–91.PubMedCrossRefGoogle Scholar
  17. 17.
    Piperno A, Fargion S, D’Alba R, et al. Liver damage in Italian patients with hereditary hemochromatosis is highly influenced by hepatitis B and C virus infection. J Hepatol. 1992;16:364–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Pietrangelo A. Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment. Gastroenterology. 2010;139:393–408.PubMedCrossRefGoogle Scholar
  19. 19.
    Valenti L, Fracanzani AL, Rametta R, et al. Effect of the A736V TMPRSS6 polymorphism on the penetrance and clinical expression of hereditary hemochromatosis. J Hepatol. 2012;57:1319–25.PubMedCrossRefGoogle Scholar
  20. 20.
    Papanikolaou G, Samuels ME, Ludwig EH, et al. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet. 2004;36:77–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Roetto A, Papanikolaou G, Politou M, et al. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet. 2003;33:21–2.PubMedCrossRefGoogle Scholar
  22. 22.
    Camaschella C, Roetto A, Calì A, et al. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat Genet. 2000;25:14–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Mayr R, Griffiths WJ, Hermann M, et al. Identification of mutations in SLC40A1 that affect ferroportin function and phenotype of human ferroportin iron overload. Gastroenterology. 2011;140:2056–63.PubMedCrossRefGoogle Scholar
  24. 24.
    Mayr R, Janecke AR, Schranz M, et al. Ferroportin disease: a systematic meta-analysis of clinical and molecular findings. J Hepatol. 2010;53:941–9.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    D’Alessio F, Hentze MW, Muckenthaler MU. The hemochromatosis proteins HFE, TfR2, and HJV form a membrane-associated protein complex for hepcidin regulation. J Hepatol. 2012;57:1052–60.PubMedCrossRefGoogle Scholar
  26. 26.
    Krause A, Neitz S, Mägert HJ, et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 2000;480:147–50.PubMedCrossRefGoogle Scholar
  27. 27.
    Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002;110:1037–44.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.PubMedCrossRefGoogle Scholar
  29. 29.
    Nicolas G, Bennoun M, Devaux I, et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A. 2001;98:8780–5.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Bridle KR, Frazer DM, Wilkins SJ, et al. Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet. 2003;361:669–73.PubMedCrossRefGoogle Scholar
  31. 31.
    Vujic Spasic M, Kiss J, Herrmann T, et al. Physiologic systemic iron metabolism in mice deficient for duodenal Hfe. Blood. 2007;109:4511–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Vujić Spasić M, Kiss J, Herrmann T, et al. Hfe acts in hepatocytes to prevent hemochromatosis. Cell Metab. 2008;7:173–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Morán-Jiménez MJ, Méndez M, Santiago B, et al. Hepcidin treatment in Hfe−/− mice diminishes plasma iron without affecting erythropoiesis. Eur J Clin Invest. 2010;40:511–7.PubMedCrossRefGoogle Scholar
  34. 34.
    • Bardou-Jacquet E, Philip J, Lorho R, et al. Liver transplantation normalizes serum hepcidin level and cures iron metabolism alterations in HFE hemochromatosis. Hepatology. 2013. doi:10.1002/hep.26570. An important clinical study supporting the hypothesis that hepatic iron sensing is dependent on intact HFE protein production. Google Scholar
  35. 35.
    Dwyer JP, Sarwar S, Egan B, et al. Hepatic iron overload following liver transplantation of a C282y homozygous allograft: a case report and literature review. Liver Int. 2011;31:1589–92.PubMedCrossRefGoogle Scholar
  36. 36.
    Olynyk JK, Cullen DJ, Aquilia S, et al. A population-based study of the clinical expression of the hemochromatosis gene. N Engl J Med. 1999;341:718–24.PubMedCrossRefGoogle Scholar
  37. 37.
    European Association For The Study Of The Liver. EASL clinical practice guidelines for HFE hemochromatosis. J Hepatol. 2010;53:3–22.CrossRefGoogle Scholar
  38. 38.
    Schumacher Jr HR. Hemochromatosis and Arthritis. Arthritis Rheum. 1964;7:41–50.PubMedCrossRefGoogle Scholar
  39. 39.
    McDonnell SM, Preston BL, Jewell SA, et al. A survey of 2,851 patients with hemochromatosis: symptoms and response to treatment. Am J Med. 1999;106:619–24.PubMedCrossRefGoogle Scholar
  40. 40.
    Wimalawansa SM, Alsamkari R. Unusual presentation of hemochromatosis as isolated metacarpophalangeal joint osteoarthritis: a case report. Hand (N Y). 2011;6:329–32.PubMedCentralCrossRefGoogle Scholar
  41. 41.
    Vaiopoulos G, Papanikolaou G, Politou M, et al. Arthropathy in juvenile hemochromatosis. Arthritis Rheum. 2003;48:227–30.PubMedCrossRefGoogle Scholar
  42. 42.
    Abbott DF, Gresham GA. Arthropathy in transfusional siderosis. Br Med J. 1972;1:418–9.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Carroll GJ, Breidahl WH, Bulsara MK, Olynyk JK. Hereditary hemochromatosis is characterized by a clinically definable arthropathy that correlates with iron load. Arthritis Rheum. 2011;63:286–94.PubMedCrossRefGoogle Scholar
  44. 44.
    •• Sahinbegovic E, Dallos T, Aigner E, et al. Musculoskeletal disease burden of hereditary hemochromatosis. Arthritis Rheum. 2010;62:3792–8. A systematic cross-sectional study showing disease manifestations and burden of musculoskeletal disease in hereditary hemochromatosis. PubMedCrossRefGoogle Scholar
  45. 45.
    Dallos T, Sahinbegovic E, Stamm T, et al. Idiopathic hand osteoarthritis vs haemochromatosis arthropathy—a clinical, functional and radiographic study. Rheumatology (Oxford). 2013;52:910–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Davies MB, Saxby T. Ankle arthropathy of hemochromatosis: a case series and review of the literature. Foot Ankle Int. 2006;27:902–6.PubMedGoogle Scholar
  47. 47.
    Bijsterbosch J, Visser W, Kroon HM, et al. Thumb base involvement in symptomatic hand osteoarthritis is associated with more pain and functional disability. Ann Rheum Dis. 2010;69:585–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Valenti L, Fracanzani AL, Rossi V, et al. The hand arthropathy of hereditary hemochromatosis is strongly associated with iron overload. J Rheumatol. 2008;35:153–8.PubMedGoogle Scholar
  49. 49.
    • Sahinbegovic E, Dallos T, Aigner E, et al. Hereditary hemochromatosis as a risk factor for joint replacement surgery. Am J Med. 2010;123:659–62. The first systematic study to reveal an increased risk for joint replacement surgery in hereditary hemochromatosis patients. PubMedCrossRefGoogle Scholar
  50. 50.
    Wang Y, Gurrin LC, Wluka AE, et al. HFE C282Y homozygosity is associated with an increased risk of total hip replacement for osteoarthritis. Semin Arthritis Rheum. 2012;41:872–8.PubMedCrossRefGoogle Scholar
  51. 51.
    • Elmberg M, Hultcrantz R, Simard JF, et al. Increased risk of arthropathies and joint replacement surgery in patients with genetic hemochromatosis: a study of 3,531 patients and their 11,794 first-degree relatives. Arthritis Care Res (Hoboken). 2013;65:678–85. A large-scale population based study confirming the increased risk of joint replacement surgery in hereditary hemochromatosis. PubMedCrossRefGoogle Scholar
  52. 52.
    Richette P, Ottaviani S, Vicaut E, Bardin T. Musculoskeletal complications of hereditary hemochromatosis: a case–control study. J Rheumatol. 2010;37:2145–50.PubMedCrossRefGoogle Scholar
  53. 53.
    Diamond T, Stiel D, Posen S. Osteoporosis in hemochromatosis: iron excess, gonadal deficiency, or other factors? Ann Intern Med. 1989;110:430–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Valenti L, Varenna M, Fracanzani AL, et al. Association between iron overload and osteoporosis in patients with hereditary hemochromatosis. Osteoporos Int. 2009;20:549–55.PubMedCrossRefGoogle Scholar
  55. 55.
    Guggenbuhl P, Deugnier Y, Boisdet JF, et al. Bone mineral density in men with genetic hemochromatosis and HFE gene mutation. Osteoporos Int. 2005;16:1809–14.PubMedCrossRefGoogle Scholar
  56. 56.
    Nell-Duxneuner V, Axmann R, Husar-Memmer E, et al.: VCAM-1 serum levels are associated with arthropathy in hereditary haemochromatosis. Ann Rheum Dis. 2013 Apr 18. [Epub ahead of print]Google Scholar
  57. 57.
    Allen KJ, Bertalli NA, Osborne NJ, et al. HFE Cys282Tyr homozygotes with serum ferritin concentrations below 1000 microg/L are at low risk of hemochromatosis. Hepatology. 2010;52:925–33.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Aigner E, Schmid I, Osterreicher CH, et al. Contribution of anti-cyclic citrullinated peptide antibody and rheumatoid factor to the diagnosis of arthropathy in haemochromatosis. Ann Rheum Dis. 2007;66:1249–51.PubMedCrossRefGoogle Scholar
  59. 59.
    Jäger HJ, Mehring U, Götz GF, et al. Radiological features of the visceral and skeletal involvement of hemochromatosis. Eur Radiol. 1997;7:1199–206.PubMedCrossRefGoogle Scholar
  60. 60.
    Dallos T, Sahinbegovic E, Aigner E, et al. Validation of a radiographic scoring system for haemochromatosis arthropathy. Ann Rheum Dis. 2010;69:2145–51.PubMedCrossRefGoogle Scholar
  61. 61.
    Montgomery KD, Williams JR, Sculco TP, DiCarlo E. Clinical and pathologic findings in hemochromatosis hip arthropathy. Clin Orthop Relat Res. 1998;347:179–87.PubMedCrossRefGoogle Scholar
  62. 62.
    Frenzen K, Schäfer C, Keyßer G. Erosive and inflammatory joint changes in hereditary hemochromatosis arthropathy detected by low-field magnetic resonance imaging. Rheumatol Int. 2013;33:2061–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Heiland GR, Aigner E, Dallos T, et al. Synovial immunopathology in haemochromatosis arthropathy. Ann Rheum Dis. 2010;69:1214–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Carroll GJ, Sharma G, Upadhyay A, Jazayeri JA. Ferritin concentrations in synovial fluid are higher in osteoarthritis patients with HFE gene mutations (C282Y or H63D). Scand J Rheumatol. 2010;39:413–20.PubMedCrossRefGoogle Scholar
  65. 65.
    Niederau C, Fischer R, Pürschel A, et al. Long-term survival in patients with hereditary hemochromatosis. Gastroenterology. 1996;110:1107–19.PubMedCrossRefGoogle Scholar
  66. 66.
    Richette P, Eymard C, Deberg M, et al. Increase in type II collagen turnover after iron depletion in patients with hereditary haemochromatosis. Rheumatology (Oxford). 2010;49:760–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Announ N, Guerne PA. Treating difficult crystal pyrophosphate dihydrate deposition disease. Curr Rheumatol Rep. 2008;10:228–34.PubMedCrossRefGoogle Scholar
  68. 68.
    Martinon F, Pétrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237–41.PubMedCrossRefGoogle Scholar
  69. 69.
    McGonagle D, Tan AL, Madden J, et al. Successful treatment of resistant pseudogout with anakinra. Arthritis Rheum. 2008;58:631–3.PubMedCrossRefGoogle Scholar
  70. 70.
    • Latourte A, Frazier A, Brière C, et al. Interleukin-1 receptor antagonist in refractory haemochromatosis-related arthritis of the hands. Ann Rheum Dis. 2013;72:783–4. First description of a potential new treatment option for treatment of severe hemochromatosis arthropathy. PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Emma Husar-Memmer
    • 1
  • Andreas Stadlmayr
    • 2
  • Christian Datz
    • 2
  • Jochen Zwerina
    • 1
  1. 1.Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical DepartmentHanusch HospitalViennaAustria
  2. 2.Department of Internal MedicineHospital OberndorfOberndorfAustria

Personalised recommendations