Clinical and Translational Potential of MRI Evaluation in Knee Osteoarthritis

Part of the following topical collections:
  1. Topical Collection on Imaging


Magnetic resonance imaging (MRI) has become an increasingly important imaging technique in osteoarthritis (OA) research, and is widely used in the ongoing endeavor to understand the pathogenesis of OA and to develop structure and disease-modifying OA drugs. MRI offers semiquantitative, quantitative and compositional evaluation of knee OA, and enables visualization of tissues that are not seen by radiography, including but not limited to cartilage, meniscus, bone marrow lesions, synovitis, and muscles. It is now recognized that contrast-enhanced MRI enables more accurate evaluation of synovitis than MRI without contrast. Because of its ability to visualize multiple pain-related tissue pathology in three dimensions, MRI is the best modality for imaging of OA.


Osteoarthritis Magnetic resonance imaging MRI MRI evaluation Radiography Cartilage Bone marrow lesion Synovitis Meniscus Meniscal root Semiquantitative Quantitative Knee 


Compliance with Ethics Guidelines

Conflict of Interest

Ali Guermazi has served as a consultant for Sanofi Aventis, Merck Serono, and TissueGene and has held stock/stock options in Boston Imaging Core Lab, LLC. C. Kent Kwoh has served on an advisory board for Pfizer, has received grant support from Abbvie, has received payment for development of educational presentations (including service on speakers bureaus) from Dinora and Creative Educational Concepts, and has served on a data safety and monitoring board for Novartis. Daichi Hayashi declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. With regard to the authors’ research cited in this paper, all procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Guermazi A, Roemer FW, Felson DT. Inadequacy of radiographs: one cause for failure of clinical trials to identify a disease modifying drug for osteoarthritis. Arthritis Rheum. 2013. doi: 10.1002/art.38086.Google Scholar
  2. 2.
    Guermazi A, Niu J, Hayashi D, et al. Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis: population based observational study (Framingham Osteoarthritis Study). BMJ. 2012;345:e5339.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Eckstein F, Wirth W, Nevitt MC. Recent advances in osteoarthritis imaging—the Osteoarthritis Initiative. Nat Rev Rheumatol. 2012;8:622–30.PubMedCrossRefGoogle Scholar
  4. 4.
    Guermazi A, Roemer FW, Haugen IK, et al. MRI-based semiquantitative scoring of joint pathology in osteoarthritis. Nat Rev Rheumatol. 2013;9:236–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Crema MD, Roemer FW, Guermazi A. Magnetic resonance imaging in knee osteoarthritis research: semiquantitative and compositional assessment. Magn Reson Imaging Clin N Am. 2011;19:295–321.PubMedCrossRefGoogle Scholar
  6. 6.
    Roemer FW, Kwoh CK, Hannon MJ, et al. Semiquantitative assessment of focal cartilage damage at 3T MRI: a comparative study of dual echo at steady state (DESS) and intermediate-weighted (IW) fat suppressed fast spin echo sequences. Eur J Radiol. 2011;80:e126–31.PubMedCrossRefGoogle Scholar
  7. 7.
    Hayashi D, Guermazi A, Kwoh CK, et al. Semiquantitative assessment of subchondral bone marrow edema-like lesions and subchondral cysts of the knee at 3T MRI: a comparison between intermediate-weighted fat-suppressed spin echo and dual echo steady state sequences. BMC Musculoskelet Disord. 2011;12:198.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    • Roemer FW, Nevitt MC, Felson DT, et al. Predictive validity of within-grade scoring of longitudinal changes of MRI-based cartilage morphology and bone marrow lesion assessment in the tibio-femoral joint—the MOST study. Osteoarthritis Cartilage. 2012;20:1391–8. Describes the validity of within-grade scoring, which is currently standard practice in semiquantitative scoring of knee osteoarthritis features in research studies.PubMedCrossRefGoogle Scholar
  9. 9.
    Hunter DJ, Guermazi A, Lo GH, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI osteoarthritis knee score). Osteoarthritis Cartilage. 2011;19:990–1002.PubMedCrossRefGoogle Scholar
  10. 10.
    Laberge MA, Baum T, Virayavanich W, et al. Obesity increases the prevalence and severity of focal knee abnormalities diagnosed using 3T MRI in middle aged subjects—data from the Osteoarthritis Initiative. Skeletal Radiol. 2012;41:633–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Crema MD, Felson DT, Roemer FW, et al. Prevalent cartilage damage and cartilage loss over time are associated with incident bone marrow lesions in the tibiofemoral compartments: the MOST study. Osteoarthritis Cartilage. 2013;21:306–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Roemer FW, Felson DT, Wang K, et al. Co-localisation of non-cartilaginous articular pathology increases risk of cartilage loss in the tibiofemoral joint – the MOST study. Ann Rheum Dis. 2013;72:942–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Carnes J, Stannus O, Cicuttini F, et al. Knee cartilage defects in a sample of older adults: natural history, clinical significance and factors influencing change over 2.9 years. Osteoarthritis Cartilage. 2012;20:1541–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Virayavanich W, Alizai H, Baum T, et al. Association of frequent knee bending activity with focal knee lesions detected with 3T MRI—data from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken). 2013. doi: 10.1002/acr.22017.Google Scholar
  15. 15.
    Bennell KL, Bowles KA, Wang Y, et al. Higher dynamic medial knee load predicts greater cartilage loss over 12 months in medial knee osteoarthritis. Ann Rheum Dis. 2011;70:1770–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Eckstein F, Cotofana S, Wirth W, et al. Greater rates of cartilage loss in painful knees than in pain-free knees after adjustment for radiographic disease stage: data from the Osteoarthritis Initiative. Arthritis Rheum. 2011;63:2257–67.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Eckstein F, Nevitt M, Gimona A, et al. Rates of change and sensitivity to change in cartilage morphology in healthy knees and in knees with mild, moderate, and end-stage radiographic osteoarthritis: results from 831 participants from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken). 2011;63:311–9.Google Scholar
  18. 18.
    Eckstein F, Kwoh CK, Boudreau RM, et al. Quantitative MRI measures of cartilage predict knee replacement: a case–control study from the Osteoarthritis Initiative. Ann Rheum Dis. 2013;72(5):707–14.Google Scholar
  19. 19.
    Schneider E, Nevitt M, McCulloch C, et al. Equivalence and precision of knee cartilage morphometry between different segmentation teams, cartilage regions, and MR acquisitions. Osteoarthritis Cartilage. 2012;20:869–79.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Eckstein F, McCulloch CE, Lynch JA, et al. How do short-term rates of femorotibial cartilage change compare to long-term changes? four year follow-up data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2012;20:1250–7.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    McAlindon T, LaValley M, Schneider E, et al. Effect of vitamin D supplementation on progression of knee pain and cartilage volume loss in patients with symptomatic osteoarthritis: a randomized controlled trial. JAMA. 2013;309:155–62.PubMedCrossRefGoogle Scholar
  22. 22.
    Cao Y, Stannus OP, Aitken D, et al. Cross-sectional and longitudinal associations between systemic, subchondral bone mineral density and knee cartilage thickness in older adults with or without radiographic osteoarthritis. Ann Rheum Dis. 2013. doi: 10.1136/annrheumdis-2013-203691.Google Scholar
  23. 23.
    Widmyer MR, Utturkar GM, Leddy HA, et al. High body mass index is associated with increased diurnal strains in the articular cartilage of the knee. Arthritis Rheum. 2013. doi: 10.1002/art.38062.PubMedGoogle Scholar
  24. 24.
    McAlindon TE, Nuite M, Krishnan N, et al. Change in knee osteoarthritis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment with collagen hydrolysate: a pilot randomized controlled trial. Osteoarthritis Cartilage. 2011;19:399–405.PubMedCrossRefGoogle Scholar
  25. 25.
    Souza RB, Stehling C, Wyman BT, et al. The effects of acute loading on T1rho and T2 relaxation times of tibiofemoral articular cartilage. Osteoarthritis Cartilage. 2010;18:1557–63.PubMedCrossRefGoogle Scholar
  26. 26.
    Hovis KK, Stehling C, Souza RB, et al. Physical activity is associated with magnetic resonance imaging-based knee cartilage T2 measurements in asymptomatic subjects with and those without osteoarthritis risk factors. Arthritis Rheum. 2011;63:2248–56.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Lin W, Alizai H, Joseph GB, et al. Physical activity in relation to knee cartilage T2 progression measured with 3 T MRI over a period of 4 years: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2013. doi: 10.1016/j.joca.2013.06.022.Google Scholar
  28. 28.
    Anandacoomarasamy A, Leibman S, Smith G, et al. Weight loss in obese people has structure-modifying effects on medial but not on lateral knee articular cartilage. Ann Rheum Dis. 2012;71:26–32.PubMedCrossRefGoogle Scholar
  29. 29.
    Raya JG, Horng A, Dietrich O, et al. Articular cartilage: in vivo diffusion-tensor imaging. Radiology. 2012;262:550–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Madelin G, Babb JS, Xia D, et al. Reproducibility and repeatability of quantitative sodium magnetic resonance imaging in vivo in articular cartilage at 3 T and 7 T. Magn Reson Med. 2012;68:841–9.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Newbould RD, Miller SR, Toms LD, et al. T2* measurement of the knee articular cartilage in osteoarthritis at 3T. J Magn Reson Imaging. 2012;35:1422–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Englund M, Roemer FW, Hayashi D, et al. Meniscus pathology, osteoarthritis and the treatment controversy. Nat Rev Rheumatol. 2012;8:412–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Englund M, Felson DT, Guermazi A, et al. Risk factors for medial meniscal pathology on knee MRI in older US adults: a multicentre prospective cohort study. Ann Rheum Dis. 2011;70:1733–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Kim HA, Kim I, Song YW, et al. The association between meniscal and cruciate ligament damage and knee pain in community residents. Osteoarthritis Cartilage. 2011;19:1422–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Stehling C, Souza RB, Hellio Le Graverand MP, et al. Loading of the knee during 3.0T MRI is associated with significantly increased medial meniscus extrusion in mild and moderate osteoarthritis. Eur J Radiol. 2012;81:1839–45.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Wang Y, Dempsey AR, Lloyd DG, et al. Patellofemoral and tibiofemoral articular cartilage and subchondral bone health following arthroscopic partial medial meniscectomy. Knee Surg Sports Traumatol Arthrosc. 2012;20:970–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Crema MD, Roemer FW, Felson DT, et al. Factors associated with meniscal extrusion in knees with or at risk for osteoarthritis: the Multicenter Osteoarthritis Study. Radiology. 2012;264:494–503.PubMedCrossRefGoogle Scholar
  38. 38.
    Raynauld JP, Martel-Pelletier J, Haraoui B, et al. Risk factors predictive of joint replacement in a 2-year multicentre clinical trial in knee osteoarthritis using MRI: results from over 6 years of observation. Ann Rheum Dis. 2011;70:1382–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Badlani JT, Borrero C, Golla S, et al. The effects of meniscus injury on the development of knee osteoarthritis: data from the Osteoarthritis Initiative. Am J Sports Med. 2013;41:1238–44.PubMedCrossRefGoogle Scholar
  40. 40.
    Katz JN, Brophy RH, Chaisson CE, et al. Surgery versus physical therapy for a meniscal tear and osteoarthritis. N Engl J Med. 2013;368:1675–84.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    • Guermazi A, Hayashi D, Jarraya M, et al. Medial posterior meniscal root tears are associated with development or worsening of medial tibiofemoral cartilage damage: The Multicenter Osteoarthritis Study. Radiology. 2013. Describes meniscal root tear as an important feature of knee osteoarthritis.Google Scholar
  42. 42.
    Wenger A, Englund M, Wirth W, et al. Relationship of 3D meniscal morphology and position with knee pain in subjects with knee osteoarthritis: a pilot study. Eur Radiol. 2012;22:211–20.PubMedCrossRefGoogle Scholar
  43. 43.
    Wenger A, Wirth W, Hudelmaier M, et al. Meniscus body position, size, and shape in persons with and persons without radiographic knee osteoarthritis: quantitative analyses of knee magnetic resonance images from the Osteoarthritis Initiative. Arthritis Rheum. 2013;65:1804–11.PubMedCrossRefGoogle Scholar
  44. 44.
    Li W, Edelman RR, Prasad PV. Delayed contrast enhanced MRI of meniscus with ionic and non-ionic agents. J Magn Reson Imaging. 2011;33:731–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang L, Chang G, Xu J, et al. T1rho MRI of menisci and cartilage in patients with osteoarthritis at 3T. Eur J Radiol. 2012;81:2329–36.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Williams A, Qian Y, Golla S, et al. UTE-T2* mapping detects sub-clinical meniscus injury after anterior cruciate ligament tear. Osteoarthritis Cartilage. 2012;20:486–94.PubMedCrossRefGoogle Scholar
  47. 47.
    Baker K, Grainger A, Niu J, et al. Relation of synovitis to knee pain using contrast-enhanced MRIs. Ann Rheum Dis. 2010;69:1779–83.PubMedCrossRefGoogle Scholar
  48. 48.
    • Guermazi A, Roemer FW, Hayashi D, et al. Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: the MOST study. Ann Rheum Dis. 2011;70:805–11. Describes comprehensive semiquantitative scoring of synovitis in knee osteoarthritis using contrast-enhanced MRI.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang Y, Nevitt M, Niu J, et al. Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum. 2011;63:691–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Crema MD, Felson DT, Roemer FW, et al. Peripatellar synovitis: comparison between non-contrast-enhanced and contrast-enhanced MRI and association with pain. The MOST study. Osteoarthritis Cartilage. 2013;21:413–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Knoop J, Dekker J, Klein JP, et al. Biomechanical factors and physical examination findings in osteoarthritis of the knee: associations with tissue abnormalities assessed by conventional radiography and high resolution 3.0 Tesla magnetic resonance imaging. Arthritis Res Ther. 2012;14:R212.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    •• Loeuille D, Sauliere N, Champigneulle J, et al. Comparing non-enhanced and enhanced sequences in the assessment of effusion and synovitis in knee OA: associations with clinical, macroscopic and microscopic features. Osteoarthritis Cartilage. 2011;19:1433–9. Important study revealing scientific evidence that contrast-enhanced MRI enables more accurate assessment of synovitis in knee osteoarthritis than non-enhanced MRI.PubMedCrossRefGoogle Scholar
  53. 53.
    Krasnokutsky S, Belitskaya-Lévy I, Bencardino J, et al. Quantitative magnetic resonance imaging evidence of synovial proliferation is associated with radiographic severity of knee osteoarthritis. Arthritis Rheum. 2011;63:2983–91.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Roemer FW, Felson DT, Yang T, et al. The association between meniscal damage of the posterior horns and localized posterior synovitis detected on T1-weighted contrast-enhanced MRI—the MOST study. Semin Arthritis Rheum. 2013;42:573–81.PubMedCrossRefGoogle Scholar
  55. 55.
    Baker KR, Matthan NR, Lichtenstein AH, et al. Association of plasma n-6 and n-3 polyunsaturated fatty acids with synovitis in the knee: the MOST study. Osteoarthritis Cartilage. 2012;20:382–7.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Peterfy CG, Guermazi A, Zaim S, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage. 2004;12:177–90.PubMedCrossRefGoogle Scholar
  57. 57.
    Kornaat PR, Ceulemans RY, Kroon HM, et al. MRI assessment of knee osteoarthritis: knee osteoarthritis scoring system (KOSS)—inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol. 2005;34:95–102.PubMedCrossRefGoogle Scholar
  58. 58.
    Hunter DJ, Lo GH, Gale D, et al. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds osteoarthritis knee score). Ann Rheum Dis. 2008;67:206–11.PubMedCrossRefGoogle Scholar
  59. 59.
    Xu L, Hayashi D, Roemer FW, et al. Magnetic resonance imaging of subchondral bone marrow lesions in association with osteoarthritis. Semin Arthritis Rheum. 2012;42:105–18.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Kwoh CK. Clinical relevance of bone marrow lesions in OA. Nat Rev Rheumatol. 2013;9:7–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Kazakia GJ, Kuo D, Schooler J, et al. Bone and cartilage demonstrate changes localized to bone marrow edema-like lesions within osteoarthritic knees. Osteoarthritis Cartilage. 2013;21:94–101.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Ip S, Sayre EC, Guermazi A, et al. Frequency of bone marrow lesions and association with pain severity: results from a population-based symptomatic knee cohort. J Rheumatol. 2011;38:1079–85.PubMedCrossRefGoogle Scholar
  63. 63.
    Hayashi D, Englund M, Roemer FW, et al. Knee malalignment is associated with an increased risk for incident and enlarging bone marrow lesions in the more loaded compartments: the MOST study. Osteoarthritis Cartilage. 2012;20:1227–33.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Stein V, Li L, Lo G, et al. Pattern of joint damage in persons with knee osteoarthritis and concomitant ACL tears. Rheumatol Int. 2012;32:1197–208.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Dore D, de Hoog J, Giles G, et al. A longitudinal study of the association between dietary factors, serum lipids, and bone marrow lesions of the knee. Arthritis Res Ther. 2012;14:R13.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Laslett LL, Doré DA, Quinn SJ, et al. Zoledronic acid reduces knee pain and bone marrow lesions over 1 year: a randomised controlled trial. Ann Rheum Dis. 2012;71:1322–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Pang J, Driban JB, Destenaves G, et al. Quantification of bone marrow lesion volume and volume change using semi-automated segmentation: data from the Osteoarthritis Initiative. BMC Musculoskelet Disord. 2013;14:3.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Ratzlaff C, Guermazi A, Collins J, et al. A rapid, novel method of volumetric assessment of MRI-detected subchondral bone marrow lesions in knee osteoarthritis. Osteoarthritis Cartilage. 2013;21:806–14.PubMedCrossRefGoogle Scholar
  69. 69.
    Sattler M, Dannhauer T, Hudelmaier M, et al. Side differences of thigh muscle cross-sectional areas and maximal isometric muscle force in bilateral knees with the same radiographic disease stage, but unilateral frequent pain—data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2012;20:532–40.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Ruhdorfer A, Dannhauer T, Wirth W, et al. Thigh muscle cross-sectional areas and strength in advanced versus early painful osteoarthritis: an exploratory between-knee, within-person comparison in Osteoarthritis Initiative participants. Arthritis Care Res (Hoboken). 2013;65:1034–42.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Quantitative Imaging Center, Department of RadiologyBoston University School of MedicineBostonUSA
  2. 2.Department of Radiology, Bridgeport HospitalYale University School of MedicineBridgeportUSA
  3. 3.Division of RheumatologyUniversity of Arizona Arthritis CenterTucsonUSA

Personalised recommendations