Advertisement

Current Rheumatology Reports

, 15:372 | Cite as

Epigenetics in Rheumatoid Arthritis: A Primer for Rheumatologists

  • Nunzio Bottini
  • Gary S. Firestein
RHEUMATOID ARTHRITIS (LW MORELAND, SECTION EDITOR)
Part of the following topical collections:
  1. Topical Collection on Rheumatoid Arthritis

Abstract

Epigenetic anomalies are emerging as key pathogenic features of rheumatoid arthritis (RA). The effect of epigenetics in RA ranges from contributing to complex disease mechanisms to identifying biomarkers for early diagnosis and response to therapy. This review focuses on three key epigenetic areas in RA, namely DNA methylation, histone modification, and expression and/or function of microRNAs. Epigenomics studies of DNA methylation have identified alterations of genome-wide DNA methylation in cells from patients with rheumatoid arthritis. Histone modification studies have focused on histone acetylation, which tends to be increased in RA. Preclinical studies show that inhibitors of histone deacetylases are effective in cellular and animal models of RA. Genome-wide and candidate microRNA surveys identified increased or reduced expression of selected microRNAs in rheumatoid arthritis. These microRNA are either pro or anti-inflammatory in multiple cell types or affect osteoclast physiology and the pathogenesis of bone erosion. Defining epigenetic contributions to the pathogenesis of RA, especially in combination with understanding genetic associations, could lead to novel therapy and a clearer understanding of disease risk.

Keywords

Rheumatoid arthritis DNA methylation Histone acetylation microRNA Epigenetics Histone modification 

Notes

Acknowledgments

Funding was provided, in part, by the Rheumatology Research Foundation Disease Targeted Innovative Research Award. This is manuscript #1647 from the La Jolla Institute for Allergy and Immunology.

Compliance with Ethics Guidelines

Conflict of Interest

Gary S. Firestein has held stock/stock options in Ignyta Inc. Nunzio Bottini declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance • Of importance

  1. 1.
    Plenge RM. Rheumatoid arthritis genetics: 2009 update. Curr Rheumatol Rep. 2009;11:351–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Klareskog L, Gregersen PK, Huizinga TW. Prevention of autoimmune rheumatic disease: state of the art and future perspectives. Ann Rheum Dis. 2010;69:2062–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Bottini N, Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol. 2013;9:24–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Grabiec AM, Reedquist KA. The ascent of acetylation in the epigenetics of rheumatoid arthritis. Nat Rev Rheumatol. 2013;9:311–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Bergman Y, Cedar H. DNA methylation dynamics in health and disease. Nat Struct Mol Biol. 2013;20:274–81.PubMedCrossRefGoogle Scholar
  6. 6.
    Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 1990;33:1665–73.PubMedCrossRefGoogle Scholar
  7. 7.
    Corvetta A, Della Bitta R, Luchetti MM, Pomponio G. 5-Methylcytosine content of DNA in blood, synovial mononuclear cells and synovial tissue from patients affected by autoimmune rheumatic diseases. J Chromatogr. 1991;566:481–91.PubMedGoogle Scholar
  8. 8.
    Kim YI, Logan JW, Mason JB, Roubenoff R. DNA hypomethylation in inflammatory arthritis: reversal with methotrexate. J Lab Clin Med. 1996;128:165–72.PubMedCrossRefGoogle Scholar
  9. 9.
    Liu CC, Fang TJ, Ou TT, Wu CC, Li RN, Lin YC, et al. Global DNA methylation, DNMT1, and MBD2 in patients with rheumatoid arthritis. Immunol Lett. 2011;135:96–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Nile CJ, Read RC, Akil M, Duff GW, Wilson AG. Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum. 2008;58:2686–93.PubMedCrossRefGoogle Scholar
  11. 11.
    Ishida K, Kobayashi T, Ito S, Komatsu Y, Yokoyama T, Okada M, et al. Interleukin-6 gene promoter methylation in rheumatoid arthritis and chronic periodontitis. J Periodontol. 2012;83:917–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Liao J, Liang G, Xie S, Zhao H, Zuo X, Li F, et al. CD40L demethylation in CD4(+) T cells from women with rheumatoid arthritis. Clin Immunol. 2012;145:13–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, Rodriguez-Ubreva J, et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 2010;20:170–9.PubMedCrossRefGoogle Scholar
  14. 14.
    •• Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol. 2013;31:142–7. The first integrated genome wide analysis of DNA methylation and single-nucleotide polymorphisms (SNPs). It identifies alterations of DNA methylation as responsible for the associations between SNPs in the MHC region and rheumatoid arthritis.PubMedCrossRefGoogle Scholar
  15. 15.
    Neidhart M, Rethage J, Kuchen S, Kunzler P, Crowl RM, Billingham ME, et al. Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: association with genomic DNA hypomethylation and influence on gene expression. Arthritis Rheum. 2000;43:2634–47.PubMedCrossRefGoogle Scholar
  16. 16.
    Kuchen S, Seemayer CA, Rethage J, von Knoch R, Kuenzler P, Beat AM, et al. The L1 retroelement-related p40 protein induces p38delta MAP kinase. Autoimmunity. 2004;37:57–65.PubMedCrossRefGoogle Scholar
  17. 17.
    Karouzakis E, Gay RE, Michel BA, Gay S, Neidhart M. DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 2009;60:3613–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Nakano K, Boyle DL, Firestein GS. Regulation of DNA methylation in rheumatoid arthritis synoviocytes. J Immunol. 2013;190:1297–303.PubMedCrossRefGoogle Scholar
  19. 19.
    Karouzakis E, Rengel Y, Jungel A, Kolling C, Gay RE, Michel BA, et al. DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts. Genes Immunol. 2011;12:643–52.CrossRefGoogle Scholar
  20. 20.
    Takami N, Osawa K, Miura Y, Komai K, Taniguchi M, Shiraishi M, et al. Hypermethylated promoter region of DR3, the death receptor 3 gene, in rheumatoid arthritis synovial cells. Arthritis Rheum. 2006;54:779–87.PubMedCrossRefGoogle Scholar
  21. 21.
    Sen M, Lauterbach K, El-Gabalawy H, Firestein GS, Corr M, Carson DA. Expression and function of wingless and frizzled homologs in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2000;97:2791–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Miao CG, Huang C, Huang Y, Yang YY, He X, Zhang L, et al. MeCP2 modulates the canonical Wnt pathway activation by targeting SFRP4 in rheumatoid arthritis fibroblast-like synoviocytes in rats. Cell Signal. 2013;25:598–608.PubMedCrossRefGoogle Scholar
  23. 23.
    •• Nakano K, Whitaker JW, Boyle DL, Wang W, Firestein GS. DNA methylome signature in rheumatoid arthritis. Ann Rheum Dis. 2013;72:110–7. The first genome-wide DNA methylation analysis in RA FLS. It identifies signature alterations of DNA methylome in RA FLS in key pathways.PubMedCrossRefGoogle Scholar
  24. 24.
    Whitaker JW, Shoemaker R, Boyle DL, Hillman J, Anderson D, Wang W, et al. An imprinted rheumatoid arthritis methylome signature reflects pathogenic phenotype. Genome Med. 2013;5:40.PubMedCrossRefGoogle Scholar
  25. 25.
    de la Rica L, Urquiza JM, Gomez-Cabrero D, Islam AB, Lopez-Bigas N, Tegner J, et al. Identification of novel markers in rheumatoid arthritis through integrated analysis of DNA methylation and microRNA expression. J Autoimmun. 2013;41:6–16.PubMedCrossRefGoogle Scholar
  26. 26.
    • Karouzakis E, Gay RE, Gay S, Neidhart M. Increased recycling of polyamines is associated with global DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 2012;64:1809–17. One of the few models explaining what causes alterations of DNA methylation in RA FLS.PubMedCrossRefGoogle Scholar
  27. 27.
    Kloster MM, Naderi EH, Haaland I, Gjertsen BT, Blomhoff HK, Naderi S. cAMP signalling inhibits p53 acetylation and apoptosis via HDAC and SIRT deacetylases. Int J Oncol. 2013;42:1815–21.PubMedGoogle Scholar
  28. 28.
    Xiao Y, Li B, Zhou Z, Hancock WW, Zhang H, Greene MI. Histone acetyltransferase mediated regulation of FOXP3 acetylation and Treg function. Curr Opin Immunol. 2010;22:583–91.PubMedCrossRefGoogle Scholar
  29. 29.
    Hancock WW, Akimova T, Beier UH, Liu Y, Wang L. HDAC inhibitor therapy in autoimmunity and transplantation. Ann Rheum Dis. 2012;71 Suppl 2:i46–54.PubMedCrossRefGoogle Scholar
  30. 30.
    Grabiec AM, Krausz S, de Jager W, Burakowski T, Groot D, Sanders ME, et al. Histone deacetylase inhibitors suppress inflammatory activation of rheumatoid arthritis patient synovial macrophages and tissue. J Immunol. 2010;184:2718–28.PubMedCrossRefGoogle Scholar
  31. 31.
    • Grabiec AM, Korchynskyi O, Tak PP, Reedquist KA. Histone deacetylase inhibitors suppress rheumatoid arthritis fibroblast-like synoviocyte and macrophage IL-6 production by accelerating mRNA decay. Ann Rheum Dis. 2012;71:424–31. Demonstrates the effect of HDACi on key target cytokine for therapy of RA.PubMedCrossRefGoogle Scholar
  32. 32.
    Gillespie J, Savic S, Wong C, Hempshall A, Inman M, Emery P, et al. Histone deacetylases are dysregulated in rheumatoid arthritis and a novel histone deacetylase 3-selective inhibitor reduces interleukin-6 production by peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Rheum. 2012;64:418–22.PubMedCrossRefGoogle Scholar
  33. 33.
    Niederer F, Ospelt C, Brentano F, Hottiger MO, Gay RE, Gay S, et al. SIRT1 overexpression in the rheumatoid arthritis synovium contributes to proinflammatory cytokine production and apoptosis resistance. Ann Rheum Dis. 2011;70:1866–73.PubMedCrossRefGoogle Scholar
  34. 34.
    Saouaf SJ, Li B, Zhang G, Shen Y, Furuuchi N, Hancock WW, et al. Deacetylase inhibition increases regulatory T cell function and decreases incidence and severity of collagen-induced arthritis. Exp Mol Pathol. 2009;87:99–104.PubMedCrossRefGoogle Scholar
  35. 35.
    Huber LC, Brock M, Hemmatazad H, Giger OT, Moritz F, Trenkmann M, et al. Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. Arthritis Rheum. 2007;56:1087–93.PubMedCrossRefGoogle Scholar
  36. 36.
    Maciejewska-Rodrigues H, Karouzakis E, Strietholt S, Hemmatazad H, Neidhart M, Ospelt C, et al. Epigenetics and rheumatoid arthritis: the role of SENP1 in the regulation of MMP-1 expression. J Autoimmun. 2010;35:15–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Horiuchi M, Morinobu A, Chin T, Sakai Y, Kurosaka M, Kumagai S. Expression and function of histone deacetylases in rheumatoid arthritis synovial fibroblasts. J Rheumatol. 2009;36:1580–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Kawabata T, Nishida K, Takasugi K, Ogawa H, Sada K, Kadota Y, et al. Increased activity and expression of histone deacetylase 1 in relation to tumor necrosis factor-alpha in synovial tissue of rheumatoid arthritis. Arthritis Res Ther. 2010;12:R133.PubMedCrossRefGoogle Scholar
  39. 39.
    Hawtree S, Muthana M, Wilson AG. The role of histone deacetylases in rheumatoid arthritis fibroblast-like synoviocytes. Biochem Soc Trans. 2013;41:783–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Trenkmann M, Brock M, Gay RE, Kolling C, Speich R, Michel BA, et al. Expression and function of EZH2 in synovial fibroblasts: epigenetic repression of the Wnt inhibitor SFRP1 in rheumatoid arthritis. Ann Rheum Dis. 2011;70:1482–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Nakamura C, Matsushita I, Kosaka E, Kondo T, Kimura T. Anti-arthritic effects of combined treatment with histone deacetylase inhibitor and low-intensity ultrasound in the presence of microbubbles in human rheumatoid synovial cells. Rheumatology (Oxford). 2008;47:418–24.CrossRefGoogle Scholar
  42. 42.
    Choo QY, Ho PC, Tanaka Y, Lin HS. Histone deacetylase inhibitors MS-275 and SAHA induced growth arrest and suppressed lipopolysaccharide-stimulated NF-kappaB p65 nuclear accumulation in human rheumatoid arthritis synovial fibroblastic E11 cells. Rheumatology (Oxford). 2010;49:1447–60.CrossRefGoogle Scholar
  43. 43.
    Chung YL, Lee MY, Wang AJ, Yao LF. A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol Ther. 2003;8:707–17.PubMedCrossRefGoogle Scholar
  44. 44.
    Lin HS, Hu CY, Chan HY, Liew YY, Huang HP, Lepescheux L, et al. Anti-rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen-induced arthritis in rodents. Br J Pharmacol. 2007;150:862–72.PubMedCrossRefGoogle Scholar
  45. 45.
    • Joosten LA, Leoni F, Meghji S, Mascagni P. Inhibition of HDAC activity by ITF2357 ameliorates joint inflammation and prevents cartilage and bone destruction in experimental arthritis. Mol Med. 2011;17:391–6. Preclinical validation of HDACi in models of RA.PubMedCrossRefGoogle Scholar
  46. 46.
    • Vojinovic J, Damjanov N, D’Urzo C, Furlan A, Susic G, Pasic S, et al. Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 2011;63:1452–8. The only published clinical trial of HDACi for human arthritis.PubMedCrossRefGoogle Scholar
  47. 47.
    Nakamachi Y, Kawano S, Takenokuchi M, Nishimura K, Sakai Y, Chin T, et al. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum. 2009;60:1294–304.PubMedCrossRefGoogle Scholar
  48. 48.
    Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther. 2008;10:R101.PubMedCrossRefGoogle Scholar
  49. 49.
    Wittmann J, Jack HM. microRNAs in rheumatoid arthritis: midget RNAs with a giant impact. Ann Rheum Dis. 2011;70 Suppl 1:i92–96.PubMedCrossRefGoogle Scholar
  50. 50.
    Duroux-Richard I, Jorgensen C, Apparailly F. What do microRNAs mean for rheumatoid arthritis? Arthritis Rheum. 2012;64:11–20.PubMedCrossRefGoogle Scholar
  51. 51.
    Baxter D, McInnes IB, Kurowska-Stolarska M. Novel regulatory mechanisms in inflammatory arthritis: a role for microRNA. Immunol Cell Biol. 2012;90:288–92.PubMedCrossRefGoogle Scholar
  52. 52.
    O’Connell RM, Kahn D, Gibson WS, Round JL, Scholz RL, Chaudhuri AA, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity. 2010;33:607–19.PubMedCrossRefGoogle Scholar
  53. 53.
    Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A. 2006;103:7024–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Niimoto T, Nakasa T, Ishikawa M, Okuhara A, Izumi B, Deie M, et al. MicroRNA-146a expresses in interleukin-17 producing T cells in rheumatoid arthritis patients. BMC Musculoskelet Disord. 2010;11:209.PubMedCrossRefGoogle Scholar
  55. 55.
    Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 2008;58:1001–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Pandis I, Ospelt C, Karagianni N, Denis MC, Reczko M, Camps C, et al. Identification of microRNA-221/222 and microRNA-323-3p association with rheumatoid arthritis via predictions using the human tumour necrosis factor transgenic mouse model. Ann Rheum Dis. 2012;71:1716–23.PubMedCrossRefGoogle Scholar
  57. 57.
    •• Kurowska-Stolarska M, Alivernini S, Ballantine LE, Asquith DL, Millar NL, Gilchrist DS, et al. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci U S A. 2011;108:11193–8. Preclinical validation of mIR155 as a target for RA and determination of the mechanism of action of mIR155 in the CIA model supporting a role in innate immunity.PubMedCrossRefGoogle Scholar
  58. 58.
    •• Bluml S, Bonelli M, Niederreiter B, Puchner A, Mayr G, Hayer S, et al. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum. 2011;63:1281–8. Preclinical validation of mIR155 as a target for RA and determination of the mechanism of action of mIR155 in the CIA model supporting a role in adaptive immunity and osteoclasts.PubMedCrossRefGoogle Scholar
  59. 59.
    Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103:12481–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 2008;58:1284–92.PubMedCrossRefGoogle Scholar
  61. 61.
    Nakasa T, Shibuya H, Nagata Y, Niimoto T, Ochi M. The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum. 2011;63:1582–90.PubMedCrossRefGoogle Scholar
  62. 62.
    Li J, Wan Y, Guo Q, Zou L, Zhang J, Fang Y, et al. Altered microRNA expression profile with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis. Arthritis Res Ther. 2010;12:R81.PubMedCrossRefGoogle Scholar
  63. 63.
    Jimenez-Morales S, Gamboa-Becerra R, Baca V, Del Rio-Navarro BE, Lopez-Ley DY, Velazquez-Cruz R, et al. MiR-146a polymorphism is associated with asthma but not with systemic lupus erythematosus and juvenile rheumatoid arthritis in Mexican patients. Tissue Antigens. 2012;80:317–21.PubMedCrossRefGoogle Scholar
  64. 64.
    Yang B, Chen J, Li Y, Zhang J, Li D, Huang Z, et al. Association of polymorphisms in pre-miRNA with inflammatory biomarkers in rheumatoid arthritis in the Chinese Han population. Hum Immunol. 2012;73:101–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Chatzikyriakidou A, Voulgari PV, Georgiou I, Drosos AA. A polymorphism in the 3′-UTR of interleukin-1 receptor-associated kinase (IRAK1), a target gene of miR-146a, is associated with rheumatoid arthritis susceptibility. Joint, bone, spine : Revue du Rhumatisme. 2010;77:411–3.CrossRefGoogle Scholar
  66. 66.
    • Philippe L, Alsaleh G, Suffert G, Meyer A, Georgel P, Sibilia J, et al. TLR2 expression is regulated by microRNA miR-19 in rheumatoid fibroblast-like synoviocytes. J Immunol. 2012;188:454–61. Basal expression of mIR19 prevents innate responses in RA FLS.PubMedCrossRefGoogle Scholar
  67. 67.
    • Gantier MP, Stunden HJ, McCoy CE, Behlke MA, Wang D, Kaparakis-Liaskos M, et al. A miR-19 regulon that controls NF-kappaB signaling. Nucleic Acids Res. 2012;40:8048–58. mIR19 is part of a positive feedback loop that promotes NFkB signaling in RA FLS.PubMedCrossRefGoogle Scholar
  68. 68.
    Trenkmann M, Brock M, Gay RE, Michel BA, Gay S, Huber LC. Tumor necrosis factor alpha-induced microRNA-18a activates rheumatoid arthritis synovial fibroblasts through a feedback loop in NF-kappaB signaling. Arthritis Rheum. 2013;65:916–27.PubMedCrossRefGoogle Scholar
  69. 69.
    Fulci V, Scappucci G, Sebastiani GD, Giannitti C, Franceschini D, Meloni F, et al. miR-223 is overexpressed in T-lymphocytes of patients affected by rheumatoid arthritis. Hum Immunol. 2010;71:206–11.PubMedCrossRefGoogle Scholar
  70. 70.
    Li YT, Chen SY, Wang CR, Liu MF, Lin CC, Jou IM, et al. Brief report: amelioration of collagen-induced arthritis in mice by lentivirus-mediated silencing of microRNA-223. Arthritis Rheum. 2012;64:3240–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Murata K, Yoshitomi H, Tanida S, Ishikawa M, Nishitani K, Ito H, et al. Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 2010;12:R86.PubMedCrossRefGoogle Scholar
  72. 72.
    Stanczyk J, Ospelt C, Karouzakis E, Filer A, Raza K, Kolling C, et al. Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum. 2011;63:373–81.PubMedCrossRefGoogle Scholar
  73. 73.
    Niederer F, Trenkmann M, Ospelt C, Karouzakis E, Neidhart M, Stanczyk J, et al. Down-regulation of microRNA-34a* in rheumatoid arthritis synovial fibroblasts promotes apoptosis resistance. Arthritis Rheum. 2012;64:1771–9.PubMedCrossRefGoogle Scholar
  74. 74.
    • Zhu S, Pan W, Song X, Liu Y, Shao X, Tang Y, et al. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-alpha. Nat Med. 2012;18:1077–86. Identification of mIR23b as promoter IL-17 stimulated NFkB activation in RA and extensive characterization of its mechanism of action.PubMedCrossRefGoogle Scholar
  75. 75.
    Alsaleh G, Suffert G, Semaan N, Juncker T, Frenzel L, Gottenberg JE, et al. Bruton’s tyrosine kinase is involved in miR-346-related regulation of IL-18 release by lipopolysaccharide-activated rheumatoid fibroblast-like synoviocytes. J Immunol. 2009;182:5088–97.PubMedCrossRefGoogle Scholar
  76. 76.
    Semaan N, Frenzel L, Alsaleh G, Suffert G, Gottenberg JE, Sibilia J, et al. miR-346 controls release of TNF-alpha protein and stability of its mRNA in rheumatoid arthritis via tristetraprolin stabilization. PLoS One. 2011;6:e19827.PubMedCrossRefGoogle Scholar
  77. 77.
    Nagata Y, Nakasa T, Mochizuki Y, Ishikawa M, Miyaki S, Shibuya H, et al. Induction of apoptosis in the synovium of mice with autoantibody-mediated arthritis by the intraarticular injection of double-stranded MicroRNA-15a. Arthritis Rheum. 2009;60:2677–83.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.La Jolla Institute for Allergy and ImmunologyLa JollaUSA
  2. 2.Division of Rheumatology, Allergy and ImmunologyUniversity of California San Diego School of MedicineLa JollaUSA

Personalised recommendations