Current Rheumatology Reports

, 15:369 | Cite as

Genetics and Epigenetics of Systemic Lupus Erythematosus

Part of the following topical collections:
  1. Topical Collection on Systemic Lupus Erythematosus


Genetics unquestionably contributes to systemic lupus erythematosus (SLE) predisposition, progression and outcome. Nevertheless, single-gene defects causing lupus-like phenotypes have been infrequently documented. The majority of the identified genetic SLE risk factors are, therefore, common variants, responsible for a small effect on the global risk. Recently, genome wide association studies led to the identification of a growing number of gene variants associated with SLE susceptibility, particular disease phenotypes, and antibody profiles. Further studies addressed the biological effects of these variants. In addition, the role of epigenetics has recently been revealed. These combined efforts contributed to a better understanding of SLE pathogenesis and to the characterization of clinically relevant pathways. In this review, we describe SLE-associated single-gene defects, common variants, and epigenetic changes. We also discuss the limitations of current methods and the challenges that we still have to face in order to incorporate genomic and epigenomic data into clinical practice.


Lupus Systemic lupus erythematosus SLE Genetics Epigenetics Autoimmune diseases 


Compliance with Ethics Guidelines

Conflict of Interest

Kathleen E. Sullivan has received gifts from CSL Behring, has received grant support from Baxter, has received honoraria from Boston Children’s Hospital, and has received royalties from UpToDate.

Patrícia Costa-Reis declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Paper of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Deapen D, Escalante A, Weinrib L, Horwitz D, Bachman B, Roy-Burman P, et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum. 1992;35(3):311–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Cui Y, Sheng Y, Zhang X. Genetic susceptibility to SLE: recent progress from GWAS. J Autoimmun. 2013;41:25–33.PubMedCrossRefGoogle Scholar
  3. 3.
    Graham RR, Cotsapas C, Davies L, Hackett R, Lessard CJ, Leon JM, et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet. 2008;40(9):1059–61.PubMedCrossRefGoogle Scholar
  4. 4.
    Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S, et al. Association of systemic lupus erythematosus with C8orf13–BLK and ITGAM–ITGAX. N Engl J Med. 2008;358(9):900–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Harley JB, Alarcón-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Moser KL, et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet. 2008;40(2):204–10.PubMedCrossRefGoogle Scholar
  6. 6.
    Han J-W, Zheng H-F, Cui Y, Sun L-D, Ye D-Q, Hu Z, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet. 2009;41(11):1234–7.PubMedCrossRefGoogle Scholar
  7. 7.
    • Chung SA, Taylor KE, Graham RR, Nititham J, Lee AT, Ortmann WA, et al. Differential genetic associations for systemic lupus erythematosus based on Anti–dsDNA autoantibody production. de Bakker PIW, editor. Plos Genet. 2011;7(3):e1001323. Review of the recent contributions of GWAS to the understanding of SLE genetics.PubMedCrossRefGoogle Scholar
  8. 8.
    Truedsson L, Bengtsson AA, Sturfelt G. Complement deficiencies and systemic lupus erythematosus. Autoimmunity. 2007;40(8):560–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Sullivan KE. Complement deficiency and autoimmunity. Curr Opin Pediatr. 1998;10(6):600–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee YH, Witte T, Momot T, Schmidt RE, Kaufman KM, Harley JB, et al. The mannose-binding lectin gene polymorphisms and systemic lupus erythematosus: two case–control studies and a meta-analysis. Arthritis Rheum. 2005;52(12):3966–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Sullivan KE, Wooten C, Goldman D, Petri M. Mannose-binding protein genetic polymorphisms in black patients with systemic lupus erythematosus. Arthritis Rheum. 1996;39(12):2046–51.PubMedCrossRefGoogle Scholar
  12. 12.
    Øhlenschlaeger T, Garred P, Madsen HO, Jacobsen S. Mannose-binding lectin variant alleles and the risk of arterial thrombosis in systemic lupus erythematosus. N Engl J Med. 2004;351(3):260–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Manzi S, Urbach AH, McCune AB, Altman HA, Kaplan SS, Medsger Jr TA, et al. Systemic lupus erythematosus in a boy with chronic granulomatous disease: case report and review of the literature. Arthritis Rheum. 1991;34(1):101–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Cale CM, Morton L, Goldblatt D. Cutaneous and other lupus-like symptoms in carriers of X-linked chronic granulomatous disease: incidence and autoimmune serology. Clin Exp Immunol. 2007;148(1):79–84.PubMedCrossRefGoogle Scholar
  15. 15.
    Sanford AN, Suriano AR, Herche D, Dietzmann K, Sullivan KE. Abnormal apoptosis in chronic granulomatous disease and autoantibody production characteristic of lupus. Rheumatol Oxf Engl. 2006;45(2):178–81.CrossRefGoogle Scholar
  16. 16.
    De Ravin SS, Naumann N, Cowen EW, Friend J, Hilligoss D, Marquesen M, et al. Chronic granulomatous disease as a risk factor for autoimmune disease. J Allergy Clin Immunol. 2008;122(6):1097–103.PubMedCrossRefGoogle Scholar
  17. 17.
    Rieux-Laucat F, Le Deist F, Hivroz C, Roberts IA, Debatin KM, Fischer A, et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science. 1995;268(5215):1347–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest. 1996;98(5):1107–13.PubMedCrossRefGoogle Scholar
  19. 19.
    Ramaswamy M, Siegel RM. Autoimmunity: twenty years in the fas lane. J Immunol. 2012;189(11):5097–100.PubMedCrossRefGoogle Scholar
  20. 20.
    Butbul Aviel Y, Mandel H, Avitan Hersh E, Bergman R, Adiv O, Luder A, et al. Prolidase deficiency associated with systemic lupus erythematosus (SLE): single site experience and literature review. Pediatr Rheumatol. 2012;10(1):18.CrossRefGoogle Scholar
  21. 21.
    Lee-Kirsch MA, Gong M, Chowdhury D, Senenko L, Engel K, Lee Y-A, et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet. 2007;39(9):1065–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Namjou B, Kothari PH, Kelly JA, Glenn SB, Ojwang JO, Adler A, et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 2011;12(4):270–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Briggs TA, Rice GI, Daly S, Urquhart J, Gornall H, Bader-Meunier B, et al. Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet. 2011;43(2):127–31.PubMedCrossRefGoogle Scholar
  24. 24.
    Forton AC, Petri MA, Goldman D, Sullivan KE. An osteopontin (SPP1) polymorphism is associated with systemic lupus erythematosus. Hum Mutat. 2002;19(4):459.PubMedCrossRefGoogle Scholar
  25. 25.
    Ramos PS, Oates JC, Kamen DL, Williams AH, Gaffney PM, Kelly JA, et al. Variable Association of Reactive Intermediate Genes with Systemic Lupus Erythematosus in Populations with Different African Ancestry. J. Rheumatol. 2013.Google Scholar
  26. 26.
    Karassa FB, Trikalinos TA, Ioannidis JPA, FcgammaRIIa-SLE Meta-Analysis Investigators. Role of the Fcgamma receptor IIa polymorphism in susceptibility to systemic lupus erythematosus and lupus nephritis: a meta-analysis. Arthritis Rheum. 2002;46(6):1563–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Koene HR, Kleijer M, Swaak AJ, Sullivan KE, Bijl M, Petri MA, et al. The Fc gammaRIIIA-158F allele is a risk factor for systemic lupus erythematosus. Arthritis Rheum. 1998;41(10):1813–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Oh M, Petri MA, Kim NA, Sullivan KE. Frequency of the Fc gamma RIIIA-158F allele in African American patients with systemic lupus erythematosus. J Rheumatol. 1999;26(7):1486–9.PubMedGoogle Scholar
  29. 29.
    Kyogoku C, Dijstelbloem HM, Tsuchiya N, Hatta Y, Kato H, Yamaguchi A, et al. Fcgamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility. Arthritis Rheum. 2002;46(5):1242–54.PubMedCrossRefGoogle Scholar
  30. 30.
    Kono H, Kyogoku C, Suzuki T, Tsuchiya N, Honda H, Yamamoto K, et al. FcgammaRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Hum Mol Genet. 2005;14(19):2881–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Magnusson V, Zunec R, Odeberg J, Sturfelt G, Truedsson L, Gunnarsson I, et al. Polymorphisms of the Fc gamma receptor type IIB gene are not associated with systemic lupus erythematosus in the Swedish population. Arthritis Rheum. 2004;50(4):1348–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Floto RA, Clatworthy MR, Heilbronn KR, Rosner DR, MacAry PA, Rankin A, et al. Loss of function of a lupus-associated FcgammaRIIb polymorphism through exclusion from lipid rafts. Nat Med. 2005;11(10):1056–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Karassa FB, Trikalinos TA, Ioannidis JPA. Fc gamma RIIIA-SLE meta-analysis investigators. The Fc gamma RIIIA-F158 allele is a risk factor for the development of lupus nephritis: a meta-analysis. Kidney Int. 2003;63(4):1475–82.PubMedCrossRefGoogle Scholar
  34. 34.
    Alarcón GS, McGwin Jr G, Petri M, Ramsey-Goldman R, Fessler BJ, Vilá LM, et al. Time to renal disease and end-stage renal disease in PROFILE: a multiethnic lupus cohort. Plos Med. 2006;3(10):e396.PubMedCrossRefGoogle Scholar
  35. 35.
    Willcocks LC, Lyons PA, Clatworthy MR, Robinson JI, Yang W, Newland SA, et al. Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake. J Exp Med. 2008;205(7):1573–82.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhao J, Wu H, Khosravi M, Cui H, Qian X, Kelly JA, et al. Association of genetic variants in complement factor H and factor H-related genes with systemic lupus erythematosus susceptibility. Plos Genet. 2011;7(5):e1002079.PubMedCrossRefGoogle Scholar
  37. 37.
    Bronson PG, Chaivorapol C, Ortmann W, Behrens TW, Graham RR. The genetics of type I interferon in systemic lupus erythematosus. Curr Opin Immunol. 2012;24(5):530–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Kirou KA, Lee C, George S, Louca K, Papagiannis IG, Peterson MGE, et al. Coordinate overexpression of interferon-alpha-induced genes in systemic lupus erythematosus. Arthritis Rheum. 2004;50(12):3958–67.PubMedCrossRefGoogle Scholar
  40. 40.
    Crow MK, Kirou KA. Interferon-alpha in systemic lupus erythematosus. Curr Opin Rheumatol. 2004;16(5):541–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Weckerle CE, Franek BS, Kelly JA, Kumabe M, Mikolaitis RA, Green SL, et al. Network analysis of associations between serum interferon-α activity, autoantibodies, and clinical features in systemic lupus erythematosus. Arthritis Rheum. 2011;63(4):1044–53.PubMedCrossRefGoogle Scholar
  42. 42.
    Ko K, Franek BS, Marion M, Kaufman KM, Langefeld CD, Harley JB, et al. Genetic ancestry, serum interferon-α activity, and autoantibodies in systemic lupus erythematosus. J Rheumatol. 2012;39(6):1238–40.PubMedCrossRefGoogle Scholar
  43. 43.
    Shen N, Fu Q, Deng Y, Qian X, Zhao J, Kaufman KM, et al. Sex-specific association of X-linked Toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. Proc Natl Acad Sci U S A. 2010;107(36):15838–43.PubMedCrossRefGoogle Scholar
  44. 44.
    Cunninghame Graham DS, Morris DL, Bhangale TR, Criswell LA, Syvänen A-C, Rönnblom L, et al. Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. Plos Genet. 2011;7(10):e1002341.PubMedCrossRefGoogle Scholar
  45. 45.
    Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, Sahgal N, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol. 2011;12(3):231–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Nordang GBN, Viken MK, Amundsen SS, Sanchez ES, Flatø B, Førre OT, et al. Interferon regulatory factor 5 gene polymorphism confers risk to several rheumatic diseases and correlates with expression of alternative thymic transcripts. Rheumatol Oxf Engl. 2012;51(4):619–26.CrossRefGoogle Scholar
  47. 47.
    Sigurdsson S, Nordmark G, Göring HHH, Lindroos K, Wiman A-C, Sturfelt G, et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet. 2005;76(3):528–37.PubMedCrossRefGoogle Scholar
  48. 48.
    Graham RR, Kozyrev SV, Baechler EC, Reddy MVPL, Plenge RM, Bauer JW, et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet. 2006;38(5):550–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Graham RR, Kyogoku C, Sigurdsson S, Vlasova IA, Davies LRL, Baechler EC, et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci U S A. 2007;104(16):6758–63.PubMedCrossRefGoogle Scholar
  50. 50.
    Shin HD, Sung Y-K, Choi C-B, Lee SO, Lee HW, Bae S-C. Replication of the genetic effects of IFN regulatory factor 5 (IRF5) on systemic lupus erythematosus in a Korean population. Arthritis Res Ther. 2007;9(2):R32.PubMedCrossRefGoogle Scholar
  51. 51.
    Kelly JA, Kelley JM, Kaufman KM, Kilpatrick J, Bruner GR, Merrill JT, et al. Interferon regulatory factor-5 is genetically associated with systemic lupus erythematosus in African Americans. Genes Immun. 2008;9(3):187–94.PubMedCrossRefGoogle Scholar
  52. 52.
    Niewold TB, Kelly JA, Flesch MH, Espinoza LR, Harley JB, Crow MK. Association of the IRF5 risk haplotype with high serum interferon-alpha activity in systemic lupus erythematosus patients. Arthritis Rheum. 2008;58(8):2481–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Cham CM, Ko K, Niewold TB. Interferon regulatory factor 5 in the pathogenesis of systemic lupus erythematosus. Clin Dev Immunol. 2012;2012:780436.PubMedCrossRefGoogle Scholar
  54. 54.
    Feng D, Yang L, Bi X, Stone RC, Patel P, Barnes BJ. Irf5-deficient mice are protected from pristane-induced lupus via increased Th2 cytokines and altered IgG class switching. Eur J Immunol. 2012;42(6):1477–87.PubMedCrossRefGoogle Scholar
  55. 55.
    Fu Q, Zhao J, Qian X, Wong JLH, Kaufman KM, Yu CY, et al. Association of a functional IRF7 variant with systemic lupus erythematosus. Arthritis Rheum. 2011;63(3):749–54.PubMedCrossRefGoogle Scholar
  56. 56.
    Salloum R, Franek BS, Kariuki SN, Rhee L, Mikolaitis RA, Jolly M, et al. Genetic variation at the IRF7/PHRF1 locus is associated with autoantibody profile and serum interferon-alpha activity in lupus patients. Arthritis Rheum. 2010;62(2):553–61.PubMedCrossRefGoogle Scholar
  57. 57.
    Kawasaki A, Furukawa H, Kondo Y, Ito S, Hayashi T, Kusaoi M, et al. Association of PHRF1-IRF7 region polymorphism with clinical manifestations of systemic lupus erythematosus in a Japanese population. Lupus. 2012;21(8):890–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA, Sun X, et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet. 2009;41(11):1228–33.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang S, Adrianto I, Wiley GB, Lessard CJ, Kelly JA, Adler AJ, et al. A functional haplotype of UBE2L3 confers risk for systemic lupus erythematosus. Genes Immun. 2012;13(5):380–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Wang D, John SA, Clements JL, Percy DH, Barton KP, Garrett-Sinha LA. Ets-1 deficiency leads to altered B cell differentiation, hyperresponsiveness to TLR9 and autoimmune disease. Int Immunol. 2005;17(9):1179–91.PubMedCrossRefGoogle Scholar
  61. 61.
    Sullivan KE, Piliero LM, Dharia T, Goldman D, Petri MA. 3′ polymorphisms of ETS1 are associated with different clinical phenotypes in SLE. Hum Mutat. 2000;16(1):49–53.PubMedCrossRefGoogle Scholar
  62. 62.
    Yang W, Shen N, Ye D-Q, Liu Q, Zhang Y, Qian X-X, et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. Plos Genet. 2010;6(2):e1000841.PubMedCrossRefGoogle Scholar
  63. 63.
    Järvinen TM, Hellquist A, Koskenmies S, Einarsdottir E, Koskinen LLE, Jeskanen L, et al. Tyrosine kinase 2 and interferon regulatory factor 5 polymorphisms are associated with discoid and subacute cutaneous lupus erythematosus. Exp Dermatol. 2010;19(2):123–31.PubMedCrossRefGoogle Scholar
  64. 64.
    Jacob CO, Zhu J, Armstrong DL, Yan M, Han J, Zhou XJ, et al. Identification of IRAK1 as a risk gene with critical role in the pathogenesis of systemic lupus erythematosus. Proc Natl Acad Sci. 2009;106(15):6256–61.PubMedCrossRefGoogle Scholar
  65. 65.
    Zhai Y, Xu K, Leng R-X, Cen H, Wang W, Zhu Y, et al. Association of interleukin-1 receptor-associated kinase (IRAK1) gene polymorphisms (rs3027898, rs1059702) with systemic lupus erythematosus in a Chinese Han population. Inflamm Res. 2013;62(6):555–60.PubMedCrossRefGoogle Scholar
  66. 66.
    Adrianto I, Wen F, Templeton A, Wiley G, King JB, Lessard CJ, et al. Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat Genet. 2011;43(3):253–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Sheng Y-J, Gao J-P, Li J, Han J-W, Xu Q, Hu W-L, et al. Follow-up study identifies two novel susceptibility loci PRKCB and 8p11.21 for systemic lupus erythematosus. Rheumatol Oxf Engl. 2011;50(4):682–8.CrossRefGoogle Scholar
  68. 68.
    Musone SL, Taylor KE, Lu TT, Nititham J, Ferreira RC, Ortmann W, et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet. 2008;40(9):1062–4.PubMedCrossRefGoogle Scholar
  69. 69.
    Bates JS, Lessard CJ, Leon JM, Nguyen T, Battiest LJ, Rodgers J, et al. Meta-analysis and imputation identifies a 109 kb risk haplotype spanning TNFAIP3 associated with lupus nephritis and hematologic manifestations. Genes Immun. 2009;10(5):470–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science. 2000;289(5488):2350–4.PubMedCrossRefGoogle Scholar
  71. 71.
    Tavares RM, Turer EE, Liu CL, Advincula R, Scapini P, Rhee L, et al. The ubiquitin modifying enzyme A20 restricts B cell survival and prevents autoimmunity. Immunity. 2010;33(2):181–91.PubMedCrossRefGoogle Scholar
  72. 72.
    Nath SK, Han S, Kim-Howard X, Kelly JA, Viswanathan P, Gilkeson GS, et al. A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet. 2008;40(2):152–4.PubMedCrossRefGoogle Scholar
  73. 73.
    Kim-Howard X, Maiti AK, Anaya J-M, Bruner GR, Brown E, Merrill JT, et al. ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash and immunological manifestations in patients with systemic lupus erythematosus with European ancestry. Ann Rheum Dis. 2010;69(7):1329–32.PubMedCrossRefGoogle Scholar
  74. 74.
    • Vaughn SE, Kottyan LC, Munroe ME, Harley JB. Genetic susceptibility to lupus: the biological basis of genetic risk found in B cell signaling pathways. J Leukoc Biol. 2012;92(3):577–91. Detailed review of the SLE genetic risk factors associated with B-cell functioning.PubMedCrossRefGoogle Scholar
  75. 75.
    Kozyrev SV, Abelson A-K, Wojcik J, Zaghlool A, Linga Reddy MVP, Sanchez E, et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet. 2008;40(2):211–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Lu R, Vidal GS, Kelly JA, Delgado-Vega AM, Howard XK, Macwana SR, et al. Genetic associations of LYN with systemic lupus erythematosus. Genes Immun. 2009;10(5):397–403.PubMedCrossRefGoogle Scholar
  77. 77.
    Asokan R, Banda NK, Szakonyi G, Chen XS, Holers VM. Human complement receptor 2 (CR2/CD21) as a receptor for DNA: Implications for its roles in the immune response and the pathogenesis of systemic lupus erythematosus (SLE). Mol Immunol. 2013;53(1–2):99–110.PubMedCrossRefGoogle Scholar
  78. 78.
    Wu H, Boackle SA, Hanvivadhanakul P, Ulgiati D, Grossman JM, Lee Y, et al. Association of a common complement receptor 2 haplotype with increased risk of systemic lupus erythematosus. Proc Natl Acad Sci U S A. 2007 ;104(10):3961–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Douglas KB, Windels DC, Zhao J, Gadeliya AV, Wu H, Kaufman KM, et al. Complement receptor 2 polymorphisms associated with systemic lupus erythematosus modulate alternative splicing. Genes Immun. 2009;10(5):457–69.PubMedCrossRefGoogle Scholar
  80. 80.
    Song GG, Choi SJ, Ji JD, Lee YH. Associations between interleukin-10 polymorphisms and susceptibility to systemic lupus erythematosus: A meta-analysis. Hum Immunol. 2013;74(3):364–70.PubMedCrossRefGoogle Scholar
  81. 81.
    Wang B, Zhu J-M, Fan Y-G, Xu W-D, Cen H, Pan H-F, et al. Association of the −1082G/A polymorphism in the interleukin-10 gene with systemic lupus erythematosus: A meta-analysis. Gene. 2013;519(2):209–16.PubMedCrossRefGoogle Scholar
  82. 82.
    Criswell LA, Pfeiffer KA, Lum RF, Gonzales B, Novitzke J, Kern M, et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet. 2005;76(4):561–71.PubMedCrossRefGoogle Scholar
  83. 83.
    Lee YH, Song GG. Associations between TNFSF4 and TRAF1-C5 gene polymorphisms and systemic lupus erythematosus: A meta-analysis. Hum Immunol. 2012;73(10):1050–4.PubMedCrossRefGoogle Scholar
  84. 84.
    Namjou B, Sestak AL, Armstrong DL, Zidovetzki R, Kelly JA, Jacob N, et al. High-density genotyping of STAT4 reveals multiple haplotypic associations with systemic lupus erythematosus in different racial groups. Arthritis Rheum. 2009;60(4):1085–95.PubMedCrossRefGoogle Scholar
  85. 85.
    Zheng J, Yin J, Huang R, Petersen F, Yu X. Meta-analysis reveals an association of STAT4 polymorphisms with systemic autoimmune disorders and anti-dsDNA antibody. Hum. Immunol. 2013 Apr 27.Google Scholar
  86. 86.
    Takeuchi T, Suzuki K. CD247 variants and single-nucleotide polymorphisms observed in systemic lupus erythematosus patients. Rheumatol. Oxf. Engl. 2013 Mar 22.Google Scholar
  87. 87.
    Ramos PS, Criswell LA, Moser KL, Comeau ME, Williams AH, Pajewski NM, et al. A comprehensive analysis of shared loci between Systemic Lupus Erythematosus (SLE) and sixteen autoimmune diseases reveals limited genetic overlap. Dermitzakis ET, editor. Plos Genet. 2011;7(12):e1002406.PubMedCrossRefGoogle Scholar
  88. 88.
    Sullivan KE, Suriano A, Dietzmann K, Lin J, Goldman D, Petri MA. The TNFalpha locus is altered in monocytes from patients with systemic lupus erythematosus. Clin Immunol Orlando Fla. 2007;123(1):74–81.CrossRefGoogle Scholar
  89. 89.
    • Zhang Y, Zhao M, Sawalha AH, Richardson B, Lu Q. Impaired DNA methylation and its mechanisms in CD4 + T cells of systemic lupus erythematosus. J Autoimmun. 2013;41:92–9. Very complete description of DNA methylation impairment and its biological consequences in SLE.PubMedCrossRefGoogle Scholar
  90. 90.
    Patel DR, Richardson BC. Dissecting complex epigenetic alterations in human lupus. Arthritis Res Ther. 2013;15(1):201.PubMedCrossRefGoogle Scholar
  91. 91.
    Coit P, Jeffries M, Altorok N, Dozmorov MG, Koelsch KA, Wren JD, et al. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naïve CD4+ T cells from lupus patients. J. Autoimmun. 2013 Apr 24.Google Scholar
  92. 92.
    Zhang Z, Song L, Maurer K, Petri MA, Sullivan KE. Global H4 acetylation analysis by ChIP-chip in systemic lupus erythematosus monocytes. Genes Immun. 2010;11(2):124–33.PubMedCrossRefGoogle Scholar
  93. 93.
    • Shen N, Liang D, Tang Y, de Vries N, Tak P-P. MicroRNAs—novel regulators of systemic lupus erythematosus pathogenesis. Nat Rev Rheumatol. 2012;8(12):701–9. Interesting summary of the data regarding microRNAs in SLE.PubMedCrossRefGoogle Scholar
  94. 94.
    Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, et al. MicroRNA-146a contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 2009;60(4):1065–75.PubMedCrossRefGoogle Scholar
  95. 95.
    Deng Y, Zhao J, Sakurai D, Kaufman KM, Edberg JC, Kimberly RP, et al. MicroRNA-3148 Modulates Allelic Expression of Toll-Like Receptor 7 Variant Associated with Systemic Lupus Erythematosus. McCarthy MI, editor. Plos Genet. 2013;9(2):e1003336.PubMedCrossRefGoogle Scholar
  96. 96.
    Carlsen AL, Schetter AJ, Nielsen CT, Lood C, Knudsen S, Voss A, et al. Circulating microrna expression profiles associated with systemic lupus erythematosus. Arthritis Rheum. 2013;65(5):1324–34.PubMedCrossRefGoogle Scholar
  97. 97.
    Ding S, Liang Y, Zhao M, Liang G, Long H, Zhao S, et al. Decreased microRNA-142-3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheum. 2012;64(9):2953–63.PubMedCrossRefGoogle Scholar
  98. 98.
    Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X, et al. MicroRNA-21 and MicroRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting dna methyltransferase 1. J Immunol. 2010;184(12):6773–81.PubMedCrossRefGoogle Scholar
  99. 99.
    • Sui W, Hou X, Che W, Yang M, Dai Y. The applied basic research of systemic lupus erythematosus based on the biological omics. Genes Immun. 2013;14(3):133–46. Comprehensive review on the recent advances in SLE genomics, epigenomics, proteomics and metabolomics.PubMedCrossRefGoogle Scholar
  100. 100.
    Rullo OJ, Tsao BP. Recent insights into the genetic basis of systemic lupus erythematosus. Ann Rheum Dis. 2012;72(Supplement 2):ii56–61.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Patrícia Costa-Reis
    • 1
    • 2
    • 3
  • Kathleen E. Sullivan
    • 1
    • 2
  1. 1.The Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.The University of Pennsylvania Perelman School of MedicinePhiladelphiaUSA
  3. 3.Faculdade de MedicinaUniversidade de LisboaLisbonPortugal

Personalised recommendations