Current Rheumatology Reports

, Volume 14, Issue 6, pp 516–525 | Cite as

Is There Evidence for Vasculitis in Systemic Sclerosis?

VASCULITIS (LR ESPINOZA, SECTION EDITOR)

Abstract

Systemic sclerosis (SSc) is a devastating and potentially life-threatening multi-organ system disease. SSc is marked by skin thickening and tightening, Raynaud’s phenomenon and digital ischemia with ulceration, gastrointestinal dysmotility, cardiopulmonary involvement with pulmonary fibrosis and pulmonary arterial hypertension, as well as renal failure. Fibrosis is the most obvious manifestation of SSc. Vascular involvement and inflammation are other prominent components of SSc pathology, and both features are also seen in vasculitis. This review analyzes whether there is evidence for vasculitis especially with particular organ manifestations and subgroups of patients.

Keywords

Systemic sclerosis Scleroderma Vasculopathy Vasculitis Angiogenesis Vasculogenesis Endothelial cells ANCA 

Notes

Disclosure

Dr. Saketkoo has served as a consultant for Gilead Sciences and Questcor Pharmaceuticals and has received grant support from United Therapeutics Corp., InterMune, Boehringer Ingelheim, Actelion Pharmaceuticals Ltd., Celgene Corp., and Sigma-Tau Pharmaceuticals.

Dr. Distler has served as a consultant for Actelion Pharmaceuticals Ltd., Pfizer, Boehringer Ingelheim, Bayer, Roche, Ergonex Pharma, Bristol-Myers Squibb, Sanofi-Aventis, United BioSource Corp., Medac, Biovitrum, Novartis, Active Biotech, 4D Science, and Sinoxa Pharma; has received grant support from Actelion Pharmaceuticals Ltd., Pfizer, Ergonex Pharma, and Sanofi-Aventis; has had travel/accommodations expenses covered/reimbursed by Roche, Actelion Pharmaceuticals Ltd., and Pfizer; and holds a patent on miR-29 for the treatment of systemic sclerosis.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Denton CP, Korn JH. Digital ulceration and critical digital ischaemia in scleroderma. Scleroderma Care Res. 2003;1:12–6.Google Scholar
  2. 2.
    Nihtyanova SI, Brough G, Black CM, Denton CP. Clinical burden of digital vasculopathy in limited and diffuse cutaneous systemic sclerosis. Ann Rheum Dis. 2008;67:120–3.PubMedCrossRefGoogle Scholar
  3. 3.
    Avouac J, Guerini H, Wipff J, Assous N, Chevrot A, Kahan A, et al. Radiological hand involvement in systemic sclerosis. Ann Rheum Dis. 2006;65(8):1088–92.PubMedCrossRefGoogle Scholar
  4. 4.
    La Montagna G, Sodano A, Capurro V, Malesci D, Valentini G. The arthropathy of systemic sclerosis: a 12 month prospective clinical and imaging study. Skeletal Radiol. 2005;34:35–41.PubMedCrossRefGoogle Scholar
  5. 5.
    Ranque B, Bérezné A, Le-Guern V, Pagnoux C, Allanore Y, Launay D, et al. Myopathies related to systemic sclerosis: a case–control study of associated clinical and immunological features. Scand J Rheumatol. 2010;39:498–505.PubMedCrossRefGoogle Scholar
  6. 6.
    Marie I, Levesque H, Ducrotté P, et al. Gastric involvement in systemic sclerosis: a prospective study. Am J Gastroenterol. 2001;96:77–83.PubMedCrossRefGoogle Scholar
  7. 7.
    Walker UA, Tyndall A, Czirjak L, Denton C, Farge-Bancel D, Kowal-Bielecka O, et al. Clinical risk assessment of organ manifestations in systemic sclerosis: a report from the EULAR Scleroderma Trials And Research group database. Ann Rheum Dis. 2007;66:754–63.PubMedCrossRefGoogle Scholar
  8. 8.
    Allanore Y, Meune C, Vonk MC, Airo P, Hachulla E, Caramaschi P, et al. Prevalence and factors associated with left ventricular dysfunction in the EULAR Scleroderma Trial and Research group (EUSTAR) database of patients with systemic sclerosis. Ann Rheum Dis. 2010;69:218–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Steen VD, Medsger TA. Changes in causes of death in systemic sclerosis, 1972–2002. Ann Rheum Dis. 2007;66:940–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Tyndall AJ, Bannert B, Vonk M, Airò P, Cozzi F, Carreira PE, et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann Rheum Dis. 2010;69(10):1809–15.PubMedCrossRefGoogle Scholar
  11. 11.
    •• Riemekasten G, Philippe A, Näther M, Slowinski T, Müller DN, Heidecke H, et al. Involvement of functional autoantibodies against vascular receptors in systemic sclerosis. Ann Rheum Dis. 2011;70:530–6. Landmark article demonstrating autoimmunity as a mediator of vascular pathology in SSc and correlation to vascular manifestations and mortality.PubMedCrossRefGoogle Scholar
  12. 12.
    Baroni SS, Santillo M, Bevilacqua F, Luchetti M, Spadoni T, Mancini M, et al. Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N Engl J Med. 2006;354:2667–76.PubMedCrossRefGoogle Scholar
  13. 13.
    Barnes J, Mayes MD. Epidemiology of systemic sclerosis: incidence, prevalence, survival, risk factors, malignancy, and environmental triggers. Curr Opin Rheumatol. 2012;24(2):165–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Jimenez SA, Diaz A, Khalili K. Retroviruses and the pathogenesis of systemic sclerosis. Int Rev Immunol. 1995;12(2–4):159–75.PubMedCrossRefGoogle Scholar
  15. 15.
    Kahaleh B. Vascular disease in scleroderma: mechanisms of vascular injury. Rheum Dis Clin N Am. 2008;34(1):57–71. vi.CrossRefGoogle Scholar
  16. 16.
    Neidhart M, Kuchen S, Distler O, Brühlmann P, Michel BA, Gay RE, et al. Increased serum levels of antibodies against human cytomegalovirus and prevalence of autoantibodies in systemic sclerosis. Arthritis Rheum. 1999;42:389–92.PubMedCrossRefGoogle Scholar
  17. 17.
    Broen JC, Coenen MJ, Radstake TR. Genetics of systemic sclerosis: an update. Curr Rheumatol Rep. 2012;14(1):11–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Manetti M, Allanore Y, Revillod L, Fatini C, Guiducci S, Cuomo G, et al. A genetic variation located in the promoter region of the UPAR (CD87) gene is associated with the vascular complications of systemic sclerosis. Arthritis Rheum. Jan; 63(1):247–56.Google Scholar
  19. 19.
    Romano E, Manetti M, Guiducci S, Ceccarelli C, Allanore Y, Matucci-Cerinic M. The genetics of systemic sclerosis: an update. Clin Exp Rheumatol. 2011;29(2 Suppl 65):S75–86.PubMedGoogle Scholar
  20. 20.
    Sharif R, Mayes MD, Tan FK, Gorlova OY, Hummers LK, Shah AA, et al. IRF5 polymorphism predicts prognosis in patients with systemic sclerosis. Ann Rheum Dis. 2012;71(7):1197–202.PubMedCrossRefGoogle Scholar
  21. 21.
    Basu N, Watts R, Bajema I, Baslund B, Bley T, Boers M, et al. EULAR points to consider in the development of classification and diagnostic criteria in systemic vasculitis. Ann Rheum Dis. 2010;69(10):1744.PubMedCrossRefGoogle Scholar
  22. 22.
    De Angelis R, Grassi W, Cutulo M. A growing need for capillaroscopy in rheumatology. Arthritis Rheum. 2009;61(3):405–10.PubMedCrossRefGoogle Scholar
  23. 23.
    Del Papa N, Quirici N, Soligo D, Scavullo C, Cortiana M, Borsotti C, et al. Bone marrow endothelial progenitors are defective in systemic sclerosis. Arthritis Rheum. 2006;54:2605–15.PubMedCrossRefGoogle Scholar
  24. 24.
    Distler O, Distler JH, Scheid A, Acker T, Hirth A, Rethage J, et al. Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res. 2004;95:109–16.PubMedCrossRefGoogle Scholar
  25. 25.
    Koenig M, Joyal F, Fritzler MJ, Roussin A, Abrahamowicz M, Boire G, et al. Autoantibodies and microvascular damage are independent predictive factors for the progression of Raynaud's phenomenon to systemic sclerosis: a twenty-year prospective study of 586 patients, with validation of proposed criteria for early systemic sclerosis. Arthritis Rheum. 2008;58(12):3902–12.PubMedCrossRefGoogle Scholar
  26. 26.
    Lambova SN, Muller-Ladner U. Capillaroscopic pattern in systemic sclerosis-an association with dynamics of process of angio- and vasculogensis. Microvasc Res. 2010;80(3):534–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Murray AK, Moore TL, King TA, Herrick AL. Abnormal microvascular response is localized to the digits in patients with systemic sclerosis. Arthritis Rheum. 2006;54(6):1952–60.PubMedCrossRefGoogle Scholar
  28. 28.
    • Murray AK, Vail A, Moore TL, Manning JB, Taylor CJ, Herrick AL. The influence of measurement location on reliability of quantitative nailfold videocapillaroscopy in patients with SSc. Rheumatology (Oxford). 2012;51(7):1323–30. Demonstrates importance of high power magnification and original location in assessment of capillaroscopic changes.CrossRefGoogle Scholar
  29. 29.
    Von Bierbrauer A, Barth P, Willert J, Baerwald C, Mennel HD, Schmidt JA. Electron microscopy and capillaroscopically guided nailfold biopsy in connective tissue diseases: detection of ultrastructurual changes of the microcirculatory vessels. Br J Rheum. 1998;37:1272–8.CrossRefGoogle Scholar
  30. 30.
    Youssef P, Brama T, Englert H, Bertouch J. Limited scleroderma is associated with increased prevalence of macrovascular disease. J Rheumatol. 1995;22(3):469–72.PubMedGoogle Scholar
  31. 31.
    Stafford L, Englert H, Gover J, Bertouch J. Distribution of macrovascular disease in scleroderma. Ann Rheum Dis. 1998;57(8):476–9.PubMedCrossRefGoogle Scholar
  32. 32.
    • Frerix M, Stegbauer J, Dragun D, Kreuter A, Weiner SM. Ulnar artery occlusion is predictive of digital ulcers in SSc: a duplex sonography study. Rheumatology (Oxford). 2012;51(4):735–42. Epub 2011 Dec 20. Demonstrates the need for further investigation of macrovasculopathy in SSc.CrossRefGoogle Scholar
  33. 33.
    Fleming JN, Nash RA, McLeod DO, Fiorentino DF, Shulman HM, Connolly MK, et al. Capillary regeneration in scleroderma: stem cell therapy reverses phenotype? PLoS One. 2008;3(1):e1452.PubMedCrossRefGoogle Scholar
  34. 34.
    Antonios TF, Singer DR, Markandu ND, Mortimer PS, MacGregor GA. Rarefaction of skin capillaries in borderline essential hypertension suggests an early structural abnormality. Hypertension. 1999;34:655–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Houben AJ, Beljaars JH, Hofstra L, Kroon AA, De Leeuw PW. Microvascular abnormalities in chronic heart failure: a cross-sectional analysis. Microcirculation. 2003;10:471–8 [PubMed].PubMedGoogle Scholar
  36. 36.
    D’Angelo WA, Fries JF, Masi AT, Shulman LE. Pathologic observations in systemic sclerosis (Scleroderma). Am J Med. 1969;46(3):428–39.PubMedCrossRefGoogle Scholar
  37. 37.
    Cho H, Kozasa T, Bondjers C, Betsholtz C, Kehrl JH. Pericyte-specific expression of RGS5: implications for PDGF and EDG receptor signaling during vascular maturation. FASEB J. 2003;17:440–2.PubMedGoogle Scholar
  38. 38.
    • Overbeek MJ, Vonk MC, Boonstra A, Voskuyl AE, Vonk-Noordgraaf A, Smit EF, et al. Pulmonary arterial hypertension in limited cutaneous systemic sclerosis a distinctive vasculopathy. Eur Respir J. 2009;34:371–9. Demonstrates pathologic differences in vasculopathy between idiopathic and pulmonary arterial hypertension associated with SSc. These findings may have implications for response to treatment.PubMedCrossRefGoogle Scholar
  39. 39.
    Dorfmüller P, Humbert M, Perros F, Sanchez O, Simonneau G, Müller KM, et al. Fibrous remodling of the pulmonary venous system in pulmonary arterial hypertension asscociated with the connective tissue diseases. Hum Pathol. 2007;38:893–902.PubMedCrossRefGoogle Scholar
  40. 40.
    • Arad U, Balbir-Gurman A, Doenyas-Barak K, Amit-Vazina M, Caspi D, Elkayam O. Anti-neutrophil antibody associated vasculitis in systemic sclerosis. Semin Arthritis Rheum. 2011;41(2):223–9. Examines a large cohort of SSc patients for association of ANCA reactivity.PubMedCrossRefGoogle Scholar
  41. 41.
    Merkel PA, Polisson RP, Chang Y, Skates SJ, Niles JL. Prevalence of antineutrophil cytoplasmic antibodies in a large inception cohort of patients with connective tissue disease. Ann Intern Med. 1997;126(11):866–73.PubMedGoogle Scholar
  42. 42.
    Ruffatti A, Sinico RA, Radice A, Ossi E, Cozzi F, Tonello M, et al. Autoantibodies to proteinase 3 and myeloperoxidase in systemic sclerosis. J Rheumatol. 2002;29(5):918–23.PubMedGoogle Scholar
  43. 43.
    Huong DL, Papo T, Gatfosse M, Frances C, Godeau P, Beaufils H. Antineutrophil cytoplasmic autoantibodies in systemic sclerosis with renal failure. J Rheumatol. 1995;22(4):791–2.PubMedGoogle Scholar
  44. 44.
    Derrett-Smith EC, Nihtyanova S, Parker J, Bunn C, Burns A, Little MA, et al. Clinical significance of defined ANCA positivity in systemic sclerosis. [abstract]. Arthritis Rheum. 2010;62 Suppl 10:1207.Google Scholar
  45. 45.
    Kamen DL, Wigley FM, Brown AN. Antineutrophil cytoplasmic antibody-positive crescentic glomerulonephritis in scleroderma–a different kind of renal crisis. J Rheumatol. 2006;33(9):1886.PubMedGoogle Scholar
  46. 46.
    •• Maurer B, Reich N, Jüngel A, Kriegsmann J, Gay RE, Schett G, et al. Fra-2 transgenic mice as a novel model of pulmonary hypertension associated with systemic sclerosis. Ann Rheum Dis. 2012. This study further demonstrates the role of Fra-2 in vascular and fibrotic manifestations of SSc. Google Scholar
  47. 47.
    Maurer B, Busch N, Jüngel A, Pileckyte M, Gay RE, Michel BA, et al. Transcription factor fos-related antigen-2 induces progressive peripheral vasculopathy in mice closely resembling human systemic sclerosis. Circulation. 2009;120:2367–76.PubMedCrossRefGoogle Scholar
  48. 48.
    Sambo P, Baroni SS, Luchetti M, Paroncini P, Dusi S, Orlandini G, et al. Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by the constitutive up-regulation of reactive oxygen species generation through the NADPH oxidase complex pathway. Arthritis Rheum. 2001;44:2653–64.PubMedCrossRefGoogle Scholar
  49. 49.
    Servettaz A, Guilpain P, Goulvestre C, Chéreau C, Hercend C, Nicco C, et al. Radical oxygen species production induced by advanced oxidation protein products predicts clinical evolution and response to treatment in systemic sclerosis. Ann Rheum Dis. 2007;66:1202–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K, et al. Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2005;290:L661–73.PubMedCrossRefGoogle Scholar
  51. 51.
    Svegliati S, Cancello R, Sambo P, Luchetti M, Paroncini P, Orlandini G, et al. Platelet-derived growth factor and reactive oxygen species (ROS) regulate Ras protein levels in primary human fibroblasts via ERK1/2: amplification of ROS and Ras in systemic sclerosis fibroblasts. J Biol Chem. 2005;280:36474–82.PubMedCrossRefGoogle Scholar
  52. 52.
    Ahmed SS, Tan FK, Arnett FC, Jin L, Geng YJ. Induction of apoptosis and fibrillin-1 expression in human dermal endothelial cells by scleroderma sera containing antiendothelial cell antibodies. Arthritis Rheum. 2006;54:2250–62.PubMedCrossRefGoogle Scholar
  53. 53.
    • Del Papa N, Quirici N, Scavullo C, Gianelli U, Corti L, Vitali C, et al. Antiendothelial cell antibodies induce apoptosis of bone marrow endothelial progenitors in systemic sclerosis. J Rheumatol. 2010;37(10):2053–63. Demonstrates role of AECAs in defective angiogenesis in SSc.PubMedCrossRefGoogle Scholar
  54. 54.
    Distler JH, Beyer C, Schett G, Lüscher TF, Gay S, Distler O. Endothelial progenitor cells: novel players in the pathogenesis of rheumatic diseases. Arthritis Rheum. 2009;60:3168–79.PubMedCrossRefGoogle Scholar
  55. 55.
    •• Distler JH, Allanore Y, Avouac J, Giacomelli R, Guiducci S, Moritz F, et al. EULAR Scleroderma Trials and Research group statement and recommendations on endothelial precursor cells. Ann Rheum Dis. 2009;68:163–8. Establishes standardization for assessment and handling of EPCs in research.PubMedCrossRefGoogle Scholar
  56. 56.
    Kuwana M, Okazaki Y, Yasuoka H, Kawakami Y, Ikeda Y. Defective vasculogenesis in systemic sclerosis. Lancet. 2004;364:603–10.PubMedCrossRefGoogle Scholar
  57. 57.
    Pignone A, Scaletti C, Matucci-Cerinic M, Vázquez-Abad D, Meroni PL, Del Papa N, et al. Anti-endothelial cell antibodies in systemic sclerosis: significant association with vascular involvement and alveolo-capillary impairment. Clin Exp Rheumatol. 1998;16(5):527–32.PubMedGoogle Scholar
  58. 58.
    Sgonc R, Gruschwitz MS, Dietrich H, Recheis H, Gershwin ME, Wick G. Endothelial cell apoptosis is a primary pathogenetic event underlying skin lesions in avian and human scleroderma. J Clin Invest. 1996;98(3):785–92.PubMedCrossRefGoogle Scholar
  59. 59.
    Dragun D, Catar R, Kusch A, Heidecke H, Philippe A. Non-HLA-antibodies targeting angiotensin type 1 receptor and antibody mediated rejection. Hum Immunol. 2012 Jul 20.Google Scholar
  60. 60.
    Wallukat G, Neichel D, Nissen E, Homuth V, Luft FC. Agonistic autoantibodies directed against the angiotensin II AT1 receptor in patients with preeclampsia. Can J Physiol Pharmacol. 2003;81(2):79–83.PubMedCrossRefGoogle Scholar
  61. 61.
    Arefiev K, Fiorentino DF, Chung L. Endothelin receptor antagonists for the treatment of Raynaud's phenomenon and digital ulcers in systemic sclerosis. Int J Rheumatol. 2011;2011:201787.PubMedGoogle Scholar
  62. 62.
    Rubin LJ. Endothelin receptor antagonists for the treatment of pulmonary artery hypertension. Life Sci. 2012 Aug 3.Google Scholar
  63. 63.
    Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348:593–600.PubMedCrossRefGoogle Scholar
  64. 64.
    Davies CA, Jeziorska M, Freemont AJ, Herrick AL. The differential expression of VEGF, VEGFR-2, and GLUT-1 proteins in disease subtypes of systemic sclerosis. Hum Pathol. 2006;37:190–7.PubMedCrossRefGoogle Scholar
  65. 65.
    De Groot K, Goldberg C, Bahlmann FH, Woywodt A, Haller H, Fliser D, et al. Vascular endothelial damage and repair in antineutrophil cytoplasmic antibody–associated vasculitis. Arthritis Rheum. 2007;56:3847–53.PubMedCrossRefGoogle Scholar
  66. 66.
    • Kuwana M, Okazaki Y. Quantification of circulating endothelial progenitor cells in systemic sclerosis: a direct comparison of protocols. Ann Rheum Dis. 2012. Demonstrates the importance of assay method in research incorporating EPC assays. Google Scholar
  67. 67.
    Avouac J, Juin F, Wipff J, Couraud PO, Chiocchia G, Kahan A, et al. Circulating endothelial progenitor cells in systemic sclerosis: association with disease severity. Ann Rheum Dis. 2008;67:1455–60.PubMedCrossRefGoogle Scholar
  68. 68.
    Avouac J, Cagnard N, Distler JH, Schoindre Y, Ruiz B, Couraud PO, et al. Insights into the pathogenesis of systemic sclerosis based on the gene expression profile of progenitor-derived endothelial cells. Arthritis Rheum. 2011;63(11):3552–62.PubMedCrossRefGoogle Scholar
  69. 69.
    • Avouac J, Meune C, Ruiz B, Couraud PO, Uzan G, Boileau C, et al. Angiogenic biomarkers predict the occurrence of digital ulcers in systemic sclerosis. Ann Rheum Dis. 2012;71(3):394–9. Demonstrates the correlation of circulating EPCs and other angiogenic factors with vascular manifestations of SSc. These findings may help to stratify risk in SSc patients.PubMedCrossRefGoogle Scholar
  70. 70.
    Distler O, Distler JH, Scheid A, Acker T, Hirth A, Rethage J, et al. Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res. 2004;95(1):109–16.PubMedCrossRefGoogle Scholar
  71. 71.
    • Distler JH, Akhmetshina A, Dees C, Jüngel A, Stürzl M, Gay S, et al. Induction of apoptosis in circulating angiogenic cells by microparticles. Arthritis Rheum. 2011;63(7):2067–77. Highlights important area of research of vascular pathology in SSc.PubMedCrossRefGoogle Scholar
  72. 72.
    Manetti M, Guiducci S, Romano E, Ceccarelli C, Bellando-Randone S, Conforti ML, et al. Overexpression of VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, leads to insufficient angiogenesis in patients with systemic sclerosis. Circ Res. 2011;109(3):e14–26. Epub 2011 Jun 2.PubMedCrossRefGoogle Scholar
  73. 73.
    D'Alessio S, Fibbi G, Cinelli M, Guiducci S, Del Rosso A, Margheri F, et al. Matrix metalloproteinase 12-dependent cleavage of urokinase receptor in systemic sclerosis microvascular endothelial cells results in impaired angiogenesis. Arthritis Rheum. 2004;50(10):3275–85.PubMedCrossRefGoogle Scholar
  74. 74.
    Iwamoto N, Vettori S, Maurer B, Brock M, Calcagni M, Gay RE, et al. Downregulation of miR-193b in systemic sclerosis regulates the proliferation vasculopathy by urokinase type plasminogen activator expression. American College of Rheumatology Annual Scientific Meeting 2011 November: Abstract 0605.Google Scholar
  75. 75.
    Postiglione L, Montuori N, Riccio A, Di Spigna G, Salzano S, Rossi G, et al. The plasminogen activator system in fibroblasts from systemic sclerosis. Int J Immunopathol Pharmacol. Jul–Sep; 23(3):891–900.Google Scholar
  76. 76.
    Margheri F, Manetti M, Serratì S, Nosi D, Pucci M, Matucci-Cerinic M, et al. Domain 1 of the urokinase-type plasminogen activator receptor is required for its morphologic and functional, beta2 integrin-mediated connection with actin cytoskeleton in human microvascular endothelial cells: failure of association in systemic sclerosis endothelial cells. Arthritis Rheum. 2006;54(12):3926–38.PubMedCrossRefGoogle Scholar
  77. 77.
    • Margheri F, Serratì S, Lapucci A, Chillà A, Bazzichi L, Bombardieri S, et al. Modulation of the angiogenic phenotype of normal and systemic sclerosis endothelial cells by gain-loss of function of pentraxin 3 and matrix metalloproteinase 12. Arthritis Rheum. 2010;62(8):2488–98. Highlights the role of MMP-12 and uPAR in vascular pathogenesis of SSc.PubMedCrossRefGoogle Scholar
  78. 78.
    Helmbold P, Fiedler E, Fischer M, Marsch WC. Hyperplasia of dermal microvascular pericytes in scleroderma. J Cutan Pathol. 2004;31:431–40.PubMedCrossRefGoogle Scholar
  79. 79.
    Dees C, Akhmetshina A, Pawel Z, Reich N, Palumbo K, Horn A, et al. Platelet-derived serotonin links vascular disease and tissue fibrosis. J Exp Med. 2011;208(5):961–72.PubMedCrossRefGoogle Scholar
  80. 80.
    Distler JH, Akhmetshina A, Schett G, Distler O. Monocyte chemoattractant proteins in the pathogenesis of systemic sclerosis. Rheumatology (Oxford). 2009;48:98–103.CrossRefGoogle Scholar
  81. 81.
    Distler O, Pap T, Kowal-Bielecka O, Meyringer R, Guiducci S, Landthaler M, et al. Overexpression of monocyte chemoattractant protein 1 in systemic sclerosis: role of platelet-derived growth factor and effects on monocyte chemotaxis and collagen synthesis. Arthritis Rheum. 2001;44:2665–78.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.LSU Scleroderma and Sarcoidosis Patient Care and Research CenterLouisiana State University Health Sciences CenterNew OrleansUSA
  2. 2.Center of Experimental RheumatologyUniversity Hospital and Zurich Center of Integrative Human Physiology (ZIHP)ZurichSwitzerland

Personalised recommendations