Current Rheumatology Reports

, Volume 13, Issue 2, pp 160–166 | Cite as

The Role of Uric Acid as an Endogenous Danger Signal in Immunity and Inflammation

  • Faranak Ghaemi-Oskouie
  • Yan ShiEmail author


Gout is an ancient disease that still plagues us. Its pathogenic culprit, uric acid crystal deposition in tissues, is a strong inflammatory stimulant. In recent years, the mechanisms through which uric acid crystals promote inflammation have been a subject of increasing interest among rheumatologists and immunologists. Uric acid has been identified as an endogenous adjuvant that drives immune responses in the absence of microbial stimulation. Because uric acid is a ubiquitous metabolite that is produced in high quantities upon cellular injury, the ramifications of its effects may be considerable in health and in disease. Uric acid crystals also have been shown to trigger interleukin-1β–mediated inflammation via activation of the NOD-like receptor protein (NLRP)3 inflammasome, a multimolecular complex whose activation appears to be central to many pathological inflammatory conditions. In this article, we review the possible mechanisms of uric acid–mediated inflammation and offer some historical perspectives on what has been learned about the complex effects of a relatively simple substance.


Uric acid Monosodium urate Inflammation Adjuvanticity NLRP3 IL-1β TLR Lipids 



No potential conflicts of interest relevant to this article were reported.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Dunn JP, Brooks GW, Mausner J, Rodnan GP, Cobb S. Social class gradient of serum uric acid levels in males. JAMA. 1963; 185:431-6.Google Scholar
  2. 2.
    •• Terkeltaub R. Update on gout: new therapeutic strategies and options. Nat Rev Rheumatol. 2010; 6:30-8. This is a comprehensive and contemporary review of gout. PubMedCrossRefGoogle Scholar
  3. 3.
    Smyth CJ, Holers VM. Gout, Hyperuricemia, and Other Crystal-Associated Arthropathies. New York: Marcel Dekker, 1998.Google Scholar
  4. 4.
    Enomoto A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002; 417:447-52.PubMedGoogle Scholar
  5. 5.
    Hooper DC, et al. Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci U S A 1998; 95:675-80.PubMedCrossRefGoogle Scholar
  6. 6.
    Seet RCS, et al. Is uric acid protective or deleterious in acute ischemic stroke? A prospective cohort study. Atherosclerosis. 2010; 209:215-9.PubMedCrossRefGoogle Scholar
  7. 7.
    Watanabe S, et al. Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension. 2002; 40:355-60.PubMedCrossRefGoogle Scholar
  8. 8.
    Sofaer JA, Emery AE. Genes for super-intelligence? J Med Genet. 1981; 18:410-3.PubMedCrossRefGoogle Scholar
  9. 9.
    Kanevets U, Sharma K, Dresser K, Shi Y. A role of IgM antibodies in monosodium urate crystal formation and associated adjuvanticity. J Immunol. 2009; 182:1912-8.PubMedCrossRefGoogle Scholar
  10. 10.
    Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature. 2003; 425:516-21.PubMedCrossRefGoogle Scholar
  11. 11.
    Steele TH. Hyperuricemic nephropathies. Nephron. 1999; 81 Suppl 1:45-9.PubMedCrossRefGoogle Scholar
  12. 12.
    Vitart V, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008; 40:437-42.PubMedCrossRefGoogle Scholar
  13. 13.
    Schlesinger N, Norquist JM, Watson DJ. Serum urate during acute gout. J Rheumatol. 2009; 36:1287-9.PubMedCrossRefGoogle Scholar
  14. 14.
    Fiddis RW, Vlachos N, Calvert PD. Studies of urate crystallisation in relation to gout. Ann Rheum Dis. 1983; 42 Suppl 1:12-5.PubMedCrossRefGoogle Scholar
  15. 15.
    Iwata H, Nishio S, Yokoyama M, Matsumoto A, Takeuchi M. Solubility of uric acid and supersaturation of monosodium urate: why is uric acid so highly soluble in urine? J Urol. 1989; 142:1095-8.PubMedGoogle Scholar
  16. 16.
    Kippen I, Klinenberg JR, Weinberger A, Wilcox WR. Factors affecting urate solubility in vitro. Ann Rheum Dis. 1974; 33:313-7.PubMedCrossRefGoogle Scholar
  17. 17.
    Tak HK, Cooper SM, Wilcox WR. Studies on the nucleation of monosodium urate at 37 degrees c. Arthritis Rheum. 1980; 23:574-80.PubMedCrossRefGoogle Scholar
  18. 18.
    Kam M, Perl-Treves D, Caspi D, Addadi L. Antibodies against crystals. FASEB J. 1992; 6:2608-13.PubMedGoogle Scholar
  19. 19.
    Kam M, Perl-Treves D, Sfez R, Addadi L. Specificity in the recognition of crystals by antibodies. J Mol Recognit. 1994; 7:257-64.PubMedCrossRefGoogle Scholar
  20. 20.
    Landis RC, Haskard DO. Pathogenesis of crystal-induced inflammation. Curr Rheumatol Rep. 2001; 3:36-41.PubMedCrossRefGoogle Scholar
  21. 21.
    Nagase M, Baker DG, Schumacher HR, Jr. Immunoglobulin G coating on crystals and ceramics enhances polymorphonuclear cell superoxide production: correlation with immunoglobulin G adsorbed. J Rheumatol. 1989; 16:971-6.PubMedGoogle Scholar
  22. 22.
    Ortiz-Bravo E, Sieck MS, Schumacher HR, Jr. Changes in the proteins coating monosodium urate crystals during active and subsiding inflammation. Immunogold studies of synovial fluid from patients with gout and of fluid obtained using the rat subcutaneous air pouch model. Arthritis Rheum. 1993; 36:1274-85.PubMedCrossRefGoogle Scholar
  23. 23.
    Kozin F, McCarty DJ. Molecular orientation of immunoglobulin G adsorbed to microcrystalline monosodium urate monohydrate. J Lab Clin Med. 1980; 95:49-58.PubMedGoogle Scholar
  24. 24.
    Barabe F, Gilbert C, Liao N, Bourgoin SG, Naccache PH. Crystal-induced neutrophil activation VI. Involvment of FcgammaRIIIB (CD16) and CD11b in response to inflammatory microcrystals. FASEB J. 1998; 12:209-20.PubMedGoogle Scholar
  25. 25.
    Desaulniers P, Fernandes M, Gilbert C, Bourgoin SG, Naccache PH. Crystal-induced neutrophil activation. VII. Involvement of Syk in the responses to monosodium urate crystals. J Leukoc Biol. 2001; 70:659-68.PubMedGoogle Scholar
  26. 26.
    Terkeltaub R, Tenner AJ, Kozin F, Ginsberg MH. Plasma protein binding by monosodium urate crystals. Analysis by two-dimensional gel electrophoresis. Arthritis Rheum. 1983; 26:775-83.PubMedCrossRefGoogle Scholar
  27. 27.
    Naff GB, Byers PH. Complement as a mediator of inflammation in acute gouty arthritis. I. Studies on the reaction between human serum complement and sodium urate crystals. J Lab Clin Med. 1973; 81:747-60.PubMedGoogle Scholar
  28. 28.
    Fields TR, Abramson SB, Weissmann G, Kaplan AP, Ghebrehiwet B. Activation of the alternative pathway of complement by monosodium urate crystals. Clin Immunol Immunopathol. 1983; 26:249-57.PubMedCrossRefGoogle Scholar
  29. 29.
    Tramontini N, Huber C, Liu-Bryan R, Terkeltaub RA, Kilgore KS. Central role of complement membrane attack complex in monosodium urate crystal-induced neutrophilic rabbit knee synovitis. Arthritis Rheum. 2004; 50:2633-9.PubMedCrossRefGoogle Scholar
  30. 30.
    Liu-Bryan R, Pritzker K, Firestein GS, Terkeltaub R. TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation. J Immunol. 2005; 174:5016-23.PubMedGoogle Scholar
  31. 31.
    Liu-Bryan R, Scott P, Sydlaske A, Rose DM, Terkeltaub R. Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum. 2005; 52:2936-46.PubMedCrossRefGoogle Scholar
  32. 32.
    Scott P, Ma H, Viriyakosol S, Terkeltaub R, Liu-Bryan R. Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. J Immunol. 2006; 177:6370-8.PubMedGoogle Scholar
  33. 33.
    Chen CJ, et al. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest. 2006; 116:2262-71.PubMedCrossRefGoogle Scholar
  34. 34.
    • Ng G, et al. Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity. 2008; 29:807-18. This report suggests lipid sorting may be a mechanism for MSU-mediated activation. PubMedCrossRefGoogle Scholar
  35. 35.
    Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006; 440:237-41.PubMedCrossRefGoogle Scholar
  36. 36.
    • Hoffman HM, et al. Role of the leucine-rich repeat domain of cryopyrin/NALP3 in monosodium urate crystal-induced inflammation in mice. Arthritis Rheum. 2010; 62:2170-9. This article presents structural insight into how NLRP3 may handle MSU-initiated activation. PubMedGoogle Scholar
  37. 37.
    Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature. 2008; 453:1122-6.PubMedCrossRefGoogle Scholar
  38. 38.
    Kool M, et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med. 2008; 205:869-82.PubMedCrossRefGoogle Scholar
  39. 39.
    Kool M, et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol. 2008; 181:3755-9.PubMedGoogle Scholar
  40. 40.
    •• Hornung V, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008; 9:847-56. This article discusses a potential pathway for MSU-mediated IL-1β production. PubMedCrossRefGoogle Scholar
  41. 41.
    De Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966; 28:435-92.PubMedCrossRefGoogle Scholar
  42. 42.
    Mandel NS. The structural basis of crystal-induced membranolysis. Arthritis Rheum. 1976; 19 Suppl 3:439-45.PubMedCrossRefGoogle Scholar
  43. 43.
    Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med. 2007; 13:851-6.PubMedCrossRefGoogle Scholar
  44. 44.
    Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008; 359:1811-21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Microbiology and Infectious Disease and Immunology Research GroupUniversity of CalgaryCalgaryCanada

Personalised recommendations