Advertisement

Current Rheumatology Reports

, Volume 12, Issue 2, pp 135–141 | Cite as

Update on Biology: Uric Acid and the Activation of Immune and Inflammatory Cells

  • Fabio Martinon
Article

Abstract

Gout is a common metabolic disorder characterized by elevated uric acid leading to the formation and accumulation of uric acid crystals in synovial fluids. An attack of gout is characterized by intense, self-limited bouts of acute arthritis with excruciating pain. The mechanisms regulating initiation and resolution of gouty inflammation are still unclear. A significant though incomplete body of information implicating the innate immune system as a central component of immune and inflammatory cell activation in gout has been accumulated over the past few years. In this review, advances in the understanding of the basic biology of crystal-mediated inflammation are summarized. The emerging role of the inflammasome and the cytokine interleukin-1 in the initiation of acute gout is highlighted. How these findings may open a door to a new approach for therapy with the development of interleukin-1 antagonists is discussed.

Keywords

Inflammasome Autoinflammation Uric acid Gout Innate immunity 

Notes

Disclosure

No potential conflict of interest relevant to this article was reported.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Doherty M: New insights into the epidemiology of gout. Rheumatology 2009, 48:ii2–ii8.CrossRefPubMedGoogle Scholar
  2. 2.
    Richette P, Bardin T: Gout. Lancet 2010, 375:318–328.CrossRefPubMedGoogle Scholar
  3. 3.
    Mandell BF: Clinical manifestations of hyperuricemia and gout. Cleve Clin J Med 2008, 75(Suppl 5):S5–S8.CrossRefPubMedGoogle Scholar
  4. 4.
    Faires J, McCarty D: Acute arthritis in man and dog after intrasynovial injection of sodium. Lancet 1962, 280:682–685.CrossRefGoogle Scholar
  5. 5.
    Neogi T: Asymptomatic hyperuricemia: perhaps not so benign? J Rheumatol 2008, 35:734–737.PubMedGoogle Scholar
  6. 6.
    Mcgill NW, Dieppe PA: Evidence for a promoter of urate crystal formation in gouty synovial fluid. Ann Rheum Dis 1991, 50:558–561.CrossRefPubMedGoogle Scholar
  7. 7.
    Mcgill NW, Hayes A, Dieppe PA: Morphological evidence for biological control of urate crystal formation in vivo and in vitro. Scand J Rheumatol 1992, 21:215–219.CrossRefPubMedGoogle Scholar
  8. 8.
    Kanevets U, Sharma K, Dresser K, Shi Y: A role of IgM antibodies in monosodium urate crystal formation and associated adjuvanticity. J Immunol 2009, 182:1912–1918.CrossRefPubMedGoogle Scholar
  9. 9.
    Shi Y, Mucsi AD, Ng G: Monosodium urate crystals in inflammation and immunity. Immunol Rev 2010, 233:203–217.CrossRefPubMedGoogle Scholar
  10. 10.
    •• Martin WJ, Harper JL: Innate inflammation and resolution in acute gout. Immunol Cell Biol 2010, 88:15–19. This is an excellent review focusing on the emerging role of mononuclear phagocytes in both the initiation and resolution of acute gout, and the interplay between monocytes and other elements of the innate immune response, including neutrophils, and complement protein activation.CrossRefPubMedGoogle Scholar
  11. 11.
    Martin WJ, Walton M, Harper J: Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal-induced murine peritoneal model of acute gout. Arthritis Rheum 2009, 60:281–289.CrossRefPubMedGoogle Scholar
  12. 12.
    Chen CJ, Shi Y, Hearn A, et al.: MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest 2006, 116:2262–2271.CrossRefPubMedGoogle Scholar
  13. 13.
    Popa-Nita O, Naccache PH: Crystal-induced neutrophil activation. Immunol Cell Biol 2010, 88:32–40.CrossRefPubMedGoogle Scholar
  14. 14.
    Shi Y, Evans JE, Rock KL: Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003, 425:516–521.CrossRefPubMedGoogle Scholar
  15. 15.
    Shi Y, Galusha SA, Rock KL: Cutting edge: elimination of an endogenous adjuvant reduces the activation of CD8 T lymphocytes to transplanted cells and in an autoimmune diabetes model. J Immunol 2006, 176:3905–3908.PubMedGoogle Scholar
  16. 16.
    Kool M, Soullié T, Van Nimwegen M, et al.: Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med 2008, 205:869–882.CrossRefPubMedGoogle Scholar
  17. 17.
    Eisenbarth SC, Colegio OR, O’Connor W, et al.: Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 2008, 453:1122–1126.CrossRefPubMedGoogle Scholar
  18. 18.
    Martinon F, Mayor A, Tschopp J: The inflammasomes: guardians of the body. Annu Rev Immunol 2009, 27:229–265.CrossRefPubMedGoogle Scholar
  19. 19.
    Liu-Bryan R, Scott P, Sydlaske A, et al.: Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum 2005, 52:2936–2946.CrossRefPubMedGoogle Scholar
  20. 20.
    Scott P, Ma H, Viriyakosol S, et al.: Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. J Immunol 2006, 177:6370–6378.PubMedGoogle Scholar
  21. 21.
    • Ng G, Sharma K, Ward SM, et al.: Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 2008, 29:807–818. This study provides insight into receptor-independent signaling by MSUs.CrossRefPubMedGoogle Scholar
  22. 22.
    Dostert C, Petrilli V, Van Bruggen R, et al.: Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008, 320:674–677.CrossRefPubMedGoogle Scholar
  23. 23.
    Martinon F, Pétrilli V, Mayor A, et al.: Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006, 440:237–241.CrossRefPubMedGoogle Scholar
  24. 24.
    Stutz A, Golenbock DT, Latz E: Inflammasomes: too big to miss. J Clin Invest 2009, 119:3502–3511.CrossRefPubMedGoogle Scholar
  25. 25.
    Martinon F, Burns K, Tschopp J: The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002, 10:417–426.CrossRefPubMedGoogle Scholar
  26. 26.
    •• Sims JE, Smith DE: The IL-1 family: regulators of immunity. Nat Rev Immunol 2010, 10:89–102. This is an excellent review providing an updated overview of the biological activities of the IL-1 family.CrossRefPubMedGoogle Scholar
  27. 27.
    Brodsky IE, Monack D: NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin Immunol 2009, 21:199–207.CrossRefPubMedGoogle Scholar
  28. 28.
    •• Schroder K, Zhou R, Tschopp J: The NLRP3 inflammasome: a sensor for metabolic danger? Science 2010, 327:296–300. This is an excellent essay discussing the possible role of the NLRP3 inflammasome in metabolic disorders, including T2DM.CrossRefPubMedGoogle Scholar
  29. 29.
    Agostini L, Martinon F, Burns K, et al.: NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 2004, 20:319–325.CrossRefPubMedGoogle Scholar
  30. 30.
    Mayor A, Martinon F, De Smedt T, et al.: A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol 2007, 8:497–503.CrossRefPubMedGoogle Scholar
  31. 31.
    Martinon F: Mechanisms of uric acid crystal-mediated autoinflammation. Immunol Rev 2010, 233:218–232.CrossRefPubMedGoogle Scholar
  32. 32.
    Sautin YY, Nakagawa T, Zharikov S, Johnson RJ: Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol 2007, 293:C584–C596.CrossRefPubMedGoogle Scholar
  33. 33.
    • Zhou R, Tardivel A, Thorens B, et al.: Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 2010, 11:136–140. This study provided a significant advance in the understanding of NLRP3 activation. It identified TXNIP as a direct activator of NLRP3.CrossRefPubMedGoogle Scholar
  34. 34.
    Coeshott C, Ohnemus C, Pilyavskaya A, et al.: Converting enzyme-independent release of tumor necrosis factor alpha and IL-1beta from a stimulated human monocytic cell line in the presence of activated neutrophils or purified proteinase 3. Proc Natl Acad Sci U S A 1999, 96:6261–6266.CrossRefPubMedGoogle Scholar
  35. 35.
    • Joosten LA, Netea MG, Fantuzzi G, et al.: Inflammatory arthritis in caspase 1 gene-deficient mice: contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1beta. Arthritis Rheum 2009, 60:3651–3662. This study suggests a role for PR3-mediated IL-1 activation in vivo.CrossRefPubMedGoogle Scholar
  36. 36.
    Rider TG, Jordan KM: The modern management of gout. Rheumatology 2010, 49:5–14.CrossRefPubMedGoogle Scholar
  37. 37.
    Terkeltaub R: Update on gout: new therapeutic strategies and options. Nat Rev Rheumatol 2010, 6:30–38.CrossRefPubMedGoogle Scholar
  38. 38.
    Bardin T: Acute inflammatory arthritis: interleukin-1 blockade: a magic wand for gout? Nat Rev Rheumatol 2009, 5:594–596.CrossRefPubMedGoogle Scholar
  39. 39.
    Masters SL, Simon A, Aksentijevich I, Kastner DL: Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu Rev Immunol 2009, 27:621–668.CrossRefPubMedGoogle Scholar
  40. 40.
    Goldbach-Mansky R, Dailey NJ, Canna SW, et al.: Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 2006, 355:581–592.CrossRefPubMedGoogle Scholar
  41. 41.
    Hawkins PN, Lachmann HJ, McDermott MF: Interleukin-1-receptor antagonist in the Muckle-Wells syndrome. N Engl J Med 2003, 348:2583–2584.CrossRefPubMedGoogle Scholar
  42. 42.
    Church LD, McDermott MF: Rilonacept in cryopyrin-associated periodic syndromes: the beginning of longer-acting interleukin-1 antagonism. Nat Clin Pract Rheumatol 2009, 5:14–15.CrossRefPubMedGoogle Scholar
  43. 43.
    Terkeltaub R, Sundy JS, Schumacher HR, et al.: The interleukin 1 inhibitor rilonacept in treatment of chronic gouty arthritis: results of a placebo-controlled, monosequence crossover, non-randomised, single-blind pilot study. Ann Rheum Dis 2009, 68:1613–1617.CrossRefPubMedGoogle Scholar
  44. 44.
    Lachmann HJ, Lowe P, Felix SD, et al.: In vivo regulation of interleukin 1beta in patients with cryopyrin-associated periodic syndromes. J Exp Med 2009, 206:1029–1036.CrossRefPubMedGoogle Scholar
  45. 45.
    Stack JH, Beaumont K, Larsen PD, et al.: IL-converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J Immunol 2005, 175:2630–2634.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Immunology and Infectious DiseasesHarvard School of Public HealthBostonUSA

Personalised recommendations