Advertisement

The role of Toll-like receptors in rheumatoid arthritis

  • Qi-Quan Huang
  • Richard M. Pope
Article

Abtract

An increasing body of data supports the role of the innate immune system in the pathogenesis of rheumatoid arthritis (RA). Toll-like receptors (TLRs) are expressed by cells within the RA joint and various endogenous TLR ligands are present within the inflamed joints of patients with RA. Further, various animal models suggest that TLR signaling is important in the pathogenesis of disease. Overall, the data suggest that activation by endogenous TLR ligands may contribute to the persistent expression of proinflammatory cytokines by macrophages and the joint damage to cartilage and bone that occurs in RA. The data support a potential role for suppression of TLR signaling as a novel therapeutic approach in patients with RA.

Keywords

Rheumatoid Arthritis TLR4 Ligand Rheumatoid Arthritis Synovial Tissue Rheumatoid Arthritis Joint Streptococcal Cell Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Recommended Reading

  1. 1.
    Wijbrandts CA, Vergunst CE, Haringman JJ, et al.: Absence of changes in the number of synovial sublining macrophages after ineffective treatment for rheumatoid arthritis: implications for use of synovial sublining macrophages as a biomarker. Arthritis Rheum 2007, 56:3869–3871.PubMedCrossRefGoogle Scholar
  2. 2.
    Akira S, Uematsu S, Takeuchi O: Pathogen recognition and innate immunity. Cell 2006, 124:783–801.PubMedCrossRefGoogle Scholar
  3. 3.
    Iwahashi M, Yamamura M, Aita T, et al.: Expression of Toll-like receptor 2 on CD16+ blood monocytes and synovial tissue macrophages in rheumatoid arthritis. Arthritis Rheum 2004, 50:1457–1467.PubMedCrossRefGoogle Scholar
  4. 4.
    Sorensen LK, Havemose-Poulsen A, Sonder SU, et al.: Blood cell gene expression profiling in subjects with aggressive periodontitis and chronic arthritis. J Periodontol 2008, 79:477–485.PubMedCrossRefGoogle Scholar
  5. 5.
    Radstake TR, Roelofs MF, Jenniskens YM, et al.: Expression of toll-like receptors 2 and 4 in rheumatoid synovial tissue and regulation by proinflammatory cytokines interleukin-12 and interleukin-18 via interferon-gamma. Arthritis Rheum 2004, 50:3856–3865.PubMedCrossRefGoogle Scholar
  6. 6.
    Roelofs MF, Joosten LA, Abdollahi-Roodsaz S, et al.: The expression of toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of tolllike receptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells. Arthritis Rheum 2005, 52:2313–2322.PubMedCrossRefGoogle Scholar
  7. 7.
    Ospelt C, Brentano F, Rengel Y, et al.: Overexpression of toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: toll-like receptor expression in early and longstanding arthritis. Arthritis Rheum 2008, 58:3684–3692.PubMedCrossRefGoogle Scholar
  8. 8.
    Seibl R, Birchler T, Loeliger S, et al.: Expression and regulation of Toll-like receptor 2 in rheumatoid arthritis synovium. Am J Pathol 2003, 162:1221–1227.PubMedGoogle Scholar
  9. 9.
    Huang Q, Ma Y, Adebayo A, Pope RM: Increased macrophage activation mediated through toll-like receptors in rheumatoid arthritis. Arthritis Rheum 2007, 56:2192–2201.PubMedCrossRefGoogle Scholar
  10. 10.
    Kim KW, Cho ML, Lee SH, et al.: Human rheumatoid synovial fibroblasts promote osteoclastogenic activity by activating RANKL via TLR-2 and TLR-4 activation. Immunol Lett 2007, 110:54–64.PubMedCrossRefGoogle Scholar
  11. 11.
    Huang QQ, Sobkoviak R, Jockheck-Clark AR, et al.: Heat shock protein 96 is elevated in rheumatoid arthritis and activates macrophages primarily via TLR2 signaling. J Immunol 2009, 182:4965–4973.PubMedCrossRefGoogle Scholar
  12. 12.
    Roelofs MF, Boelens WC, Joosten LA, et al.: Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J Immunol 2006, 176:7021–7027.PubMedGoogle Scholar
  13. 13.
    Termeer C, Benedix F, Sleeman J, et al.: Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 2002, 195:99–111.PubMedCrossRefGoogle Scholar
  14. 14.
    Taniguchi N, Kawahara K, Yone K, et al.: High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum 2003, 48:971–981.PubMedCrossRefGoogle Scholar
  15. 15.
    Park JS, Svetkauskaite D, He Q, et al.: Involvement of tolllike receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 2004, 279:7370–7377.PubMedCrossRefGoogle Scholar
  16. 16.
    Schaefer L, Babelova A, Kiss E, et al.: The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest 2005, 115:2223–2233.PubMedCrossRefGoogle Scholar
  17. 17.
    Cheng N, He R, Tian J, et al.: Cutting edge: TLR2 is a functional receptor for acute-phase serum amyloid A. J Immunol 2008, 181:22–26.PubMedGoogle Scholar
  18. 18.
    Abdollahi-Roodsaz S, Joosten LA, Koenders MI, et al.: Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Invest 2008, 118:205–216.PubMedCrossRefGoogle Scholar
  19. 19.
    Sacre SM, Andreakos E, Kiriakidis S, et al.: The Tolllike receptor adaptor proteins MyD88 and Mal/TIRAP contribute to the inflammatory and destructive processes in a human model of rheumatoid arthritis. Am J Pathol 2007, 170:518–525.PubMedCrossRefGoogle Scholar
  20. 20.
    Kyburz D, Rethage J, Seibl R, et al.: Bacterial peptidoglycans but not CpG oligodeoxynucleotides activate synovial fibroblasts by toll-like receptor signaling. Arthritis Rheum 2003, 48:642–650.PubMedCrossRefGoogle Scholar
  21. 21.
    Cho ML, Ju JH, Kim HR, et al.: Toll-like receptor 2 ligand mediates the upregulation of angiogenic factor, vascular endothelial growth factor and interleukin-8/CXCL8 in human rheumatoid synovial fibroblasts. Immunol Lett 2007, 108:121–128.PubMedCrossRefGoogle Scholar
  22. 22.
    Jung YO, Cho ML, Kang CM, et al.: Toll-like receptor 2 and 4 combination engagement upregulate IL-15 synergistically in human rheumatoid synovial fibroblasts. Immunol Lett 2007, 109:21–27.PubMedCrossRefGoogle Scholar
  23. 23.
    Roelofs MF, Wenink MH, Brentano F, et al.: Type I interferons might form the link between Toll-like receptor (TLR) 3/7 and TLR4 mediated synovial inflammation in rheumatoid arthritis (RA). Ann Rheum Dis 2008 Sep 2 (Epub ahead of print).Google Scholar
  24. 24.
    Yoshizawa T, Hammaker D, Sweeney SE, et al.: Synoviocyte innate immune responses: I. Differential regulation of interferon responses and the JNK pathway by MAPK kinases. J Immunol 2008, 181:3252–3258.PubMedGoogle Scholar
  25. 25.
    Hu X, Chakravarty SD, Ivashkiv LB: Regulation of interferon and Toll-like receptor signaling during macrophage activation by opposing feedforward and feedback inhibition mechanisms. Immunol Rev 2008, 226:41–56.PubMedCrossRefGoogle Scholar
  26. 26.
    Shahrara S, Huang Q, Mandelin AM 2nd, Pope RM: TH-17 cells in rheumatoid arthritis. Arthritis Res Ther 2008, 10:R93.PubMedCrossRefGoogle Scholar
  27. 27.
    Kowalski ML, Wolska A, Grzegorczyk J, et al.: Increased responsiveness to toll-like receptor 4 stimulation in peripheral blood mononuclear cells from patients with recent onset rheumatoid arthritis. Mediators Inflamm 2008:132732.Google Scholar
  28. 28.
    Sacre SM, Lo A, Gregory B, et al.: Inhibitors of TLR8 reduce TNF production from human rheumatoid synovial membrane cultures. J Immunol 2008, 181:8002–8009.PubMedGoogle Scholar
  29. 29.
    Brentano F, Schorr O, Gay RE, et al.: RNA released from necrotic synovial fluid cells activates rheumatoid arthritis synovial fibroblasts via Toll-like receptor 3. Arthritis Rheum 2005, 52:2656–2665.PubMedCrossRefGoogle Scholar
  30. 30.
    Cavassani KA, Ishii M, Wen H, et al.: TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J Exp Med 2008, 205:2609–2621.PubMedCrossRefGoogle Scholar
  31. 31.
    Shahrara S, Park CC, Temkin V, et al.: RANTES modulates TLR4-induced cytokine secretion in human peripheral blood monocytes. J Immunol 2006, 177:5077–5087.PubMedGoogle Scholar
  32. 32.
    Ma Y, Liu H, Tu-Rapp H, et al.: Fas ligation on macrophages enhances IL-1R1-Toll-like receptor 4 signaling and promotes chronic inflammation. Nat Immunol 2004, 5:380–387.PubMedCrossRefGoogle Scholar
  33. 33.
    Ivashkiv LB: Cross-regulation of signaling by ITAM-associated receptors. Nat Immunol 2009, 10:340–347.PubMedCrossRefGoogle Scholar
  34. 34.
    Turer EE, Tavares RM, Mortier E, et al.: Homeostatic MyD88-dependent signals cause lethal inflammation in the absence of A20. J Exp Med 2008, 205:451–464.PubMedCrossRefGoogle Scholar
  35. 35.
    Litvak V, Ramsey SA, Rust AG, et al.: Function of C/EBPdelta in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nat Immunol 2009, 10:437–443.PubMedCrossRefGoogle Scholar
  36. 36.
    Bazzoni F, Rossato M, Fabbri M, et al.: Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci U S A 2009, 106:5282–5287.PubMedCrossRefGoogle Scholar
  37. 37.
    Joosten LA, Koenders MI, Smeets RL, et al.: Toll-like receptor 2 pathway drives streptococcal cell wall-induced joint inflammation: critical role of myeloid differentiation factor 88. J Immunol 2003, 171:6145–6153.PubMedGoogle Scholar
  38. 38.
    Joosten LA, Abdollahi-Roodsaz S, Heuvelmans-Jacobs M, et al.: T cell dependence of chronic destructive murine arthritis induced by repeated local activation of Toll-like receptor-driven pathways: crucial role of both interleukin-1beta and interleukin-17. Arthritis Rheum 2008, 58:98–108.PubMedCrossRefGoogle Scholar
  39. 39.
    Abdollahi-Roodsaz S, Joosten LA, Helsen MM, et al.: Shift from toll-like receptor 2 (TLR-2) toward TLR-4 dependency in the erosive stage of chronic streptococcal cell wall arthritis coincident with TLR-4-mediated interleukin-17 production. Arthritis Rheum 2008, 58:3753–3764.PubMedCrossRefGoogle Scholar
  40. 40.
    Abdollahi-Roodsaz S, Joosten LA, Roelofs MF, et al.: Inhibition of Toll-like receptor 4 breaks the inflammatory loop in autoimmune destructive arthritis. Arthritis Rheum 2007, 56:2957–2967.PubMedCrossRefGoogle Scholar
  41. 41.
    Tada Y, Koarada S, Morito F, et al.: Toll-like receptor homolog RP105 modulates the antigen-presenting cell function and regulates the development of collagen-induced arthritis. Arthritis Res Ther 2008, 10:R121.PubMedCrossRefGoogle Scholar
  42. 42.
    Divanovic S, Trompette A, Atabani SF, et al.: Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol 2005, 6:571–578.PubMedCrossRefGoogle Scholar
  43. 43.
    Wu HJ, Sawaya H, Binstadt B, et al.: Inflammatory arthritis can be reined in by CpG-induced DC-NK cell cross talk. J Exp Med 2007, 204:1911–1922.PubMedCrossRefGoogle Scholar
  44. 44.
    Choe JY, Crain B, Wu SR, Corr M: Interleukin 1 receptor dependence of serum transferred arthritis can be circumvented by toll-like receptor 4 signaling. J Exp Med 2003, 197:537–542.PubMedCrossRefGoogle Scholar
  45. 45.
    van Lent PL, Blom AB, Grevers L, et al.: Toll-like receptor 4 induced FcgammaR expression potentiates early onset of joint inflammation and cartilage destruction during immune complex arthritis: Toll-like receptor 4 largely regulates FcgammaR expression by interleukin 10. Ann Rheum Dis 2007, 66:334–340.PubMedCrossRefGoogle Scholar
  46. 46.
    Zare F, Bokarewa M, Nenonen N, et al.: Arthritogenic properties of double-stranded (viral) RNA. J Immunol 2004, 172:5656–5663.PubMedGoogle Scholar
  47. 47.
    Meylan E, Tschopp J, Karin M: Intracellular pattern recognition receptors in the host response. Nature 2006, 442:39–44.PubMedCrossRefGoogle Scholar
  48. 48.
    Yarilina A, DiCarlo E, Ivashkiv LB: Suppression of the effector phase of inflammatory arthritis by double-stranded RNA is mediated by type I IFNs. J Immunol 2007, 178:2204–2211.PubMedGoogle Scholar
  49. 49.
    Hayashi T, Gray CS, Chan M, et al.: Prevention of autoimmune disease by induction of tolerance to Toll-like receptor 7. Proc Natl Acad Sci U S A 2009, 106:2764–2769.PubMedCrossRefGoogle Scholar
  50. 50.
    Kanzler H, Barrat FJ, Hessel EM, Coffman RL: Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 2007, 13:552–559.PubMedCrossRefGoogle Scholar
  51. 51.
    Vanags D, Williams B, Johnson B, et al.: Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: a double-blind randomised trial. Lancet 2006, 368:855–863.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group, LLC 2009

Authors and Affiliations

  1. 1.Department of Medicine, Division of RheumatologyNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations