Tissue stiffness, latent TGF-β1 Activation, and mechanical signal transduction: Implications for the pathogenesis and treatment of fibrosis



Tissue stiffening is a predominant feature of fibrosis and it obstructs organs whose mechanical properties are important for their function, such as the heart, lung, skin, and vessels. Stiff scar tissue further modulates the character of the healthy residing cells by driving the differentiation of a variety of precursor cells into fibrogenic myofibroblasts. This mechanical cue for myofibroblast differentiation establishes a vicious cycle because the excessive extracellular matrix-secreting and remodeling activities of myofibroblasts are cause and effect of further connective tissue contracture and stiffening. The second pivotal factor inducing myofibroblast development is transforming growth factor-β1. Recent findings suggest that transforming growth factor-β1 activity is partly controlled by myofibroblast contractile forces and tissue stiffness. This discovery opens new paths to prevent progression of fibrosis by specifically interfering with the stress perception and transmission mechanisms of the myofibroblast.

References and Recommended Reading

  1. 1.
    Wynn TA: Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 2007, 117:524–529.PubMedCrossRefGoogle Scholar
  2. 2.
    Hinz B, Phan SH, Thannickal VJ, et al.: The myofibroblast: one function, multiple origins. Am J Pathol 2007, 170:1807–1816.PubMedCrossRefGoogle Scholar
  3. 3.
    Varga J, Abraham D: Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 2007, 117:557–567.PubMedCrossRefGoogle Scholar
  4. 4.
    Leask A: TGF-beta, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res 2007, 74:207–212.PubMedCrossRefGoogle Scholar
  5. 5.
    Hao H, Gabbiani G, Camenzind E, et al.: Phenotypic modulation of intima and media smooth muscle cells in fatal cases of coronary artery lesion. Arterioscler Thromb Vasc Biol 2006, 26:326–332.PubMedCrossRefGoogle Scholar
  6. 6.
    Guyot C, Lepreux S, Combe C, et al.: Hepatic fibrosis and cirrhosis: the (myo)fibroblastic cell subpopulations involved. Int J Biochem Cell Biol 2006, 38:135–151.PubMedGoogle Scholar
  7. 7.
    Thannickal VJ, Toews GB, White ES, et al.: Mechanisms of pulmonary fibrosis. Annu Rev Med 2004, 55:395–417.PubMedCrossRefGoogle Scholar
  8. 8.
    Liu Y: Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 2006, 69:213–217.PubMedCrossRefGoogle Scholar
  9. 9.
    De Wever O, Demetter P, Mareel M, Bracke M: Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 2008, 123:2229–2238.PubMedCrossRefGoogle Scholar
  10. 10.
    Wells RG, Discher DE: Matrix elasticity, cytoskeletal tension, and TGF-beta: the insoluble and soluble meet. Sci Signal 2008, 1:pe13.PubMedCrossRefGoogle Scholar
  11. 11.
    Goffin JM, Pittet P, Csucs G, et al.: Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J Cell Biol 2006, 172:259–268.PubMedCrossRefGoogle Scholar
  12. 12.
    Engler AJ, Carag-Krieger C, Johnson CP, et al.: Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 2008, 121:3794–3802.PubMedCrossRefGoogle Scholar
  13. 13.
    Heldin CH, Rubin K, Pietras K, Ostman A: High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 2004, 4:806–813.PubMedCrossRefGoogle Scholar
  14. 14.
    Paszek MJ, Zahir N, Johnson KR, et al.: Tensional homeostasis and the malignant phenotype. Cancer Cell 2005, 8:241–254.PubMedCrossRefGoogle Scholar
  15. 15.
    Zeisberg M, Kalluri R: Fibroblasts emerge via epithelial-mesenchymal transition in chronic kidney fibrosis. Front Biosci 2008, 13:6991–6998.PubMedCrossRefGoogle Scholar
  16. 16.
    Lee JM, Dedhar S, Kalluri R, Thompson EW: The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 2006, 172:973–981.PubMedCrossRefGoogle Scholar
  17. 17.
    Kim KK, Kugler MC, Wolters PJ, et al.: Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A 2006, 103:13180–13185.PubMedCrossRefGoogle Scholar
  18. 18.
    Rajkumar VS, Shiwen X, Bostrom M, et al.: Plateletderived growth factor-beta receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am J Pathol 2006, 169:2254–2265.PubMedCrossRefGoogle Scholar
  19. 19.
    Bellini A, Mattoli S: The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 2007, 87:858–870.PubMedCrossRefGoogle Scholar
  20. 20.
    Segers VF, Lee RT: Stem-cell therapy for cardiac disease. Nature 2008, 451:937–942.PubMedCrossRefGoogle Scholar
  21. 21.
    Ortiz LA, Gambelli F, McBride C, et al.: Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A 2003, 100:8407–8411.PubMedCrossRefGoogle Scholar
  22. 22.
    Prockop DJ, Olson SD: Clinical trials with adult stem/progenitor cells for tissue repair: let’s not overlook some essential precautions. Blood 2007, 109:3147–3151.PubMedCrossRefGoogle Scholar
  23. 23.
    Breitbach M, Bostani T, Roell W, et al.: Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 2007, 110:1362–1369.PubMedCrossRefGoogle Scholar
  24. 24.
    Ninichuk V, Gross O, Segerer S, et al.: Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. Kidney Int 2006, 70:121–129.PubMedCrossRefGoogle Scholar
  25. 25.
    di Bonzo LV, Ferrero I, Cravanzola C, et al.: Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut 2008, 57:223–231.PubMedCrossRefGoogle Scholar
  26. 26.
    Yan X, Liu Y, Han Q, et al.: Injured microenvironment directly guides the differentiation of engrafted Flk-1(+) mesenchymal stem cell in lung. Exp Hematol 2007, 35:1466–1475.PubMedCrossRefGoogle Scholar
  27. 27.
    Kandow CE, Georges PC, Janmey PA, Beningo KA: Polyacrylamide hydrogels for cell mechanics: steps toward optimization and alternative uses. Methods Cell Biol 2007, 83:29–46.PubMedCrossRefGoogle Scholar
  28. 28.
    Engler AJ, Sen S, Sweeney HL, Discher DE: Matrix elasticity directs stem cell lineage specification. Cell 2006, 126:677–689.PubMedCrossRefGoogle Scholar
  29. 29.
    Arora PD, Narani N, McCulloch CA: The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol 1999, 154:871–882.PubMedGoogle Scholar
  30. 30.
    Georges PC, Hui JJ, Gombos Z, et al.: Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am J Physiol Gastrointest Liver Physiol 2007, 293:G1147–G1154.PubMedCrossRefGoogle Scholar
  31. 31.
    Rhee S, Grinnell F: Fibroblast mechanics in 3D collagen matrices. Adv Drug Deliv Rev 2007, 59:1299–1305.PubMedCrossRefGoogle Scholar
  32. 32.
    Hinz B, Mastrangelo D, Iselin CE, et al.: Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 2001, 159:1009–1020.PubMedGoogle Scholar
  33. 33.
    Hinz B: Masters and servants of the force: the role of matrix adhesions in myofibroblast force perception and transmission. Eur J Cell Biol 2006, 85:175–181.PubMedCrossRefGoogle Scholar
  34. 34.
    Junker JP, Kratz C, Tollback A, Kratz G: Mechanical tension stimulates the transdifferentiation of fibroblasts into myofibroblasts in human burn scars. Burns 2008 (in press).Google Scholar
  35. 35.
    Aarabi S, Bhatt KA, Shi Y, et al.: Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. Faseb J 2007, 21:3250–3261.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhao XH, Laschinger C, Arora P, et al.: Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway. J Cell Sci 2007, 120:1801–1809.PubMedCrossRefGoogle Scholar
  37. 37.
    Wang J, Zohar R, McCulloch CA: Multiple roles of alpha-smooth muscle actin in mechanotransduction. Exp Cell Res 2006, 312:205–214.PubMedCrossRefGoogle Scholar
  38. 38.
    Wipff PJ, Rifkin DB, Meister JJ, Hinz B: Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol 2007, 179:1311–1323.PubMedCrossRefGoogle Scholar
  39. 39.
    ten Dijke P, Arthur HM: Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol 2007, 8:857–869.PubMedCrossRefGoogle Scholar
  40. 40.
    Wakefield LM, Stuelten C: Keeping order in the neighborhood: new roles for TGFbeta in maintaining epithelial homeostasis. Cancer Cell 2007, 12:293–295.PubMedCrossRefGoogle Scholar
  41. 41.
    Jenkins G: The role of proteases in transforming growth factor-beta activation. Int J Biochem Cell Biol 2008, 40:1068–1078.PubMedCrossRefGoogle Scholar
  42. 42.
    Varga J, Pasche B: Antitransforming growth factor-beta therapy in fibrosis: recent progress and implications for systemic sclerosis. Curr Opin Rheumatol 2008, 20:720–728.PubMedCrossRefGoogle Scholar
  43. 43.
    Wipff PJ, Hinz B: Integrins and the activation of latent transforming growth factor beta1—an intimate relationship. Eur J Cell Biol 2008, 87:601–615.PubMedCrossRefGoogle Scholar
  44. 44.
    Sheppard D: Integrin-mediated activation of latent transforming growth factor beta. Cancer Metastasis Rev 2005, 24:395–402.PubMedCrossRefGoogle Scholar
  45. 45.
    Annes JP, Chen Y, Munger JS, Rifkin DB: Integrin {alpha}V{beta}6-mediated activation of latent TGF-{beta} requires the latent TGF-{beta} binding protein-1. J Cell Biol 2004, 165:723–734.PubMedCrossRefGoogle Scholar
  46. 46.
    Jenkins RG, Su X, Su G, et al.: Ligation of protease-activated receptor 1 enhances alpha(v)beta6 integrin-dependent TGF-beta activation and promotes acute lung injury. J Clin Invest 2006, 116:1606–1614.PubMedCrossRefGoogle Scholar
  47. 47.
    Yang Z, Mu Z, Dabovic B, et al.: Absence of integrin-mediated TGF{beta}1 activation in vivo recapitulates the phenotype of TGF{beta}1-null mice. J Cell Biol 2007, 176:787–793.PubMedCrossRefGoogle Scholar
  48. 48.
    Asano Y, Ihn H, Yamane K, et al.: Increased expression of integrin alphavbeta5 induces the myofibroblastic differentiation of dermal fibroblasts. Am J Pathol 2006, 168:499–510.PubMedCrossRefGoogle Scholar
  49. 49.
    Van Aarsen LA, Leone DR, Ho S, et al.: Antibody-mediated blockade of integrin alpha v beta 6 inhibits tumor progression in vivo by a transforming growth factor-beta-regulated mechanism. Cancer Res 2008, 68:561–570.PubMedCrossRefGoogle Scholar
  50. 50.
    Ganter MT, Roux J, Miyazawa B, et al.: Interleukin-1beta causes acute lung injury via alphavbeta5 and alphavbeta6 integrin-dependent mechanisms. Circ Res 2008, 102:804–812.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group, LLC 2009

Authors and Affiliations

  1. 1.CIHR Group in Matrix Dynamics, Fitzgerald Building, Room 241University of TorontoTorontoCanada

Personalised recommendations