Current Rheumatology Reports

, Volume 10, Issue 3, pp 235–248

Non-crystalline and crystalline rheumatic disorders in chronic kidney disease

Article

Abstract

Rheumatic syndromes are cause for morbidity in patients with end-stage renal disease. Recent advances in understanding the role of tissue remodeling have provided insight into the pathogenic mechanisms responsible for some of these manifestations. Here, we survey recent and clinically relevant advances in translational research that impact our understanding of rheumatic syndromes seen in patients with significant renal disease. The management of acute and chronic crystalline arthropathies in chronic kidney disease and hemodialysis patients is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Brown EA, Gower PE: Joint problems in patients on maintenance hemodialysis. Clin Nephrol 1982, 18:247–250.PubMedGoogle Scholar
  2. 2.
    Goldstein S, Winston E, Chung TJ, et al.: Chronic arthropathy in long-term hemodialysis. Am J Med 1985, 78:82–86.PubMedCrossRefGoogle Scholar
  3. 3.
    Todd D, Kay J: Nephrogenic systemic fibrosis: an epidemic of gadolinium toxicity. Cur Rheum Rep 2008 10:195–204.CrossRefGoogle Scholar
  4. 4.
    Seeman E: Invited review: Pathogenesis of osteoporosis. J Appl Physiol 2003, 95:2142–2151.PubMedGoogle Scholar
  5. 5.
    Seeman E, Delmas PD: Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 2006, 354:2250–2261.PubMedCrossRefGoogle Scholar
  6. 6.
    Heaney RP: The bone remodeling transient: interpreting interventions involving bone-related nutrients. Nutr Rev 2001, 59:327–334.PubMedGoogle Scholar
  7. 7.
    Heaney RP: How does bone support calcium homeostasis? Bone, 2003, 33:264–268.PubMedCrossRefGoogle Scholar
  8. 8.
    Heaney RP: Is the paradigm shifting? Bone 2003, 33:457–465.PubMedCrossRefGoogle Scholar
  9. 9.
    Seeman E: Is a change in bone mineral density a sensitive and specific surrogate of anti-fracture efficacy? Bone 2007, 41:308–317.PubMedCrossRefGoogle Scholar
  10. 10.
    Elder G: Pathophysiology and recent advances in the management of renal osteodystrophy. J Bone Miner Res 2002, 17:2094–2105.PubMedCrossRefGoogle Scholar
  11. 11.
    Miller PD: Treatment of metabolic bone disease in patients with chronic renal disease: a perspective for rheumatologists. Curr Rheumatol Rep 2005, 7:53–60.PubMedCrossRefGoogle Scholar
  12. 12.
    Lewiecki EM, Miller PD: Renal safety of intravenous bisphosphonates in the treatment of osteoporosis. Expert Opin Drug Saf 2007, 6:663–672.PubMedCrossRefGoogle Scholar
  13. 13.
    Zierath JR, Hawley JA: Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 2004, 2:e348.PubMedCrossRefGoogle Scholar
  14. 14.
    Kopple JD, Storer T, Casburi R, et al.: Impaired exercise capacity and exercise training in maintenance hemodialysis patients. J Ren Nutr 2005, 15:44–48.PubMedCrossRefGoogle Scholar
  15. 15.
    Storer TW, Casaburi R, Sawelson S, Kopple JD: Endurance exercise training during haemodialysis improves strength, power, fatigability and physical performance in maintenance haemodialysis patients. Nephrol Dial Transplant 2005, 20:1429–1437.PubMedCrossRefGoogle Scholar
  16. 16.
    Harrison AP, Nielsen AH, Eidemak I, et al.: The uremic environment and muscle dysfunction in man and rat. Nephron Physiol 2006, 103:33–42.CrossRefGoogle Scholar
  17. 17.
    Campistol JM: Uremic myopathy. Kidney Int 2002, 62:1901–1913.PubMedCrossRefGoogle Scholar
  18. 18.
    Handschin C, Spiegelman BM: Peroxisome proliferatoractivated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 2006, 27:728–735.PubMedGoogle Scholar
  19. 19.
    Lecker SH, Jagoe RT, Gilbert A, et al.: Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 2004, 18:39–51.PubMedCrossRefGoogle Scholar
  20. 20.
    Jagoe RT, Lecker SH, Gomes M, Goldberg AL: Patterns of gene expression in atrophying skeletal muscles: response to food deprivation. FASEB J 2002, 16:1697–1712.PubMedCrossRefGoogle Scholar
  21. 21.
    Sandri M, Sandri C, Gilbert A, et al.: Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004, 117:399–412.PubMedCrossRefGoogle Scholar
  22. 22.
    Hanai J, Cao P, Tanksale P, et al.: The muscle-specific ubiquitin ligase atrogin-1/MAFbx mediates statin-induced muscle toxicity. J Clin Invest 2007, 117:3940–3951.PubMedGoogle Scholar
  23. 23.
    Levine S, Nguyen T, Taylor N, et al.: Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 2008, 358:1327–1335.PubMedCrossRefGoogle Scholar
  24. 24.
    Mammucari C, Milan G, Romanello V, et al.: FoxO3 controls autophagy in skeletal muscle in vivo. Cell Met 2007, 6:458–471.CrossRefGoogle Scholar
  25. 25.
    Raben N, Roberts A, Plotz PH: Role of autophagy in the pathogenesis of Pompe disease. Acta Myol 2007, 26:45–48.PubMedGoogle Scholar
  26. 26.
    Sandri M, Lin J, Handschin C, et al.: PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A 2006, 103:16260–16265.PubMedCrossRefGoogle Scholar
  27. 27.
    Bruusgaard JC, Gundersen K: In vivo time-lapse microscopy reveals no loss of murine myonuclei during weeks of muscle atrophy. J Clin Invest 2008, 118:1450–1457.PubMedCrossRefGoogle Scholar
  28. 28.
    Lee SJ: Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol 2004, 20:61–86.PubMedCrossRefGoogle Scholar
  29. 29.
    Gilson H, Schakman O, Combaret L, et al.: Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy. Endocrinology 2007, 148:452–460.PubMedCrossRefGoogle Scholar
  30. 30.
    Sun DF, Chen Y, Rabkin R: Work-induced changes in skeletal muscle IGF-1 and myostatin gene expression in uremia. Kidney Int 2006, 70:453–459.PubMedCrossRefGoogle Scholar
  31. 31.
    Mak RH, Rotwein P: Myostatin and insulin-like growth factors in uremic sarcopenia: the yin and yang in muscle mass regulation. Kidney Int 2006, 70:410–412.PubMedCrossRefGoogle Scholar
  32. 32.
    Zimmers TA, Davies MV, Koniaris LG, et al.: Induction of cachexia in mice by systemically administered myostatin. Science 2002, 296:1486–1488.PubMedCrossRefGoogle Scholar
  33. 33.
    Glerup H, Mikkelsen K, Poulsen L, et al.: Hypovitaminosis D myopathy without biochemical signs of osteomalacic bone involvement. Calcif Tissue Int 2000, 66:419–424.PubMedCrossRefGoogle Scholar
  34. 34.
    Krishnan AV, Kiernan MC: Uremic neuropathy: clinical features and new pathophysiological insights. Muscle Nerve 2007, 35:273–290.PubMedCrossRefGoogle Scholar
  35. 35.
    Baczynski R, Massry SG, Magott M, et al.: Effect of parathyroid hormone on energy metabolism of skeletal muscle. Kidney Int 1985, 28:722–727.PubMedCrossRefGoogle Scholar
  36. 36.
    Riley G: Tendinopathy—from basic science to treatment. Nat Clin Pract Rheumatol 2008, 4:82–89.PubMedCrossRefGoogle Scholar
  37. 37.
    Drummond AH, Beckett P, Brown PD, et al.: Preclinical and clinical studies of inhibitors in cancer. Ann N Y Acad Sci 1999, 878:228–235.PubMedCrossRefGoogle Scholar
  38. 38.
    Corps AN, Harrall RL, Curry VA, et al.: Ciprofloxacin enhances the stimulation of matrix metalloproteinase 3 expression by interleukin-1beta in human tendon-derived cells. A potential mechanism of fluoroquinolone-induced tendinopathy. Arthritis Rheum 2002, 46:3034–3040.PubMedCrossRefGoogle Scholar
  39. 39.
    Pasternak B, Fellenius M, Aspenberg P: Doxycycline impairs tendon repair in rats. Acta Orthop Belg 2006, 72:756–760.PubMedGoogle Scholar
  40. 40.
    Mendias CL, Bakhurin KI, Faulkner JA: Tendons of myostatin-deficient mice are small, brittle, and hypocellular. Proc Natl Acad Sci U S A 2008, 105:388–393.PubMedCrossRefGoogle Scholar
  41. 41.
    Shah MK: Simultaneous bilateral quadriceps tendon rupture in renal patients. Clin Nephrol 2002, 58:118–121.PubMedGoogle Scholar
  42. 42.
    Khaliq Y, Zhanel GG: Musculoskeletal injury associated with fluoroquinolone antibiotics. Clin Plast Surg 2005, 32:495–502.PubMedCrossRefGoogle Scholar
  43. 43.
    London GM, Marchais SJ, Guérin AP, Métivier F: Arteriosclerosis, vascular calcifications and cardiovascular disease in uremia. Curr Opin Nephrol Hypertens 2005, 14:525–531.PubMedCrossRefGoogle Scholar
  44. 44.
    Moss DW, Eaton RH, Smith JK, Whitby LG: Association of inorganic-pyrophosphatase activity with human alkaline-phosphatase preparations. Biochem J 1967, 102:53–57.PubMedGoogle Scholar
  45. 45.
    Terkeltaub R, Rosenbach M, Fong F, Goding J: Causal link between nucleotide pyrophosphohydrolase overactivity and increased intracellular inorganic pyrophosphate generation demonstrated by transfection of cultured fibroblasts and osteoblasts with plasma cell membrane glycoprotein-1. Relevance to calcium pyrophosphate dihydrate deposition disease. Arthritis Rheum 1994, 37:934–941.PubMedCrossRefGoogle Scholar
  46. 46.
    Ho AM, Johnson MD, Kingsley DM: Role of the mouse ank gene in control of tissue calcification and arthritis. Science 2000, 289:265–270.PubMedCrossRefGoogle Scholar
  47. 47.
    Rutsch F, Ruf N, Vaingankar S, et al.: Mutations in ENPP1 are associated with ‘idiopathic’ infantile arterial calcification. Nat Genet 2003, 34:379–381.PubMedCrossRefGoogle Scholar
  48. 48.
    Eller P, Hochegger K, Feuchtner GM, et al.: Impact of ENPP1 genotype on arterial calcification in patients with end-stage renal failure. Nephrol Dial Transplant 2008, 23:321–327.PubMedCrossRefGoogle Scholar
  49. 49.
    Mazhar AR, Johnson RJ, Gillen D, et al.: Risk factors and mortality associated with calciphylaxis in end-stage renal disease. Kidney Int 2001, 60:324–332.PubMedCrossRefGoogle Scholar
  50. 50.
    Lomashvili KA, Khawandi W, O’Neill WC: Reduced plasma pyrophosphate levels in hemodialysis patients. J Am Soc Nephrol 2005, 16:2495–2500.PubMedCrossRefGoogle Scholar
  51. 51.
    Zebboudj AF, Imura M, Boström K: Matrix GLA protein, a regulatory protein for bone morphogenetic protein-2. J Biol Chem 2002, 277:4388–4394.PubMedCrossRefGoogle Scholar
  52. 52.
    Chen NX, Duan D, O’Neill KD, et al.: The mechanisms of uremic serum-induced expression of bone matrix proteins in bovine vascular smooth muscle cells. Kidney Int 2006, 70:1046–1053.PubMedCrossRefGoogle Scholar
  53. 53.
    Luo G, Ducy P, McKee MD, et al.: Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 1997, 386:78–81.PubMedCrossRefGoogle Scholar
  54. 54.
    Murshed M, Schinke T, McKee MD, Karsenty G: Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J Cell Biol 2004, 165:625–630.PubMedCrossRefGoogle Scholar
  55. 55.
    Nishimoto SK, Price PA. The vitamin K-dependent bone protein is accumulated within cultured osteosarcoma cells in the presence of the vitamin K antagonist warfarin. J Biol Chem 1985, 260:2832–2836.PubMedGoogle Scholar
  56. 56.
    Brancaccio D, Biondi ML, Gallieni M, et al.: Matrix GLA protein gene polymorphisms: clinical correlates and cardiovascular mortality in chronic kidney disease patients. Am J Nephrol 2005, 25:548–552.PubMedCrossRefGoogle Scholar
  57. 57.
    Schafer C, Heiss A, Schwarz A, et al.: The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest 2003, 112:357–366.PubMedGoogle Scholar
  58. 58.
    Reynolds JL, Skepper JN, McNair R, et al.: Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification. J Am Soc Nephrol 2005, 16:2920–2930.PubMedCrossRefGoogle Scholar
  59. 59.
    Ketteler M, Bongartz P, Westenfeld R, et al.: Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet 2003, 361:827–833.PubMedCrossRefGoogle Scholar
  60. 60.
    Cozzolino M, Galassi A, Biondi ML, et al.: Serum fetuin-A levels link inflammation and cardiovascular calcification in hemodialysis patients. Am J Nephrol 2006, 26:423–429.PubMedCrossRefGoogle Scholar
  61. 61.
    Proudfoot D, Skepper JN, Hegyi L, et al.: Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies. Circ Res 2000, 87:1055–1062.PubMedGoogle Scholar
  62. 62.
    Reynolds JL, Joannides AJ, Skepper JN, et al.: Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol 2004, 15:2857–2867.PubMedCrossRefGoogle Scholar
  63. 63.
    Tyson KL, Reynolds JL, McNair R, et al.: Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler Thromb Vasc Biol 2003, 23:489–494.PubMedCrossRefGoogle Scholar
  64. 64.
    Dorai H, Vukicevic S, Sampath TK: Bone morphogenetic protein-7 (osteogenic protein-1) inhibits smooth muscle cell proliferation and stimulates the expression of markers that are characteristic of SMC phenotype in vitro. J Cell Physiol 2000, 184:37–45.PubMedCrossRefGoogle Scholar
  65. 65.
    Doumouchtsis KK, Kostakis AI, Doumouchtsis SK, et al.: sRANKL/osteoprotegerin complex and biochemical markers in a cohort of male and female hemodialysis patients. J Endocrinol Invest 2007, 30:762–766.PubMedGoogle Scholar
  66. 66.
    Imanishi Y, Inaba M, Nakatsuka K, et al.: FGF-23 in patients with end-stage renal disease on hemodialysis. Kidney Int 2004, 65:1943–1946.PubMedCrossRefGoogle Scholar
  67. 67.
    Westerberg PA, Linde T, Wikström B, et al.: Regulation of fibroblast growth factor-23 in chronic kidney disease. Nephrol Dial Transplant 2007, 22:3202–3207.PubMedCrossRefGoogle Scholar
  68. 68.
    Benet-Pagès A, Orlik P, Strom TM, Lorenz-Depiereux B: An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 2005, 14:385–390.PubMedCrossRefGoogle Scholar
  69. 69.
    Urakawa I, Yamazaki Y, Shimada T, et al.: Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006, 444:770–774.PubMedCrossRefGoogle Scholar
  70. 70.
    Stubbs J, Liu S, Quarles LD: Role of fibroblast growth factor 23 in phosphate homeostasis and pathogenesis of disordered mineral metabolism in chronic kidney disease. Semin Dial 2007, 20:302–308.PubMedCrossRefGoogle Scholar
  71. 71.
    Church LD, Cook GP, McDermott MF: Primer: inflammasomes and interleukin 1beta in inflammatory disorders. Nat Clin Pract Rheumatol 2008, 4:34–42.PubMedCrossRefGoogle Scholar
  72. 72.
    Liu-Bryan R, Pritzker K, Firestein GS, Terkeltaub R: TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation. J Immunol 2005, 174:5016–5023.PubMedGoogle Scholar
  73. 73.
    Liu-Bryan R, Scott P, Sydlaske A, et al.: Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum 2005, 52:2936–2946.PubMedCrossRefGoogle Scholar
  74. 74.
    Martinon F, Pétrilli V, Mayor A, et al.: Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006, 440:237–241.PubMedCrossRefGoogle Scholar
  75. 75.
    Chen CJ, Shi Y, Hearn A, et al.: MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest 2006, 116:2262–2271.PubMedCrossRefGoogle Scholar
  76. 76.
    McGonagle D, Tan AL, Shankaranarayana S, et al.: Management of treatment resistant inflammation of acute on chronic tophaceous gout with anakinra. Ann Rheum Dis 2007, 66:1683–1684.PubMedCrossRefGoogle Scholar
  77. 77.
    McGonagle D, Tan AL, Madden J, et al.: Successful treatment of resistant pseudogout with anakinra. Arthritis Rheum 2008, 58:631–633.PubMedCrossRefGoogle Scholar
  78. 78.
    Schreiner O, Wandel E, Himmelsbach F, et al.: Reduced secretion of proinflammatory cytokines of monosodium urate crystal-stimulated monocytes in chronic renal failure: an explanation for infrequent gout episodes in chronic renal failure patients? Nephrol Dial Transplant 2000, 15:644–649.PubMedCrossRefGoogle Scholar
  79. 79.
    Schoppet M, Shroff RC, Hofbauer LC, Shanahan CM: Exploring the biology of vascular calcification in chronic kidney disease: what’s circulating? Kidney Int 2008, 73:384–390.PubMedCrossRefGoogle Scholar
  80. 80.
    Ellman MH, Brown NL, Katzenberg CA: Acute pseudogout in chronic renal failure. Arch Intern Med 1979, 139:795–796.PubMedCrossRefGoogle Scholar
  81. 81.
    Menerey K, Braunstein E, Brown M, et al.: Musculoskeletal symptoms related to arthropathy in patients receiving dialysis. J Rheumatol 1988, 15:1848–1854.PubMedGoogle Scholar
  82. 82.
    Johnson K, Terkeltaub R: Upregulated ank expression in osteoarthritis can promote both chondrocyte MMP-13 expression and calcification via chondrocyte extracellular PPi excess. Osteoarthritis Cartilage 2004, 12:321–335.PubMedCrossRefGoogle Scholar
  83. 83.
    Kuntz D, Naveau B, Bardin T, et al.: Destructive spondylarthropathy in hemodialyzed patients. A new syndrome. Arthritis Rheum 1984, 27:369–375.PubMedCrossRefGoogle Scholar
  84. 84.
    Kart-Köseoglu H, Yucel AE, Niron EA, et al.: Osteoarthritis in hemodialysis patients: relationships with bone mineral density and other clinical and laboratory parameters. Rheumatol Int 2005, 25:270–275.PubMedCrossRefGoogle Scholar
  85. 85.
    Braunstein EM, Menerey K, Martel W, et al.: Radiologic features of a pyrophosphate-like arthropathy associated with long-term dialysis. Skeletal Radiol 1987, 16:437–441.PubMedGoogle Scholar
  86. 86.
    Ferrari AJ, Rothfuss S, Schumacher HR Jr: Dialysis arthropathy: identification and evaluation of a subset of patients with unexplained inflammatory effusions. J Rheumatol 1997, 24:1780–1786.PubMedGoogle Scholar
  87. 87.
    Hoffman GS, Schumacher HR, Paul H, et al.: Calcium oxalate microcrystalline-associated arthritis in end-stage renal disease. Ann Intern Med 1982, 97:36–42.PubMedGoogle Scholar
  88. 88.
    Reginato AJ, Ferreiro Seoane JL, Barbazan Alvarez C, et al.: Arthropathy and cutaneous calcinosis in hemodialysis oxalosis. Arthritis Rheum 1986, 29:1387–1396.PubMedCrossRefGoogle Scholar
  89. 89.
    Abuelo JG, Schwartz ST, Reginato AJ: Cutaneous oxalosis after long-term hemodialysis. Arch Intern Med 1992, 152:1517–1520.PubMedCrossRefGoogle Scholar
  90. 90.
    Reginato AJ, Kurnik B: Calcium oxalate and other crystals associated with kidney diseases and arthritis. Semin Arthritis Rheum 1989, 18:198–224.PubMedCrossRefGoogle Scholar
  91. 91.
    Newcombe DS: Endocrinopathies and uric acid metabolism. Semin Arthritis Rheum 1972, 2:281–300.PubMedCrossRefGoogle Scholar
  92. 92.
    Buchanan WW, Klinenberg JR, Seegmiller JE: The inflammatory response to injected microcrystalline monosodium urate in normal, hyperuricemic, gouty, and uremic subjects. Arthritis Rheum 1965, 8:361–367.PubMedCrossRefGoogle Scholar
  93. 93.
    Sombolos K, Tsitamidou Z, Kyriazis G, et al.: Clinical evaluation of four different high-flux hemodialyzers under conventional conditions in vivo. Am J Nephrol 1997, 17:406–412.PubMedCrossRefGoogle Scholar
  94. 94.
    Mathews M, Shen FH, Lindner A, Sherrard DJ: Septic arthritis in hemodialyzed patients. Nephron 1980, 25:87–91.PubMedGoogle Scholar
  95. 95.
    Kaslow RA, Zellner SR: Infection in patients on maintenance haemodialysis. Lancet 1972, 2:117–119.PubMedCrossRefGoogle Scholar
  96. 96.
    Kurella M, Bennett WM, Chertow GM: Analgesia in patients with ESRD: a review of available evidence. Am J Kidney Dis 2003, 42:217–228.PubMedCrossRefGoogle Scholar
  97. 97.
    Neil E, Scherrmann JM: Colchicine today. Joint Bone Spine 2006, 73:672–678.CrossRefGoogle Scholar
  98. 98.
    Zhang W, Doherty M, Pascual E, et al.; EULAR Standing Committee for International Clinical Studies Including Therapeutics: EULAR evidence based recommendations for gout. Part I: Diagnosis. Report of a task force of the Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 2006, 65:1301–1311.PubMedCrossRefGoogle Scholar
  99. 99.
    Zhang W, Doherty M, Bardin T, et al.; EULAR Standing Committee for International Clinical Studies Including Therapeutics: EULAR evidence based recommendations for gout. Part II: Management. Report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 2006, 65:1312–1324.PubMedCrossRefGoogle Scholar
  100. 100.
    Man CY, Cheung IT, Cameron PA, Rainer TH: Comparison of oral prednisolone/paracetamol and oral indomethacin/paracetamol combination therapy in the treatment of acute goutlike arthritis: a double-blind, randomized, controlled trial. Ann Emerg Med 2007, 49:670–677.PubMedCrossRefGoogle Scholar
  101. 101.
    Hande KR, Noone RM, Stone WJ: Severe allopurinol toxicity: description and guidelines for prevention in patients with renal insufficiency. Am J Med 1984, 76:47–56.PubMedCrossRefGoogle Scholar
  102. 102.
    Rothschild B, Yakubov LE: Prospective 6-month, doubleblind trial of hydroxychloroquine treatment of CPDD. Compr Ther 1997, 23:327–331.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Pasha Sarraf
  • Jonathan Kay
  • Anthony M. Reginato
    • 1
  1. 1.Division of Rheumatology, Allergy and Immunology, Department of MedicineMassachusetts General HospitalBostonUSA

Personalised recommendations