Colchicine: Its mechanism of action and efficacy in crystal-induced inflammation

  • George Nuki


New light has been shed on the mechanisms of action of colchicine in crystal-associated arthropathies. Colchicine, long used to treat gout, arrests microtubule assembly and inhibits many cellular functions. At micromolar concentrations, it suppresses monosodium urate crystal-induced NACHT-LRR-PYD-containing protein-3 (NALP3) inflammasome-driven caspase-1 activation, IL-1β processing and release, and L-selectin expression on neutrophils. At nanomolar concentrations, colchicine blocks the release of a crystal-derived chemotactic factor from neutrophil lysosomes, blocks neutrophil adhesion to endothelium by modulating the distribution of adhesion molecules on the endothelial cells, and inhibits monosodium urate crystal-induced production of superoxide anions from neutrophils. Cytochrome P450 3A4, the multidrug transporter P-glycoprotein, and the drugs that bind these proteins influence its pharmacokinetics and pharmacodynamics. Trial evidence supports its efficacy in acute gout and in preventing gout flares, but it has narrow therapeutic index, and overdosage is associated with gastrointestinal, hepatic, renal, neuromuscular, and cerebral toxicity; bone marrow damage; and high mortality.


Colchicine Gout Gouty Arthritis CPPD Acute Gout 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Recommended Reading

  1. 1.
    Nuki G: Treatment of crystal arthropathy—history and advances. Rheum Dis Clin N Am 2006, 32:333–357.CrossRefGoogle Scholar
  2. 2.
    Jordan KL, Cameron S, Snaith M, et al.: British Society for Rheumatology and British Health Professionals in Rheumatology Guidelines for the Management of Gout. Rheumatology 2007, 46:1372–1374.PubMedCrossRefGoogle Scholar
  3. 3.
    Abramson SB: Treatment of gout and crystal arthropathies and uses and mechanisms of action of nonsteroidal antiinflammatory drugs. Curr Opin Rheumatol 1992, 4:295–300.PubMedCrossRefGoogle Scholar
  4. 4.
    Yu T: The efficacy of colchicine prophylaxis in articular gout. A reappraisal after 20 years. Semin Arthritis Rheum 1982, 12:256–264.PubMedCrossRefGoogle Scholar
  5. 5.
    Kunei RW, Duncan GJ, Watson D, et al.: Colchicine myopathy and neuropathy. N Engl J Med 1987, 316:1562–1568.Google Scholar
  6. 6.
    Wallace SL, Singer JZ, Duncan GJ, et al.: Renal function predicts colchicine toxicity: guidelines for the prophylactic use of colchicine in gout. J Rheumatol 1991, 18:264–269.PubMedGoogle Scholar
  7. 7.
    Cohen A: Gout. Am J Med Sci 1936, 192:448–493.CrossRefGoogle Scholar
  8. 8.
    Borstad GC, Bryant LR, Abel MP, et al.: Colchicine for prophylaxis of acute flares when initiating allopurinol for chronic gouty arthritis. J Rheumatol 2004, 31:2429–2432.PubMedGoogle Scholar
  9. 9.
    Paulus HE, Schlosstein LH, Godfrey RG, et al.: Prophylactic colchicine therapy in intercritical gout. A placebo-controlled study of probenecid-treated patients. Arthritis Rheum 1974, 17:609–614.PubMedCrossRefGoogle Scholar
  10. 10.
    Wallace SL: Colchicine. Semin Arthritis Rheum 1974, 3:369–381.PubMedCrossRefGoogle Scholar
  11. 11.
    Dalbeth N, Haskard DO: Mechanisms of inflammation in gout. Rheumatology 2005, 44:1090–1096.PubMedCrossRefGoogle Scholar
  12. 12.
    Mandel NS: The structural basis of membranolysis. Arthritis Rheum 1976, 19:439–445.PubMedCrossRefGoogle Scholar
  13. 13.
    Jaques BC, Ginsberg MH: The role of cell surface proteins in platelet stimulation by monosodium urate crystals. Arthritis Rheum 1982, 25:508–521.PubMedCrossRefGoogle Scholar
  14. 14.
    Barabe F, Gilbert C, Liao N, et al.: Crystal-induced neutrophil activation. VI. Involvement of FcgammaRIIIB (CD16) and CDIIb in response to inflammatory microcrystals. FASEB J 1998, 12:209–220.PubMedGoogle Scholar
  15. 15.
    Liu-Bryan R, Scott P, Sydlaske A, et al.: Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum 2005, 52:2936–2946.PubMedCrossRefGoogle Scholar
  16. 16.
    Akira S, Takeda K: Toll-like receptor signalling. Nat Rev Immunol 2004, 4:499–511.PubMedCrossRefGoogle Scholar
  17. 17.
    Shi Y, Evans JE, Rock KL: Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003, 425:516–521.PubMedCrossRefGoogle Scholar
  18. 18.
    Chen CJ, Shi Y, Hearn A, et al.: MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest 2006, 116:2262–2271.PubMedCrossRefGoogle Scholar
  19. 19.
    di Giovine FS, Malawista SE, Nuki G, et al.: Interleukin-1 (IL-1) as a mediator of crystal arthritis. Stimulation of T cell and synovial fibroblast mitogenesis by urate crystalinduced IL-1. J Immunol 1987, 128:3213–3218.Google Scholar
  20. 20.
    Burns K, Martinon F, Tschopp J: New insights into the mechanism of IL-1beta maturation. Curr Opin Immunol 2003, 15:26–30.PubMedCrossRefGoogle Scholar
  21. 21.
    Martinon F, Burns K, Tschopp J: The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-1beta. Mol Cell 2002, 10:417–426.PubMedCrossRefGoogle Scholar
  22. 22.
    Martinon F, Petrilli V, Mayor A, et al.: Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006, 440:237–241.PubMedCrossRefGoogle Scholar
  23. 23.
    Scott P, Ma H, Viriyakosol S, et al.: Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. J Immunol 2006, 177:6370–6378.PubMedGoogle Scholar
  24. 24.
    Petrilli V, Martinon F: The inflammasome, autoinflammatory diseases and gout. Joint Bone Spine 2007, 74:571–576.PubMedCrossRefGoogle Scholar
  25. 25.
    Petrilli V, Papin S, Dostert C, et al.: Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 2007, 14:1583–1589.PubMedCrossRefGoogle Scholar
  26. 26.
    Terkeltaub R, Tenner AJ, Kozin F, et al.: Plasma protein binding by monosodium urate crystals: analysis by two dimensional gel electrophoresis. Arthritis Rheum 1983, 26:775–783.PubMedCrossRefGoogle Scholar
  27. 27.
    Giclas PC, Ginsberg MH, Cooper NR: Immunoglobulin G independent activation of the classical complement pathway by monosodium urate crystals. J Clin Invest 1979, 63:759–765.PubMedCrossRefGoogle Scholar
  28. 28.
    Doherty M, Whicher JT, Dieppe PA: Activation of the alternative pathway of complement by monosodium urate crystals and other inflammatory particles. Ann Rheum Dis 1983, 42:285–291.PubMedCrossRefGoogle Scholar
  29. 29.
    Fields TR, Abramson SB, Weissman G, et al.: Activation of the alternative pathway of complement by monosodium urate crystals. Clin Immunol Immunopathol 1983, 26:249–257.PubMedCrossRefGoogle Scholar
  30. 30.
    Hasselbacher P: C3 activation by monosodium urate and other crystalline material. Arthritis Rheum 1979, 22:571–578.PubMedCrossRefGoogle Scholar
  31. 31.
    Russell IJ, Mansen C, Kolb LM, et al.: Activation of the fifth component of human complement (C5) induced by monosodium urate crystals: C5 convertase assembly on the crystal surface. Clin Immunol Immunopathol 1963, 24:239–250.CrossRefGoogle Scholar
  32. 32.
    Russell IJ, Papaioannou C, McDuffie FC, et al.: Effects of IgG and C-reactive protein on complement depletion by monosodium urate crystals. J Rheumatol 1983, 10:425–433.PubMedGoogle Scholar
  33. 33.
    Pouliot M, James MJ, McColl SR, et al.: Monosodium urate microcrystals induce cyclooxygenase-2 in human monocytes. Blood 1998, 91:1769–1776.PubMedGoogle Scholar
  34. 34.
    Wigley FM, Fine IT, Newcombe DS: The role of the human synovial fibroblast in monosodium urate crystal-induced synovitis. J Rheumatol 1983, 10:602–611.PubMedGoogle Scholar
  35. 35.
    Agudelo CA, Schumacher HR: The synovitis of acute gouty arthritis: a light and electron microscopic study. Human Pathol 1973, 4:265–279.CrossRefGoogle Scholar
  36. 36.
    Phelps P, McCarty DJ Jr: Crystal-induced inflammation in canine joints. II. Importance of polymorphonuclear leucocytes. J Exp Med 1966, 124:115–126.PubMedCrossRefGoogle Scholar
  37. 37.
    Chapman PT, Yarwood H, Harrison AA, et al.: Endothelial activation in monosodium urate monohydrate crystalinduced inflammation: in-vitro and in-vivo studies on the roles of tumor necrosis factor alpha and interleukin-1. Arthritis Rheum 1997, 40:955–965.PubMedCrossRefGoogle Scholar
  38. 38.
    Meng H, Tonnesen MG, Marchese MJ, et al.: Mast cells are potent regulators of endothelial cell adhesion molecule ICAM-1 and VCAM-1 expression. J Cell Physiol 1995, 165:40–53.PubMedCrossRefGoogle Scholar
  39. 39.
    di Giovine FS, Malawista SE, Thornton E, Duff GW: Urate crystals stimulate production of tumor necrosis factor alpha from human blood monocytes and synovial cells. Cytokine mRNA and protein kinetics, and cellular distribution. J Clin Invest 1991, 87:1375–1381.PubMedCrossRefGoogle Scholar
  40. 40.
    Guerne PA, Terkeltaub R, Zuraw B, et al.: Inflammatory microcrystals stimulate interleukin-6 production and secretion by human monocytes and synoviocytes. Arthritis Rheum 1989, 32:1443–1552.PubMedCrossRefGoogle Scholar
  41. 41.
    Terkeltaub R, Zachariae C, Santoro D, et al.: Monocyte-derived neutrophil chemotactic factor/interleukin-8 is a potential mediator of crystal-induced inflammation. Arthritis Rheum 1991, 34:894–903.PubMedCrossRefGoogle Scholar
  42. 42.
    Terkeltaub R, Baird S, Sears P, et al.: The murine homolog of the interleukin-8 receptor CXCR-2 is essential for the occurrence of neutrophilic inflammation in the air pouch model of acute urate-induced gouty synovitis. Arthritis Rheum 1998, 41:900–909.PubMedCrossRefGoogle Scholar
  43. 43.
    Tramontini N, Huber C, Liu-Bryan R, et al.: Central role of complement membrane attack complex in monosodium urate crystal-induced neutrophilic rabbit knee synovitis. Arthritis Rheum 2004, 50:2633–2639.PubMedCrossRefGoogle Scholar
  44. 44.
    Ryckman C, McColl SR, Vandal K, et al.: Role of S100A8 and S100A9 in neutrophil recruitment in response to monosodium urate monohydrate crystals in the air-pouch model of acute gouty arthritis. Arthritis Rheum 2003, 48:2310–2320.PubMedCrossRefGoogle Scholar
  45. 45.
    Roberge CJ, de Medicis R, Dayer JM, et al.: Crystal-induced neutrophil activation. V. Differential production of biologically active IL-1 and IL-1 receptor antagonist. J Immmunol 1994, 152:5485–5394.Google Scholar
  46. 46.
    Hachicha M, Nacchache PH, McColl SR: Inflammatory microcrystals differentially regulate secretion of macrophage inflammatory protein 1 and interleukin 8 by human neutrophils: a possible mechanism of neutrophil recruitment to sites of inflammation in synovitis. J Exp Med 1995, 182:2019–2025.PubMedCrossRefGoogle Scholar
  47. 47.
    Gilbert C, Poubelle PE, Borgeat P, et al.: Crystal-induced neutrophil activation: VIII. Immediate production of prostaglandin E2 mediated by constitutive cyclooxygenase 2 in human neutrophils stimulated by urate crystals. Arthritis Rheum 2003, 48:1137–1148.PubMedCrossRefGoogle Scholar
  48. 48.
    Abramson S, Hoffstein ST, Weissman G: Superoxide anion generation by human neutrophils exposed to monosodium urate. Arthritis Rheum 1982, 25:174–180.PubMedCrossRefGoogle Scholar
  49. 49.
    Simchowitz L, Atkinson JP, Spilberg I: Stimulation of the respiratory burst in human neutrophils by crystal phagocytosis. Arthritis Rheum 1982, 25:181–188.PubMedCrossRefGoogle Scholar
  50. 50.
    Terkeltaub R: Pathogenesis and treatment of crystal-induced inflammation. In Arthritis and Allied Conditions, 15th edn. Edited by Koopman WJ, Moreland LW. Philadelphia: Lippincott, Williams and Wilkins; 2004:2357–2372.Google Scholar
  51. 51.
    Terkeltaub R, Curtiss LK, Tenner AJ, et al.: Lipoproteins containing apoprotein B are a major regulator of neutrophil responses to monosodium urate crystals. J Clin Invest 1984, 73:1719–1730.PubMedCrossRefGoogle Scholar
  52. 52.
    Terkeltaub R, Dyer CA, Martin J, et al.: Apolipoprotein (apo) E inhibits the capacity of monosodium urate crystals to stimulate neutrophils. Characterization of intraarticular apo E and demonstration of apo E binding to urate crystals in-vivo. J Clin Invest 1991, 87:20–26.PubMedCrossRefGoogle Scholar
  53. 53.
    Getting SJ, Christian HC, Flower RJ, et al.: Activation of melanocortin type 3 receptor as a molecular mechanism for adrenocorticotropic hormone efficacy in gouty arthritis. Arthritis Rheum 2002, 46:2765–2775.PubMedCrossRefGoogle Scholar
  54. 54.
    Akahoshi T, Namai R, Murakami Y, et al.: Rapid induction of peroxisome proliferator-activated receptor gamma expression in human monocytes by monosodium urate monohydrate crystals. Arthritis Rheum 2003, 48:231–239.PubMedCrossRefGoogle Scholar
  55. 55.
    Fadok VA, Bratton DL, Konowal A, et al.: Macrophages that have ingested apoptotic cells in-vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998, 101:890–898.PubMedCrossRefGoogle Scholar
  56. 56.
    Rose DM, Sydlaske AD, Agha-Babakhani A, et al.: Transglutaminase 2 limits murine peritoneal acute gout-like inflammation by regulating macrophage clearance of apoptotic neutrophils. Arthritis Rheum 2006, 54:3363–3371.PubMedCrossRefGoogle Scholar
  57. 57.
    Yagnik DR, Evans BJ, Florey O, et al.: Macrophage release of transforming growth factor beta 1 during resolution of monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum 2004, 50:2273–2280.PubMedCrossRefGoogle Scholar
  58. 58.
    Sackett DL, Varma JK: Molecular mechanism of colchicine action; induced local unfolding of beta-tubulin. Biochemistry 1993, 32:13560–13565.PubMedCrossRefGoogle Scholar
  59. 59.
    Caviston JP, Holzbauer EL: Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol 2006, 16:530–537.PubMedCrossRefGoogle Scholar
  60. 60.
    Caner JE: Colchicine inhibition of chemotaxis. Arthritis Rheum 1965, 8:752–757.CrossRefGoogle Scholar
  61. 61.
    Wright DG, Malawista SE: Mobilization and extracellular release of granular enzymes from human leucocytes during phagocytosis: inhibition by cortisol and colchicine but not by salicylates. Arthritis Rheum 1973, 16:749–758.PubMedCrossRefGoogle Scholar
  62. 62.
    Phelps P: Polymorphonuclear leukocyte mobility in-vitro. IV. Colchicine inhibition of chemotactic activity formation after phagocytosis of urate crystals. Arthritis Rheum 1970, 13:1–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Spilberg I, Mandell B, Mehta J, et al.: Mechanism of action of colchicine in acute urate crystal-induced arthritis. J Clin Invest 1979, 64:775–780.PubMedCrossRefGoogle Scholar
  64. 64.
    McCarty DJ: Urate crystals, inflammation and colchicine. Arthritis Rheum 2008, 58:S20–S24.PubMedCrossRefGoogle Scholar
  65. 65.
    Cronstein BN, Terkeltaub R: The inflammatory process of gout and its treatment. Arthritis Res Ther 2006, 8(Suppl 1):S3.PubMedCrossRefGoogle Scholar
  66. 66.
    Roberge CJ, Gaudry M, de Medicis R, et al.: Crystal-induced neutrophil activation. IV. Specific inhibition of tyrosine phosphorylation by colchicine. J Clin Invest 1993, 92:1722–1729.PubMedCrossRefGoogle Scholar
  67. 67.
    Mutsukawa A, Yoshimura T, Maeda T, et al.: Analysis of the cytokine network among tumor necrosis factor alpha, interleukin-1 beta, interleukin-8, and interleukin-1 beta receptor antagonist in monosodium urate crystal-induced rabbit arthritis. Lab Invest 1998, 78:559–569.Google Scholar
  68. 68.
    Ben Chetrit E, Fischel R, Hinz B, et al.: The effects of colchicine and hydroxychloroquine on the cyclooxygenases COX-1 and COX-2. Rheumatol Int 2005, 25:332–335.PubMedCrossRefGoogle Scholar
  69. 69.
    Pope RM, Tschopp J: The role of interleukin-1 and the inflammasome in gout. Arthritis Rheum 2007, 56:3183–3188.PubMedCrossRefGoogle Scholar
  70. 70.
    Cronstein BN, Molad Y, Reibman J, et al.: Colchicine alters the quantitative and qualitative display of selectins on endothelial cells and neutrophils. J Clin Invest 1995, 96:994–1002.PubMedCrossRefGoogle Scholar
  71. 71.
    Minta JO, Williams MD: Interactions of antirheumatic drugs with the superoxide generation system of activated human polymorphonuclear leukocytes. J Rheumatol 1986, 13:498–504.PubMedGoogle Scholar
  72. 72.
    Chia EW, Grainger R, Harper JL: Colchicine suppresses neutrophil superoxide production in a murine model of gouty arthritis: a rationale for use of low-dose colchicine. Br J Pharmacol 2008, 153:1288–1295.PubMedCrossRefGoogle Scholar
  73. 73.
    Niel E, Scherrmann JM: Colchicine today. Joint Bone Spine 2006, 73:672–678.PubMedCrossRefGoogle Scholar
  74. 74.
    Chappey ON, Niel E, Wautier JL, et al.: Colchicine disposition in human leucocytes after single and multiple oral administration. Clin Pharmacol Ther 1993, 54:360–367.PubMedGoogle Scholar
  75. 75.
    de Lannoy IA, Mandin RS, Silverman M: Renal secretion of vinblastine, vincristine and colchicine in-vivo. J Pharmacol Exp Med 1994, 268:388–395.Google Scholar
  76. 76.
    Ehrenfeld M, Levy M, Sharon P, et al.: Gastrointestinal effects of long-term colchicine therapy in patients with recurrent polyserositis. Dig Dis Sci 1982, 27:723–727.PubMedCrossRefGoogle Scholar
  77. 77.
    Rudi J, Raedsch R, Gerteis C, et al.: Plasma kinetics and biliary excretion of colchicine in patients with chronic liver disease after oral administration of a single dose and after long-term treatment. Scand J Gastroenterol 1994, 29:346–351.PubMedCrossRefGoogle Scholar
  78. 78.
    Speeg KV, Maldonado AL, Liaci J, et al.: Effect of cyclosporine on colchicine secretion by the kidney multidrug transporter studied in-vivo. J Phamacol Exp Med 1992, 261:50–55.Google Scholar
  79. 79.
    Speeg KV, Maldonado AL, Liaci J, et al.: Effect of cyclosporine on colchicine secretion by a liver canalicular transporter studied in-vivo. Hepatology 1992, 15:899–903.PubMedCrossRefGoogle Scholar
  80. 80.
    Troger U, Lins H, Scherrmann JM, et al.: Tetraparesis associated with colchicine is probably due to inhibition by verapamil of the P-glycoprotein efflux pump in the blood brain barrier. BMJ 2005, 331:613.PubMedCrossRefGoogle Scholar
  81. 81.
    Zhang W, Doherty M, Bardin T, et al.: EULAR evidence-based recommendations for gout. Part II: Management. Report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 2006, 65:1312–1324.PubMedCrossRefGoogle Scholar
  82. 82.
    Ahern MJ, Reid C, Gordon TP, et al.: Does colchicine work? The results of the first controlled study in acute gout. Aust N Z J Med 1987, 17:301–304.PubMedGoogle Scholar
  83. 83.
    Jayaprakash V, Ansell G, Galler D: Colchicine overdosage: the devil is in the detail. NZ Med J 2007, 120:U2402.Google Scholar
  84. 84.
    Grahame R: Is there still a place for colchicine in the treatment of acute gout? Int J Clin Pract 2007, 61:1966–1967.PubMedCrossRefGoogle Scholar
  85. 85.
    Morris I, Varughese G, Mattingly P: Colchicine in acute gout. BMJ 2003, 327:1275–1276.PubMedCrossRefGoogle Scholar
  86. 86.
    Wilbur F, Makowski M: Colchicine myotoxicity: case reports and literature review. Pharmacotherapy 2004, 24:1784–1792.PubMedCrossRefGoogle Scholar
  87. 87.
    Dawson TM, Starkebaum G: Colchicine induced rhabdomyolysis. J Rheumatol 1997, 24:2045–2046.PubMedGoogle Scholar
  88. 88.
    Schlesinger N, Schumacher R, Catton M, et al.: Colchicine for acute gout. Cochrane Database Syst Rev 2006, (4):CD006190.Google Scholar
  89. 89.
    Naidus RM, Rodvein R, Mielke CH Jr: Colchicine toxicity: a multisystem disease. Arch Intern Med 1997, 137:394–396.CrossRefGoogle Scholar
  90. 90.
    Ben Chetrit E, Scherrmann JM, Zylber-Katz E, et al.: Colchicine disposition in patients with familial Mediterranean fever with renal impairment. J Rheumatol 1994, 21:710–713.PubMedGoogle Scholar
  91. 91.
    Minetti EE, Minetti L: Multiple organ failure in a kidney transplant patient receiving both colchicine and cyclosporine. J Nephrol 2003, 16:421–425.PubMedGoogle Scholar
  92. 92.
    Caraco Y, Putterman C, Rahamimov R, et al.: Acute colchicine intoxication—a possible role of erythromycin administration. J Rheumatol 1992, 19:494–496.PubMedGoogle Scholar
  93. 93.
    Medsafe Pharmacovigilance Team: Colchicine: lower doses for greater safety. Available at Accessed April 23, 2008.
  94. 94.
    Emmerson BT: The management of gout. N Engl J Med 1996, 334:445–451.PubMedCrossRefGoogle Scholar
  95. 95.
    Bonnel RA, Villalba ML, Karwoski CB, Beitz J: Deaths associated with inappropriate intravenous colchicine administration. J Emerg Med 2002; 22:385–387.PubMedCrossRefGoogle Scholar
  96. 96.
    Schlesinger N: Reassessing the safety of intravenous and compounded injectable colchicine in acute gout treatment. Expert Opin Drug Safety 2007, 6:625–629.CrossRefGoogle Scholar
  97. 97.
    US Food and Drug Administration: Questions and answers about FDA’s enforcement action against unapproved injectable colchicine products. Available at Accessed April 1, 2008.
  98. 98.
    Centers for Disease Control and Prevention: Deaths from intravenous colchicine resulting from a compounding pharmacy error—Oregon and Washington 2007. MMWR Morb Mortal Wkly Rep 2007, 56:1050–1052.Google Scholar
  99. 99.
    Wallace SL, Singer JZ: Systemic toxicity associated with the intravenous administration of colchicine—guidelines for use. J Rheumatol 1988, 15:495–499.PubMedGoogle Scholar
  100. 100.
    Alvarellos A, Spilberg I: Colchicine prophylaxis in pseudogout. J Rheumatol 1986, 13:804–805.PubMedGoogle Scholar
  101. 101.
    Rosenthal AK, Ryan LM: Treatment of refractory crystalassociated arthritis. Rheum Dis Clin North Am 1995, 21:151–161.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Osteoarticular Research Group, The Queen’s Medical Research InstituteUniversity of EdinburghEdinburghScotland, UK

Personalised recommendations