Current Rheumatology Reports

, Volume 5, Issue 1, pp 75–81

Determinants of fracture risk in osteoporosis

  • Nicholas Harvey
  • Cyrus Cooper
Article

Abstract

Osteoporosis is a major public health issue, with fragility fractures of the hip, vertebrae, and distal radius considered the most important consequences. These lead to increased morbidity, mortality, hospital care, and dependency. The risk factors for the development of fragility fractures are numerous and involve genetic and environmental influences, as well as an interaction between the two. In this review, the recent literature examining genetic factors, possible candidate genes, the evolving area of intrauterine fetal programming, and anthropometric and environmental factors will be reviewed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Melton L, Cooper C: Magnitude and impact of osteoporosis and fractures. In In Osteoporosis, edn 2. Edited by Marcus R, Feldman D, Kelsey J. San Diego: Academic Press Inc; 2001:557–567.Google Scholar
  2. 2.
    Hunter D, de Lange M, Andrew T, et al.: Genetic variation in bone mineral density and calcaneal ultrasound: a study of the influence of menopause using female twins. Osteoporos Int 2001, 12:406–411. A good review.PubMedCrossRefGoogle Scholar
  3. 3.
    Kannus P, Palvanen M, Kaprio J, et al.: Genetic factors and osteoporotic fractures in elderly people: prospective 25 year follow-up of a nationwide cohort of elderly Finnish twins. BMJ 1999, 319:1334–1337. A large, long-term study indicating no increased concordance for fractures between monozygotic compared with dizygotic twins.PubMedGoogle Scholar
  4. 4.
    Ma X, Jing Y, Qin W, et al.: Vitamin D receptor gene polymorphism and bone mineral density in patients with type 2 diabetes mellitus. Chin Med J 2001, 114:1213–1215.PubMedGoogle Scholar
  5. 5.
    Pares A, Guanabens N, Alvarez L, et al.: Collagen type I alpha 1 and vitamin D receptor gene polymorphisms and bone mass in primary biliary cirrhosis. Hepatology 2001, 33:554–560.PubMedCrossRefGoogle Scholar
  6. 6.
    Vogelsang H, Suk E, Janisiw M, et al.: Calcaneal ultrasound attenuation and vitamin D receptor genotypes in celiac disease. Scand J Gastroenterol 2000, 35:172–176.PubMedCrossRefGoogle Scholar
  7. 7.
    Langdahl B, Gravholt C, Brixen K, Eriksen E: Polymorphisms in the vitamin D receptor gene and bone mass, bone turnover and osteoporotic fractures. Eur J Clin Invest 2000, 30:608–617.PubMedCrossRefGoogle Scholar
  8. 8.
    Dennison E, Arden N, Keen R, et al.: Birthweight, vitamin D receptor genotype and the programming of osteoporosis. Pediatr Perinatal Epidemiol 2001, 15:211–219. Further evidence of genetic-environmental interaction.CrossRefGoogle Scholar
  9. 9.
    Hustmyer F, Liu G, Johnston C, et al.: Polymorphism at an Sp1 binding site of COL1A1 and bone mineral density in premenopausal female twins and elderly fracture patients. Osteoporos Int 1999, 9:346–350.PubMedCrossRefGoogle Scholar
  10. 10.
    Keen R, Woodford-Richens K, Grant S, et al.: Association of polymorphism at the type I collagen (COL1A1) locus with reduced bone mineral density, increased fracture risk, and increased collagen turnover. Arthritis Rheum 1999, 42:285–290.PubMedCrossRefGoogle Scholar
  11. 11.
    Sainz J, Van Tornout J, Sayre J, et al.: Association of collagen type 1 alpha 1 gene polymorphism with bone density in early childhood. J Clin Endocrinol Metab 1999, 84:853–855.PubMedCrossRefGoogle Scholar
  12. 12.
    Brown M, Haughton M, Grant S, et al.: Genetic control of bone density and turnover: role of collagen 1 alpha 1, estrogen receptor, and vitamin D receptor genes. J Bone Miner Res 2001, 16:758–764. A twin study showing an interaction between genetic polymorphisms, calcium intake, and BMD.PubMedCrossRefGoogle Scholar
  13. 13.
    Takacs I, Koller D, Peacock M, et al.: Sibling pair linkage and association studies between bone mineral density and the insulin-like growth factor I gene locus. J Clin Endocrinol Metab 1999, 84:4465–4466.CrossRefGoogle Scholar
  14. 14.
    Wuster C, Abs R, Bengtsson B, et al.: The influence of growth hormone deficiency, growth hormone replacement therapy, and other aspects of hypopituitarism on fracture rate and bone mineral density. J Bone Miner Res 2001, 16:398–405.PubMedCrossRefGoogle Scholar
  15. 15.
    Scheidt-Nave C, Bismar H, Leidig-Bruckner G, et al.: Serum interleukin-6 is a major predictor of bone loss in women specific to the first decade past menopause [abstract]. J Bone Miner Res 1999, 14(suppl):S147.Google Scholar
  16. 16.
    Ferrari S, Garnero P, Edmond S, et al.: A functional polymorphic variant in the interleukin-6 gene promoter associated with low bone resorption in postmenopausal women. Arthritis Rheum 2001, 44:196–201.PubMedCrossRefGoogle Scholar
  17. 17.
    Keen R, Sneider H, Molloy H, et al.: Evidence of association and linkage dysequilibrium between a novel polymorphism in the transforming growth factor beta 1 gene and hip bone mineral density: a study of female twins. Rheumatology 2001, 40:48–54.PubMedCrossRefGoogle Scholar
  18. 18.
    Gong Y, Slee R, Fukai N, et al.: LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001, 107:513–523.PubMedCrossRefGoogle Scholar
  19. 19.
    Boyden L, Junhao M, Belsky J, et al.: High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002, 346:1513–1521.PubMedCrossRefGoogle Scholar
  20. 20.
    Cooper C, Javaid M, Taylor P, et al.: The fetal origins of osteoporotic fracture. Calcif Tissue Int 2002, 70:391–394.PubMedCrossRefGoogle Scholar
  21. 21.
    Sayer A, Dunn R, Langley-Evans S, Cooper C: Prenatal exposure to a maternal low protein diet shortens life span in rats. Gerontology 2001, 47:9–14.CrossRefGoogle Scholar
  22. 22.
    Gale C, Martyn C, Kellingray S, et al.: Intrauterine programming of adult body composition. J Clin Endocrinol Metab 2001, 86:267–272. An elegant study showing an association between birth weight and adult bone mineral content.PubMedCrossRefGoogle Scholar
  23. 23.
    Dennison E, Hindmarsh P, Fall C, et al.: Profiles of endogenous circulating cortisol and bone mineral density in healthy elderly men. J Clin Endocrinol Metab 1999, 84:3058–3063.PubMedCrossRefGoogle Scholar
  24. 24.
    Godfrey K, Walker-Bone K, Robinson S, et al.: Neonatal bone mass: influence of parental birthweight, maternal smoking, body composition and activity during pregnancy. J Bone Miner Res 2001, 16:1694–1703. Well-designed study showing the effect of maternal factors on neonatal bone mass.PubMedCrossRefGoogle Scholar
  25. 25.
    Cooper C, Eriksson J, Forsen T, et al.: Maternal height, childhood growth and risk of hip fracture in later life: a longitudinal study. Osteoporos Int 2001, 12:623–629. Convincing evidence for the influence of maternal and childhood influences on adult fracture risk.PubMedCrossRefGoogle Scholar
  26. 26.
    Javaid M, Godfrey K, Taylor P, et al.: Umbilical cord IGF-1 predicts neonatal bone and fat mass [abstract]. British Society for Rheumatology XIXth Annual General Meeting 2002. Rheumatology 2002, 41(suppl):5.CrossRefGoogle Scholar
  27. 27.
    Arden N, Dennison E, Syddall H, et al.: Early life influences on serum 1,25(OH)2 vitamin D [abstract]. British Society for Rheumatology XIXth Annual General Meeting 2002. Rheumatology 2002, 41(suppl):5.CrossRefGoogle Scholar
  28. 28.
    Phillips D, Fall C, Cooper C, et al.: Size at birth and plasma leptin concentrations in adult life. Int J Obesity 1999, 23:1025–1029.CrossRefGoogle Scholar
  29. 29.
    Dennison E, Fall C, Syddall H, et al.: Plasma leptin concentration is associated with bone mass in healthy elderly men and women. [abstract] British Society for Rheumatology XIXth Annual General Meeting 2002. Rheumatology 2002, 41(suppl)1:97.Google Scholar
  30. 30.
    Roy D, Armbrecht G, Finn J, Felsenberg D, Lunt M, O’Neill T, Cooper C, Reeve J, Silman A: The influence of reproductive and lifestyle factors on the risk of incident vertebral fracture in women: results from the European Prospective Osteoporosis Study (EPOS) [abstract]. British Society for Rheumatology XIXth Annual General Meeting 2002. Rheumatology 2002, 41(suppl)1:6.Google Scholar
  31. 31.
    Scoutellas V, O’Neill T, Lunt M, et al.: Does the presence of postmenopausal symptoms influence susceptibility to vertebral deformity? European Vertebral Osteoporosis Study (EVOS) Group. Maturitas 1999, 32:179–187.PubMedCrossRefGoogle Scholar
  32. 32.
    Ismail A, Cockerill W, Cooper C, et al.: Prevalent vertebral deformity predicts incident hip though not distal forearm fracture: results from the European Prospective Osteoporosis Study. Osteoporos Int 2001, 12:85–90. Large epidemiologic study showing increased risk of hip fracture with prevalent vertebral fracture.PubMedCrossRefGoogle Scholar
  33. 33.
    Ismail A, O’Neill T, Cooper C, Silman A: Risk factors for vertebral deformities in men: relationship to number of vertebral deformities. European Vertebral Osteoporosis Study Group. J Bone Miner Res 2000, 15:278–283.PubMedCrossRefGoogle Scholar
  34. 34.
    Lunt M, O’Neill T, Armbrecht G, et al.: Characteristics of prevalent vertebral deformity and the risk of incident vertebral fracture [abstract]. British Society for Rheumatology XIXth Annual General Meeting 2002. Rheumatology 2002, 41(suppl):101–102.Google Scholar
  35. 35.
    Lindsay R, Silverman S, Cooper C, et al.: Risk of new vertebral fracture in the year following a fracture. JAMA 2001, 285:320–323.PubMedCrossRefGoogle Scholar
  36. 36.
    Cornuz J, Fesknich D, Willett W, Colditz G: Smoking, smoking cessation, and risk of hip fracture in women. Am J Med 1999, 106:311–314.PubMedCrossRefGoogle Scholar
  37. 37.
    Bjarnason N, Christiansen C: The influences of thinness and smoking on bone loss and response to hormone replacement therapy in early postmenopausal women. J Clin Endocrinol Metab 2000, 85:590–596.PubMedCrossRefGoogle Scholar
  38. 38.
    Hoidrup S, Gronbaek M, Pederson A, et al.: Hormone replacement therapy and hip fracture risk: effect modification by tobacco smoking, alcohol intake, physical activity, and body mass index. Am J Epidemiol 1999, 150:1085–1093.PubMedGoogle Scholar
  39. 39.
    Chapurlat R, Ewing S, Bauer D, Cummings S: Influence of smoking on the antiosteoporotic efficacy of raloxifene. J Clin Endocrinol Metab 2001, 86:4178–4182.PubMedCrossRefGoogle Scholar
  40. 40.
    Sulzc P, Garnero P, Claustrat B, et al.: Increased bone resorption in moderate smokers with low body weight: the Minos study. J Clin Endocrinol Metab 2002, 87:666–674.CrossRefGoogle Scholar
  41. 41.
    Liu X, Zhu Y, Umino T, et al.: Cigarette smoke inhibits osteogenic differentiation and proliferation of human osteoprogenitor cells in monolayer and three-dimensional collagen gel culture. J Lab Clin Med 2001, 137:208–219.PubMedCrossRefGoogle Scholar
  42. 42.
    Rapuri P, Gallagher J, Balhorn K, Ryschon K: Alcohol intake and bone metabolism in elderly women. Am J Clin Nutr 2000, 72:1206–1213.PubMedGoogle Scholar
  43. 43.
    Hoidrup S, Gronbaek M, Gottschau A, et al.: Alcohol intake, beverage preference, and risk of hip fracture in men and women: Copenhagen Center for Prospective Population Studies. Am J Epidemiol 1999, 149:993–1001. Clinically important evidence that excess alcohol increases risk of fracture.PubMedGoogle Scholar
  44. 44.
    Van Staa T, Leufkens H, Abenhaim L, et al.: Use of oral corticosteroids in the United Kingdom. Q J Med 2000, 93:105–111.Google Scholar
  45. 45.
    Van Staa T, Leufkens H, Abenhaim L, et al.: Use of oral corticosteroids and risk of fractures. J Bone Miner Res 2000, 15:993–1000. Clinically important data regarding the use of corticosteroids.PubMedCrossRefGoogle Scholar
  46. 46.
    Selby P, Halsey J, Adams K, et al.: Corticosteroids do not alter the threshold for vertebral fracture. J Bone Miner Res 2000, 15:952–956.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2003

Authors and Affiliations

  • Nicholas Harvey
  • Cyrus Cooper
    • 1
  1. 1.The MRC Environmental Epidemiology UnitUniversity of Southampton, Southampton General HospitalSouthamptonUK

Personalised recommendations