Advertisement

Current Rheumatology Reports

, Volume 4, Issue 3, pp 226–231 | Cite as

Pathogenesis of bone lesions in rheumatoid arthritis

  • Steven R. Goldring
  • Ellen M. Gravallese
Article

Abstract

Histopathologic characterization of bone erosions from patients with rheumatoid arthritis (RA) and studies performed in animal models of inflammatory arthritis provide strong evidence that osteoclasts play an important role in focal marginal and subchondral bone loss in inflammatory arthritis. Much has been learned concerning the factors responsible for the induction and activation of osteoclasts associated with the bone erosions in RA. Therapies that target these osteoclast-inducing factors or other aspects of osteoclast-mediated bone resorption represent potential targets for blocking or at least attenuating bone destruction in RA. The demonstration of the role of the newly described osteoclastogenic factor receptor activator of nuclear factor kappaB ligand in RA synovial tissues and the successful prevention of bone erosions in animal models of arthritis with its inhibitor osteoprotegerin provide hope that specific therapies can be developed for preventing bone and joint destruction in RA, particularly in situations in which disease-modifying agents are ineffective in controlling disease activity.

Keywords

Rheumatoid Arthritis Inflammatory Arthritis Osteoclast Differentiation Bone Erosion Synovial Fibroblast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Gravallese EM, Goldring SR: Cellular mechanisms and the role of cytokines in bone erosions in rheumatoid arthritis. Arthritis Rheum 2000, 43:2143–2151.PubMedCrossRefGoogle Scholar
  2. 2.
    Moreland LW, Schiff MH, Baumgartner SW, et al.: Etanercept therapy in rheumatoid arthritis: a randomized, controlled trial. Ann Intern Med 1999, 130:478–486.PubMedGoogle Scholar
  3. 3.
    Maini R, St Clair EW, Breedveld FC, et al.: Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 1999, 354:1932–1939.PubMedCrossRefGoogle Scholar
  4. 4.
    Bresnihan B, Alvaro-Gracia JM, Cobby M, et al.: Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. Arthritis Rheum 1998, 41:2196–2204.PubMedCrossRefGoogle Scholar
  5. 5.
    Strand V, Cohen S, Schiff M, et al.: Treatment of active rheumatoid arthritis with leflunomide compared with placebo and methotrexate. Arch Int Med 1999, 159:2542–2550.CrossRefGoogle Scholar
  6. 6.
    Sharp JT, Wolfe F, Mitchell DM, et al.: The progression of erosion and joint space narrowing scores in rheumatoid arthritis during the first twenty-five years of disease. Arthritis Rheum 1991, 34:660–668.PubMedCrossRefGoogle Scholar
  7. 7.
    van Zeben D, Hazes JMW, Zwinderman AH, et al.: Factors predicting outcome of rheumatoid arthritis: results of a followup study. J Rheumatol 1993, 20:1288–1296.PubMedGoogle Scholar
  8. 8.
    Bromley M, Woolley DE: Histopathology of the rheumatoid lesion: identification of cell types at sites of cartilage erosion. Arthritis Rheum 1984, 27:857–863.PubMedCrossRefGoogle Scholar
  9. 9.
    Bromley M, Woolley DE: Chondroclasts and osteoclasts at subchondral sites of erosion in the rheumatoid joint. Arthritis Rheum 1984, 27:968–975.PubMedCrossRefGoogle Scholar
  10. 10.
    Leisen JCC, Duncan H, Riddle JM, et al.: The erosive front: a topographic study of the junction between the pannus and the subchondral plate in the macerated rheumatoid metacarpal head. J Rheumatol 1988, 15:17–22.PubMedGoogle Scholar
  11. 11.
    Gravallese EM, Harada Y, Wang JT, et al.: Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol 1998, 152:943–951. Techniques of in situ hybridization and TRAP staining were used to demonstrate that cells in resorption lacunae at the bone-pannus interface and in subchondral bone in RA express the full phenotypic repertoire of authentic osteoclasts.PubMedGoogle Scholar
  12. 12.
    Haynes DR, Crotti TN, Loric M, et al.: Osteoprotegerin and receptor activator of nuclear factor kappaB ligand (RANKL) regulate osteoclast formation by cells in the human rheumatoid arthritic joint. Rheumatology (Oxford) 2001, 40:623–630. RT-PCR was used to demonstrate that RA synovium contains mRNA for M-CSF, RANKL, RANK, and OPG. Messenger RNA for TRAP and the calcitonin receptor were also detected, consistent with the presence of osteoclasts. Cells with functional properties of osteoclasts were cultured from synovial samples.CrossRefGoogle Scholar
  13. 13.
    Chang JS, Quinn JM, Demaziere A, et al.: Bone resorption by cells isolated from rheumatoid synovium. Ann Rheum Dis 1992, 51:1223–1229.PubMedGoogle Scholar
  14. 14.
    Fujikawa Y, Shingu M, Torisu T, et al.: Bone resorption by tartrate-resistant acid phosphatase-positive multinuclear cells isolated from rheumatoid synovium. Br J Rheumatol 1996, 35:213–217.PubMedCrossRefGoogle Scholar
  15. 15.
    Suzuki Y, Tsutsumi Y, Nakagawa M, et al.: Osteoclast-like cells in an in vitro model of bone destruction by rheumatoid synovium. Rheumatology (Oxford) 2001, 40:673–682. Cells cultured from human RA synovium form osteoclasts. Cultures included fibroblast-like cells and lymphocytes that presumably provided a source of osteoclast-inducing factors that acted on osteoclast precursors present in the synovial tissues.CrossRefGoogle Scholar
  16. 16.
    Romas E, Bakharevski O, Hards DK, et al.: Expression of osteoclast differentiation factor at sites of bone erosion in collagen-induced arthritis. Arthritis Rheum 2000, 43:821–826. In situ hybridization and histochemistry demonstrate osteoclasts at the bone pannus interface, and cells expressing RANKL mRNA.PubMedCrossRefGoogle Scholar
  17. 17.
    Suzuki Y, Nishikaku F, Nakatuka M, et al.: Osteoclast-like cells in murine collagen induced arthritis. J Rheumatol 1998, 25:1154–1160.PubMedGoogle Scholar
  18. 18.
    Kuratani T, Nagata K, Kukita T, et al.: Induction of abundant osteoclast-like multinucleated giant cells in adjuvant arthritic rats with accompanying disordered high bone turnover. Histol Histopathol 1998, 13:751–759.PubMedGoogle Scholar
  19. 19.
    Fujikawa Y, Quinn JM, Sabokbar A, et al.: The human osteoclast precursor circulates in the monocyte fraction. Endocrinology 1996, 137:4058–4060.PubMedCrossRefGoogle Scholar
  20. 20.
    Takayanagi H, Oda H, Yamamoto S, et al.: A new mechanism of bone destruction in rheumatoid arthritis: synovial fibroblasts induce osteoclastogenesis. Biochem Biophys Res Commun 1997, 240:279–286.PubMedCrossRefGoogle Scholar
  21. 21.
    Gravallese EM, Manning C, Tsay A, et al.: Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum 2000, 43:250–258. Activated T cells and synovial fibroblasts cultured from RA synovium express RANKL/ODF mRNA.PubMedCrossRefGoogle Scholar
  22. 22.
    McGonagle D, Conaghan PG, O’Connor P, et al.: The relationship between synovitis and bone changes in early untreated rheumatoid arthritis: a controlled magnetic resonance imaging study. Arthritis Rheum 1999, 42:1706–1711.PubMedCrossRefGoogle Scholar
  23. 23.
    Hou W, Li Z, Gordon R, et al.: Cathepsin K is a critical protease in synovial-fibroblast mediated collagen degradation. Am J Pathol 2001, 159:2167–2177.PubMedGoogle Scholar
  24. 24.
    Hummel KM, Petrow PK, Franz JK, et al.: Cysteine proteinase cathepsin K mRNA is expressed in synovium of patients with rheumatoid arthritis and is detected at sites of synovial bone destruction. J Rheumatol 1998, 25:1887–1894.PubMedGoogle Scholar
  25. 25.
    Saftig P, Hunziker E, Wehmeyer O, et al.: Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-Kdeficient mice. Proc Natl Acad Sci U S A 1998, 95:13453- 13458.PubMedCrossRefGoogle Scholar
  26. 26.
    Hattersley G, Chambers TJ: Generation of osteoclastic function in mouse bone marrow cultures: multinuclearity and tartrate-resistant acid phosphatase are unreliable markers for osteoclastic differentiation. Endocrinology 1989, 124:1689–1696.PubMedCrossRefGoogle Scholar
  27. 27.
    Chambers TJ, Horton MA: Failure of cells of the mononuclear phagocyte series to resorb bone. Calcif Tissue Int 1984, 36:556–558.PubMedCrossRefGoogle Scholar
  28. 28.
    Feldmann M, Maini RN: The role of cytokines in the pathogenesis of rheumatoid arthritis. Rheumatology 1999, 38:3–7.PubMedGoogle Scholar
  29. 29.
    Romas E, Martin TJ: Cytokines in the pathogenesis of osteoporosis. Osteoporosis Int 1997, 7:S47-S53.Google Scholar
  30. 30.
    Funk JL, Cordaro LA, Wei H, et al.: Synovium as a source of increased amino-terminal parathyroid hormone-related protein expression in rheumatoid arthritis: a possible role for locally produced parathyroid hormone-related protein in the pathogenesis of rheumatoid arthritis. J Clin Invest 1998, 101:1362–1371.PubMedGoogle Scholar
  31. 31.
    Okano K, Tsukazaki T, Ohtsuru A, et al.: Parathyroid hormone-related peptide in synovial fluid and disease activity of rheumatoid arthritis. Br J Rheumatol 1996, 35:1056–1062.PubMedCrossRefGoogle Scholar
  32. 32.
    Ogata Y, Kukita A, Kukita T, et al.: A novel role of IL-15 in the development of osteoclasts: inability to replace its activity with IL-2. J Immunol 1999, 162:2754–2760. Interleukin-15 increased osteoclast formation in rat bone marrow cultures. This effect was independent of IL-15-induced TNFá.PubMedGoogle Scholar
  33. 33.
    Chabaud M, Lubberts E, Joosten L, et al.: IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res 2001, 3:168–177. In human ex vivo models, interleukin (IL)-17 enhanced IL-6 production and inhibited collagen synthesis by RA synovial explants. Intra-articular injection of IL-17 into mouse joints increased cartilage breakdown.PubMedCrossRefGoogle Scholar
  34. 34.
    Joosten LAB, Helsen MMA, Saxne T, et al.: IL-1 alpha beta blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-alpha blockade only ameliorates joint inflammation. J Immunol 1999, 163:5049–5055.PubMedGoogle Scholar
  35. 35.
    Kong YY, Feige U, Sarosi I, et al.: Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999, 402:304–309. Activated T cells produce RANKL. Treatment of animals with adjuvant arthritis with OPG markedly reduces osteoclast numbers and inhibits focal bone destruction, providing evidence that RANKL/ODF plays a critical role in the pathogenesis of focal bone erosions in inflammatory arthritis.PubMedCrossRefGoogle Scholar
  36. 36.
    Horwood NJ, Kartsogiannis V, Quinn JMW, et al.: Activated T lymphocytes support osteoclast formation in vitro. Biochem Biophys Res Commun 1999, 265:144–150.PubMedCrossRefGoogle Scholar
  37. 37.
    Takayanagi H, Iizuka H, Juji T, et al.: Involvement of receptor activator of nuclear factor kappa-B ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum 2000, 43:259–269. Synovial fibroblasts produce RANKL/ODF and have the capacity in vitro to support osteoclastogenesis.PubMedCrossRefGoogle Scholar
  38. 38.
    Lacey DL, Timms E, Tan HL, et al.: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998, 93:165–176.PubMedCrossRefGoogle Scholar
  39. 39.
    Yasuda H, Shima N, Nakagawa N, et al.: Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesisinhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 1998, 95:3597–3602.PubMedCrossRefGoogle Scholar
  40. 40.
    Wong BR, Rho J, Arron J, et al.: TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 1997, 272:25190–25194.PubMedCrossRefGoogle Scholar
  41. 41.
    Pettit A, Hong J, von Stechow D, et al.: TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol 2001, 159:1689–1699. Mice lacking RANKL/ODF exhibit severe osteopetrosis. Generation of inflammatory arthritis with serum transfer results in inflammatory arthritis with pannus formation. However, in the absence of osteoclasts, there is a dramatic reduction in bone erosion.PubMedGoogle Scholar
  42. 42.
    Matsumoto I, Staub A, Benoist C, et al.: Arthritis provoked by linked T and B cell recognition of a glycolytic enzyme. Science 1999, 286:1732–1735.PubMedCrossRefGoogle Scholar
  43. 43.
    Korganow AS, Ji H, Mangialaio S, et al.: From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 1999, 10:451–461.PubMedCrossRefGoogle Scholar
  44. 44.
    Kouskoff V, Korganow AS, Duchatelle V, et al.: Organ-specific disease provoked by systemic autoimmunity. Cell 1996, 87:811–822.PubMedCrossRefGoogle Scholar
  45. 45.
    Weitzmann MN, Cenci S, Rifas L, et al.: T cell activation induces human osteoclast formation via receptor activator of nuclear factor kappaB ligand-dependent and -independent mechanisms. J Bone Miner Res 2001, 16:328–337. Activated T cells support osteoclast formation. Addition of saturating concentrations of OPG does not completely block osteoclast formation, indicating that products from activated lymphocytes in addition to RANKL/ODF possess osteoclast-inducing activity.PubMedCrossRefGoogle Scholar
  46. 46.
    Kotake S, Udagawa N, Hakoda M, et al.: Activated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum 2001, 44:1003–1012. Activated T cells induce osteoclasts from autologous peripheral blood mononuclear cells. This effect is inhibited by the addition of OPG, implicating the RANKL/ODF pathway. Measurement of RANKL/OPG in synovial fluid of patients with RA indicates a predominance of RANKL/OPG.PubMedCrossRefGoogle Scholar
  47. 47.
    Fossiez F, Djossou O, Chomarat P, et al.: T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 1996, 183:2593–2603.PubMedCrossRefGoogle Scholar
  48. 48.
    Kotake S, Udagawa N, Takahashi N, et al.: IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999, 103:1345–1352.PubMedCrossRefGoogle Scholar
  49. 49.
    Chabaud M, Durand JM, Buchs N, et al.: Human interleukin- 17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum 1999, 42:963–970.PubMedCrossRefGoogle Scholar
  50. 50.
    McInnes IB, Leung BP, Sturrock RD, et al.: Interleukin-15 mediates T cell-dependent regulation of tumour necrosis factor-alpha production in rheumatoid arthritis. Nature Med 1997, 3:189–195.PubMedCrossRefGoogle Scholar
  51. 51.
    McInnes I, Liew F: Interleukin 15: a proinflammatory role in rheumatoid synovitis. Immunol Today 1998, 19:75–79.PubMedCrossRefGoogle Scholar
  52. 52.
    Kong YY, Yoshida H, Sarosi I, et al.: OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999, 397:315–323.PubMedCrossRefGoogle Scholar
  53. 53.
    Dougall WC, Glaccum M, Charrier K, et al.: RANK is essential for osteoclast and lymph node development. Genes Dev 1999, 13:2412–2424.PubMedCrossRefGoogle Scholar
  54. 54.
    Bucay N, Sarosi I, Dunstan CR, et al.: Osteoprotegerindeficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998, 12:1260–1268.PubMedGoogle Scholar
  55. 55.
    Emery JG, McDonnell P, Burke MB, et al.: Osteoprotegerin is receptor for the cytotoxic ligand TRAIL. J Biol Chem 1998, 273:14363–14367.PubMedCrossRefGoogle Scholar
  56. 56.
    Hofbauer LC, Khosla S, Dunstan CR, et al.: The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 2000, 15:2–12.PubMedCrossRefGoogle Scholar
  57. 57.
    Eggelmeijer F, Papapoulos SE, van Paassen HC, et al.: Increased bone mass with pamidronate treatment in rheumatoid arthritis: results of a three-year randomized double-blind trial. Arthritis Rheum 1996, 39:396–402.PubMedCrossRefGoogle Scholar
  58. 58.
    Kroger H, Arnala I, Alhava EM: Effect of calcitonin on bone histomorphometry and bone metabolism in rheumatoid arthritis. Calcif Tissue Int 1992, 50:11–13.PubMedCrossRefGoogle Scholar
  59. 59.
    Sileghem A, Geusens P, Dequeker J: Intranasal calcitonin for the prevention of bone erosion and bone loss in rheumatoid arthritis. Ann Rheum Dis 1992, 51:761–764.PubMedGoogle Scholar
  60. 60.
    Francis MD, Hovancik K, Boyce RW: NE-58095: a diphosphonate which prevents bone erosion and preserves joint architecture in experimental arthritis. Int J Tissue React 1989, 11:239–252.PubMedGoogle Scholar
  61. 61.
    Pysklywec MW, Moran EL, Bogoch ER: Zoledronate (CGP 42′446), a bisphosphonate, protects against metaphyseal intracortical defects in experimental inflammatory arthritis. J Orthop Res 1997, 15:858–861.PubMedCrossRefGoogle Scholar
  62. 62.
    Redlich K, Hayer S, Maier A, et al.: Tumor necrosis factor á-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin. Arthritis Rheum 2002, 46:785–792.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2002

Authors and Affiliations

  • Steven R. Goldring
    • 1
  • Ellen M. Gravallese
    • 1
  1. 1.Harvard Institutes of MedicineBostonUSA

Personalised recommendations