Current Rheumatology Reports

, Volume 3, Issue 1, pp 70–78 | Cite as

Apoptosis and rheumatoid arthritis: Past, present, and future directions

  • John D. Mountz
  • Hui-Chen Hsu
  • Yasunori Matsuki
  • Huang-Ge Zhang
Article

Abstract

The current studies of apoptosis in rheumatoid arthritis (RA) suggest that molecules (Fas-related or TNF-related), pathways (activation of pro-apoptosis or anti-apoptosis pathway), cell types (lymphocytes or synovial fibroblast), and the mechanism that triggers apoptosis (tolerance induction-related, down-modulation of inflammationrelated, or DNA damage-related) all play a fundamental role to determine the induction or prevention of RA. These series of defects at different levels and in different cells lead to hyperproliferation, defective apoptosis, or hyperapoptosis. This review summarizes the available knowledge of apoptosis and RA to help identify candidate target cells and target molecules for delivery of gene constructs or modified biological or chemical reagents to the target site for effective modification of these cells.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Baker SJ, Reddy EP: Modulation of life and death by the TNF receptor superfamily. Oncogene 1998, 17:3261–3270.PubMedCrossRefGoogle Scholar
  2. 2.
    Golstein P: Cell death: TRAIL and its receptors. Current Biol 1997, 7:R750–753.Google Scholar
  3. 3.
    Itoh N, Nagata S: A novel protein domain required for Fas/APO1 (CD95) in yeast and causes cell death. Cell 1993, 81:513–523.Google Scholar
  4. 4.
    Kischkel FC, Hellbardt S, Behrmann I, et al.: Cytotoxicitydependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995, 14:5579–5588.PubMedGoogle Scholar
  5. 5.
    Grimm S, Stanger BZ, Leder P: RIP and FADD: two "death domain"-containing proteins can induce apoptosis by convergent, but dissociable, pathways. Proc Natl Acad Sci U S A 1996, 93:10923–10927.PubMedCrossRefGoogle Scholar
  6. 6.
    Medema JP, Scaffidi C, Kischkel FC, et al.: FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J 1997, 16:2794–2804.PubMedCrossRefGoogle Scholar
  7. 7.
    Tartaglia LA, Ayres TM, Wong GH, et al.: A novel domain within the 55 kd TNF receptor signals cell death. Cell 1993, 74:845–853.PubMedCrossRefGoogle Scholar
  8. 8.
    Walczak H, Krammer PH: The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 2000, 256:58–66.PubMedCrossRefGoogle Scholar
  9. 9.
    Song K, Chen Y, Goke R, et al.: Tumor necrosis factorrelated apoptosis-inducing ligand (TRAIL) is an inhibitor of autoimmune inflammation and cell cycle progression. J Exp Med 2000, 191:1095–1104.PubMedCrossRefGoogle Scholar
  10. 10.
    Firestein GS, Yeo M, Zvaifler NJ: Apoptosis in rheumatoid arthritis synovium. J Clin Invest 1995, 96:1631–1638.PubMedGoogle Scholar
  11. 11.
    Schirmer M, Vallejo AN, Weyand CM, Goronzy JJ: Resistance to apoptosis and elevated expression of Bcl-2 in clonally expanded CD4+CD28-T cells from rheumatoid arthritis patients. J Immunol 1998, 161:1018–1025.PubMedGoogle Scholar
  12. 12.
    Matsumoto S, Muller-Ladner U, Gay RE: Ultrastructural demonstration of apoptosis, Fas and Bcl-2 expression of rheumatoid synovial fibroblasts. J Rheumatol 1996, 23:1345–1352.PubMedGoogle Scholar
  13. 13.
    Zdichavsky M, Schorpp C, Nickels A, et al.: Analysis of bcl-2+ lymphocyte subpopulations in inflammatory synovial infiltrates by a double-immunostaining technique. Rheumatol Int 1996, 16:151–157.PubMedCrossRefGoogle Scholar
  14. 14.
    Hasunuma T, Kayagaki N, Asahara H, et al.: Accumulation of soluble Fas in inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum 1997, 40:80–86. This paper suggests that accumulation of soluble Fas in the joint cavity of patients with rheumatoid arthritis may inhibit apoptosis and worsen the inflammatory process.PubMedCrossRefGoogle Scholar
  15. 15.
    Hoa TT, Hasunuma T, Aono H, et al.: Novel mechanisms of selective apoptosis in synovial T cells of patients with rheumatoid arthritis. J Rheumatol 1996, 23:1332–1337.PubMedGoogle Scholar
  16. 16.
    Hasunuma T, Hoa TT, Aono H, et al.: Induction of Fasdependent apoptosis in synovial infiltrating cells in rheumatoid arthritis. Int Immunol 1996, 8:1595–1602.PubMedCrossRefGoogle Scholar
  17. 17.
    Fujisawa K, Asahara H, Okamoto K, et al.: Therapeutic effect of the anti-Fas antibody on arthritis in HTLV-1 tax transgenic mice. J Clin Invest 1996, 98:271–278.PubMedCrossRefGoogle Scholar
  18. 18.
    Okamoto K, Asahara H, Kobayashi T, et al.: Induction of apoptosis in the rheumatoid synovium by Fas ligand gene transfer. Gene Therapy 1998, 5:331–338.PubMedCrossRefGoogle Scholar
  19. 19.
    Sakai K, Matsuno H, Morita I, et al.: Potential withdrawal of rheumatoid synovium by the induction of apoptosis using a novel in vivo model of rheumatoid arthritis. Arthritis Rheum 1998, 41:1251–1257.PubMedCrossRefGoogle Scholar
  20. 20.
    Wakisaka S, Suzuki N, Takeba Y, et al.: Modulation by proinflammatory cytokines of Fas/Fas ligand-mediated apoptotic cell death of synovial cells in patients with rheumatoid arthritis (RA). J Clin Invest 1998, 114:119–128. This study shows that although rheumatoid arthritis synovial cells could die via apoptosis through Fas/FasL pathway, apoptosis of synovial cells was retarded by proinflammatory cytokines present within the synovium.Google Scholar
  21. 21.
    Kobayashi T, Okamoto K, Kobata T, et al.: Tumor necrosis factor alpha regulation of the FAS-mediated apoptosis-signaling pathway in synovial cells. Arthritis Rheum 1999, 42:519–526. This paper demonstrates that TNFa stimulates synovial cells to proliferate and sensitizes the cells for Fas-mediated apoptosis.PubMedCrossRefGoogle Scholar
  22. 22.
    Kawakami A, Eguchi K, Matsuoka N, et al.: Inhibition of Fas antigen-mediated apoptosis of rheumatoid synovial cells in vitro by transforming growth factor beta 1. Arthritis Rheum 1996, 39:1267–1276.PubMedCrossRefGoogle Scholar
  23. 23.
    Aupperle KR, Boyle DL, Hendrix M, et al.: Regulation of synoviocyte proliferation, apoptosis, and invasion by the p53 tumor suppressor gene. Am J Pathol 1998, 152:1091–1098.PubMedGoogle Scholar
  24. 24.
    Okamoto K, Fujisawa K, Hasunuma T, et al.: Selective activation of the JNK/AP-1 pathway in Fas-mediated apoptosis of rheumatoid arthritis synoviocytes. Arthritis Rheum 1997, 40:919–926.PubMedCrossRefGoogle Scholar
  25. 25.
    Mizushima N, Kohsaka H, Miyasaka N: Ceramide, a mediator of interleukin 1, tumour necrosis factor alpha, as well as Fas receptor signalling, induces apoptosis of rheumatoid arthritis synovial cells. Ann Rheum Dis 1998, 57:495–499.PubMedCrossRefGoogle Scholar
  26. 26.
    Han Z, Boyle DL, Aupperle KR, Bennett B, et al.: Jun N-terminal kinase in rheumatoid arthritis. J Pharmacol Exp Ther 1999, 291:124–130.PubMedGoogle Scholar
  27. 27.
    Green DR: Apoptotic pathways: the road to ruin. Cell 1998, 94:695–698.PubMedCrossRefGoogle Scholar
  28. 28.
    Zou H, Li Y, Liu X, et al.: An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999, 274:11549–11556.PubMedCrossRefGoogle Scholar
  29. 29.
    Green DR, Reed JC: Mitochondria and apoptosis. Science 1998, 281:1309–1312.PubMedCrossRefGoogle Scholar
  30. 30.
    Juo P, Kuo CJ, Yuan J, Blenis J: Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr Biol 1998, 8:1001–1008.PubMedCrossRefGoogle Scholar
  31. 31.
    Hsu H, Xiong J, Goeddel DV: The TNF receptor 1-associated protein TRADD signals cell death and NF-kappaB activation. Cell 1995, 81:495–504.PubMedCrossRefGoogle Scholar
  32. 32.
    Vincenti MP, Coon CI, Brinckerhoff CE: Nuclear factor kappaB/p50 activates an element in the distal matrix metalloproteinase 1 promoter in interleukin-1 beta-stimulated synovial fibroblasts. Arthritis Rheum 1998, 41:1987–1994. This study demonstrates, for the first time, a role for NF-kB in the induction of MMP-1 and suggests a mechanism of NF-kB-mediated cartilage degradation in rheumatoid arthritis.PubMedCrossRefGoogle Scholar
  33. 33.
    Ito CY, Adey N, Bautch VL, Baldwin AS: Structure and evolution of the human IKBA gene. Genomics 1995, 29:490–495.PubMedCrossRefGoogle Scholar
  34. 34.
    Doi TS, Takahashi T, Taguchi O, et al.: NF-kappa B RelAdeficient lymphocytes: normal development of T cells and B cells, impaired production of IgA and IgG1 and reduced proliferative responses. J Exp Med 1997, 185:953–961.PubMedCrossRefGoogle Scholar
  35. 35.
    Jobin C, Panja A, Hellerbrand C, et al.: Inhibition of proinflammatory molecule production by adenovirus-mediated expression of a nuclear factor kappaB super-repressor in human intestinal epithelial cells. J Immunol 1998, 160:410–418.PubMedGoogle Scholar
  36. 36.
    Ling L, Cao Z, Goeddel DV: NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176. Proc Natl Acad Sci U S A 1998, 95:3792–3797.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang HG, Huang N, Liu D, et al.: Gene therapy that inhibits nuclear translocation of nuclear factor kappaB results in tumor necrosis factor alpha-induced apoptosis of human synovial fibroblasts. Arthritis Rheum 2000, 43:1094–1105.PubMedCrossRefGoogle Scholar
  38. 38.
    Deveraux QL, Roy N, Stennicke HR, et al.: IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 1998, 17:2215–2223. This paper shows that inhibitor of apoptosis (IAP) can suppress different apoptotic pathways by inhibiting distinct caspases and identifies pro-caspase-9 as a new target for IAP-mediated inhibition of apoptosis.PubMedCrossRefGoogle Scholar
  39. 39.
    Chu ZL, McKinsey TA, Liu L, et al.: Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Natl Acad Sci U S A 1997, 94:10057–10062.PubMedCrossRefGoogle Scholar
  40. 40.
    Tanino M, Matsuo M, Uenaka A, et al.: Transforming activity of the RL-akt gene, a c-akt gene activated by long terminal repeat insertion in murine leukemia RL (male symbol) 1 cells. Mol Carcinog 1999, 26:286–297.PubMedCrossRefGoogle Scholar
  41. 41.
    Kubohara Y, Hosaka K: The putative morphogen, DIF-1, of Dictyostelium discoideum activates Akt/PKB in human leukemia K562 cells. Biochem Biophys Res Commun 1999, 263:790–796.PubMedCrossRefGoogle Scholar
  42. 42.
    Potvin F, Petitclerc E, Marceau F, Poubelle PE: Mechanisms of action of antimalarials in inflammation: induction of apoptosis in human endothelial cells. J Immunol 1997, 158:1872–1879.PubMedGoogle Scholar
  43. 43.
    Genestier L, Paillot R, Fournel S, et al.: Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J Clin Invest 1998, 102:322–328. This paper demonstrates that methotrexate can selectively delete activated peripheral blood T cells by a CD95-independent pathway.PubMedGoogle Scholar
  44. 44.
    Su X, Zhou T, Yang P, et al.: Reduction of arthritis and pneumonitis in motheaten mice by soluble tumor necrosis factor receptor. Arthritis Rheum 1998, 41:139–149.PubMedCrossRefGoogle Scholar
  45. 45.
    Weinblatt ME, Kremer JM, Bankhurst AD, et al.: A trial of etanercept, a recombinant tumor necrosis factor receptor: Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 1999, 340:253–259.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhou T, Edwards CK 3rd, Yang P, et al.: Greatly accelerated lymphadenopathy and autoimmune disease in lpr mice lacking tumor necrosis factor receptor I. J Immunol 1996, 156:2661–2665.PubMedGoogle Scholar
  47. 47.
    Akahoshi T, Namai R, Sekiyama N, et al.: Rapid induction of neutrophil apoptosis by sulfasalazine: implications of reactive oxygen species in the apoptotic process. J Leukocyte Biol 1997, 62:817–826.PubMedGoogle Scholar

Copyright information

© Current Science Inc 2001

Authors and Affiliations

  • John D. Mountz
    • 1
  • Hui-Chen Hsu
  • Yasunori Matsuki
  • Huang-Ge Zhang
  1. 1.Division of Clinical Immunology and Rheumatology, Department of MedicineUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations