Advertisement

Current Psychiatry Reports

, 21:117 | Cite as

Recent Advances in the Neurobiology of Altered Motivation Following Bariatric Surgery

  • Julianna N. Brutman
  • Sunil Sirohi
  • Jon F. DavisEmail author
Eating Disorders (S Wonderlich and S Engel, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Eating Disorders

Abstract

Purpose of Review

There is compelling evidence in the clinical population that long-term weight loss secondary to bariatric surgery is mitigated by the reemergence of maladaptive feeding behaviors and in some cases new onset substance abuse.

Recent Findings

A review of the current literature suggests that physical restructuring of the GI tract during WLS alters secretion of feeding peptides and nutrient-sensing mechanisms that directly target the brain’s endogenous reward system, the mesolimbic dopamine system.

Summary

Post-surgical changes in GI physiology augment activation of the mesolimbic system. In some patients, this process may contribute to a reduced appetite for palatable food whereas in others it may support maladaptive motivated behavior for food and chemical drugs. It is concluded that future studies are required to detail the timing and duration of surgical-induced changes in GI-mesolimbic communication to more fully understand this phenomenon.

Keywords

RYGB VSG Motivation Reward SUD Dopamine 

Notes

Compliance with Ethical Standards

Conflict of Interest

Julianna N. Brutman, Sunil Sirohi, and Jon F. Davis each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Adult Obesity Facts | Overweight & Obesity | CDC. (2019, January 31). Retrieved May 29, 2019, from https://www.cdc.gov/obesity/data/adult.html
  2. 2.
    Flegal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. JAMA. 2012;307(5):491–7.  https://doi.org/10.1001/jama.2012.39.CrossRefPubMedGoogle Scholar
  3. 3.
    Arterburn DE, Maciejewski ML, Tsevat J. Impact of morbid obesity on medical expenditures in adults. Int J Obes. 2005;29(3):334–9.  https://doi.org/10.1038/sj.ijo.0802896.CrossRefGoogle Scholar
  4. 4.
    Drenick EJ, Bale GS, Seltzer F, Johnson DG. Excessive mortality and causes of death in morbidly obese men. JAMA. 1980;243(5):443–5.  https://doi.org/10.1001/jama.1980.03300310031018.CrossRefPubMedGoogle Scholar
  5. 5.
    Lutz TA, Bueter M. The physiology underlying Roux-en-Y gastric bypass: a status report. Am J Physiol Regul Integr Comp Physiol. 2014;307(11):R1275–91.  https://doi.org/10.1152/ajpregu.00185.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sturm R, Hattori A. Morbid obesity rates continue to rise rapidly in the US. Int J Obes (2005). 2013;37(6):889–91.  https://doi.org/10.1038/ijo.2012.159.CrossRefGoogle Scholar
  7. 7.
    Wang Y, Song Y, Chen J, Zhao R, Xia L, Cui Y, et al. Roux-en-Y gastric bypass versus sleeve gastrectomy for super super obese and super obese: systematic review and meta-analysis of weight results, comorbidity resolution. Obes Surg. 2019;29(6):1954–64.  https://doi.org/10.1007/s11695-019-03817-4.CrossRefPubMedGoogle Scholar
  8. 8.
    Bouret S, Levin BE, Ozanne SE. Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol Rev. 2015;95(1):47–82.  https://doi.org/10.1152/physrev.00007.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Casazza K, Brown A, Astrup A, Bertz F, Baum C, Brown MB, et al. Weighing the evidence of common beliefs in obesity research. Crit Rev Food Sci Nutr. 2015;55(14):2014–53.  https://doi.org/10.1080/10408398.2014.922044.CrossRefGoogle Scholar
  10. 10.
    Cooksey-Stowers K, Schwartz MB, Brownell KD. Food swamps predict obesity rates better than food deserts in the United States. Int J Environ Res Public Health. 2017;14(11).  https://doi.org/10.3390/ijerph14111366.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Godfrey KM, Reynolds RM, Prescott SL, Nyirenda M, Jaddoe VWV, Eriksson JG, et al. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol. 2017;5(1):53–64.  https://doi.org/10.1016/S2213-8587(16)30107-3.CrossRefPubMedGoogle Scholar
  12. 12.
    Hruby A, Hu FB. The epidemiology of obesity: A big picture. PharmacoEconomics. 2015;33(7):673–89.  https://doi.org/10.1007/s40273-014-0243-x.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kim TJ, von dem Knesebeck O. Income and obesity: what is the direction of the relationship? A systematic review and meta-analysis. BMJ Open. 2018;8(1).  https://doi.org/10.1136/bmjopen-2017-019862.
  14. 14.
    Müller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, et al. Ghrelin. Mol Metabolism. 2015;4(6):437–60.  https://doi.org/10.1016/j.molmet.2015.03.005.CrossRefGoogle Scholar
  15. 15.
    Bliss ES, Whiteside E. The gut-brain axis, the human gut microbiota and their integration in the development of obesity. Front Physiol. 2018;9.  https://doi.org/10.3389/fphys.2018.00900.
  16. 16.
    de Lartigue G, Barbier de la Serre C, Espero E, Lee J, Raybould HE. Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons. Am J Physiol Endocrinol Metab. 2011;301(1):E187–95.  https://doi.org/10.1152/ajpendo.00056.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sanmiguel C, Gupta A, Mayer EA. Gut microbiome and obesity: a plausible explanation for obesity. Curr Obes Rep. 2015;4(2):250–61.  https://doi.org/10.1007/s13679-015-0152-0.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kang JH, Le QA. Effectiveness of bariatric surgical procedures. Medicine. 2017;96(46):e8632.  https://doi.org/10.1097/MD.0000000000008632.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Geary N, Bächler T, Whiting L, Lutz TA, Asarian L. RYGB progressively increases avidity for a low-energy, artificially sweetened diet in female rats. Appetite. 2016;98:133–41.  https://doi.org/10.1016/j.appet.2015.11.029.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mathes CM, Letourneau C, Blonde GD, le Roux CW, Spector AC. Roux-en-Y gastric bypass in rats progressively decreases the proportion of fat calories selected from a palatable cafeteria diet. Am J Physiol Regul Integr Comp Physiol. 2016;310(10):R952–9.  https://doi.org/10.1152/ajpregu.00444.2015.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mumphrey MB, Hao Z, Townsend RL, Patterson LM, Münzberg H, Morrison CD, et al. Eating in mice with gastric bypass surgery causes exaggerated activation of brainstem anorexia circuit. Int J Obes (2005). 2016;40(6):921–8.  https://doi.org/10.1038/ijo.2016.38.CrossRefGoogle Scholar
  22. 22.
    Washington MC, Mhalhal TR, Johnson-Rouse T, Berger J, Heath J, Seeley R, et al. Roux-en-Y gastric bypass augments the feeding responses evoked by gastrin-releasing peptides. J Surg Res. 2016;206(2):517–24.  https://doi.org/10.1016/j.jss.2016.08.057.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    •• Sirohi S, Richardson BD, Lugo JM, Rossi DJ, Davis JF. Impact of Roux-en-Y gastric bypass surgery on appetite, alcohol intake behaviors, and midbrain ghrelin signaling in the rat. Obesity. 2017;25(7):1228–36.  https://doi.org/10.1002/oby.21839. Discovered that GHSR-1a signaling is altered in mesolimbic dopamine neurons in rats behaviorally characterized for increased alcohol intake and reduced hedonic food intake.CrossRefPubMedGoogle Scholar
  24. 24.
    Orellana ER, Jamis C, Horvath N, Hajnal A. Effect of vertical sleeve gastrectomy on alcohol consumption and preferences in dietary obese rats and mice: a plausible role for altered ghrelin signaling. Brain Res Bull. 2018;138:26–36.  https://doi.org/10.1016/j.brainresbull.2017.08.004.CrossRefPubMedGoogle Scholar
  25. 25.
    Biegler JM, Freet CS, Horvath N, Rogers AM, Hajnal A. Increased intravenous morphine self-administration following Roux-en-Y gastric bypass in dietary obese rats. Brain Res Bull. 2016;123:47–52.  https://doi.org/10.1016/j.brainresbull.2015.08.003.CrossRefPubMedGoogle Scholar
  26. 26.
    Pories WJ. Bariatric surgery: risks and rewards. J Clin Endocrinol Metab. 2008;93(11 Suppl 1):S89–96.  https://doi.org/10.1210/jc.2008-1641.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Stefater MA, Wilson-Pérez HE, Chambers AP, Sandoval DA, Seeley RJ. All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocr Rev. 2012;33(4):595–622.  https://doi.org/10.1210/er.2011-1044.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wolfe BM, Kvach E, Eckel RH. Treatment of obesity: weight loss and bariatric surgery. Circ Res. 2016;118(11):1844–55.  https://doi.org/10.1161/CIRCRESAHA.116.307591.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pepino MY, Bradley D, Eagon JC, Sullivan S, Abumrad NA, Klein S. Changes in taste perception and eating behavior after bariatric surgery-induced weight loss in women. Obesity (Silver Spring, Md.). 2014;22(5):E13–20.  https://doi.org/10.1002/oby.20649.CrossRefGoogle Scholar
  30. 30.
    Magro DO, Geloneze B, Delfini R, Pareja BC, Callejas F, Pareja JC. Long-term weight regain after gastric bypass: a 5-year prospective study. Obes Surg. 2008;18(6):648–51.  https://doi.org/10.1007/s11695-007-9265-1.CrossRefPubMedGoogle Scholar
  31. 31.
    Karmali S, Brar B, Shi X, Sharma AM, de Gara C, Birch DW. Weight recidivism post-bariatric surgery: a systematic review. Obes Surg. 2013;23(11):1922–33.  https://doi.org/10.1007/s11695-013-1070-4.CrossRefPubMedGoogle Scholar
  32. 32.
    Still CD, Wood GC, Chu X, Manney C, Strodel W, Petrick A, et al. Clinical factors associated with weight loss outcomes after Roux-en-Y gastric bypass surgery. Obesity (Silver Spring, Md.). 2014;22(3):888–94.  https://doi.org/10.1002/oby.20529.CrossRefGoogle Scholar
  33. 33.
    Ullrich J, Ernst B, Wilms B, Thurnheer M, Schultes B. Roux-en-Y gastric bypass surgery reduces hedonic hunger and improves dietary habits in severely obese subjects. Obes Surg. 2013;23(1):50–5.  https://doi.org/10.1007/s11695-012-0754-5.CrossRefPubMedGoogle Scholar
  34. 34.
    Brethauer SA, Aminian A, Romero-Talamás H, Batayyah E, Mackey J, Kennedy L, et al. Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann Surg. 2013;258(4):628–36; discussion 636–637.  https://doi.org/10.1097/SLA.0b013e3182a5034b.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    DeMaria EJ, Pate V, Warthen M, Winegar DA. Baseline data from American Society for Metabolic and Bariatric Surgery-designated Bariatric Surgery Centers of Excellence using the Bariatric Outcomes Longitudinal Database. Surg Obes Relat Dis Off J Am Soc Bariatric Surg. 2010;6(4):347–55.  https://doi.org/10.1016/j.soard.2009.11.015.CrossRefGoogle Scholar
  36. 36.
    Davis JF, Schurdak JD, Magrisso IJ, Mul JD, Grayson BE, Pfluger PT, et al. Gastric bypass surgery attenuates ethanol consumption in ethanol-preferring rats. Biol Psychiatry. 2012;72:354–60.  https://doi.org/10.1016/j.biopsych.2012.01.035.CrossRefPubMedGoogle Scholar
  37. 37.
    Davis JF, Tracy AL, Schurdak JD, Magrisso IJ, Grayson BE, Seeley RJ, et al. Roux en Y gastric bypass increases ethanol intake in the rat. Obes Surg. 2013;23(7):920–30.  https://doi.org/10.1007/s11695-013-0884-4.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Dutta S, Morton J, Shepard E, Peebles R, Farrales-Nguyen S, Hammer LD, et al. Methamphetamine use following bariatric surgery in an adolescent. Obes Surg. 2006;16(6):780–2.  https://doi.org/10.1381/096089206777346646.CrossRefPubMedGoogle Scholar
  39. 39.
    Ertelt TW, Mitchell JE, Lancaster K, Crosby RD, Steffen KJ, Marino JM. Alcohol abuse and dependence before and after bariatric surgery: a review of the literature and report of a new data set. Surg Obes Relat Dis. 2008;4(5):647–50.  https://doi.org/10.1016/j.soard.2008.01.004.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hajnal A, Zharikov A, Polston JE, Fields MR, Tomasko J, Rogers AM, et al. Alcohol reward is increased after Roux-en-Y gastric bypass in dietary obese rats with differential effects following ghrelin antagonism. PLoS One. 2012;7(11):e49121.  https://doi.org/10.1371/journal.pone.0049121.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Thanos PK, Subrize M, Delis F, Cooney RN, Culnan D, Sun M, et al. Gastric bypass increases ethanol and water consumption in diet-induced obese rats. Obes Surg. 2012;22(12):1884–92.  https://doi.org/10.1007/s11695-012-0749-2.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Boudreau D, Von Korff M, Rutter CM, Saunders K, Ray GT, Sullivan MD, et al. Trends in long-term opioid therapy for chronic non-cancer pain. Pharmacoepidemiol Drug Saf. 2009;18(12):1166–75.  https://doi.org/10.1002/pds.1833.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sirohi S, Skripnikova E, Davis JF. Vertical sleeve gastrectomy attenuates hedonic feeding without impacting alcohol drinking in rats. Obesity (Silver Spring, Md.). 2019;27(4):603–11.  https://doi.org/10.1002/oby.22415.CrossRefGoogle Scholar
  44. 44.
    King WC, Chen J-Y, Mitchell JE, Kalarchian M, Steffen KJ, Engel SG, et al. Prevalence of alcohol use disorders before and after bariatric surgery. JAMA. 2012;307:2516–25.  https://doi.org/10.1001/jama.2012.6147.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Himes SM, Grothe KB, Clark MM, Swain JM, Collazo-Clavell ML, Sarr MG. Stop regain: a pilot psychological intervention for bariatric patients experiencing weight regain. Obes Surg. 2015;25(5):922–7.  https://doi.org/10.1007/s11695-015-1611-0.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Tamboli RA, Breitman I, Marks-Shulman PA, Jabbour K, Melvin W, Williams B, et al. Early weight regain after gastric bypass does not affect insulin sensitivity but is associated with elevated ghrelin. Obesity. 2014;22(7):1617–22.  https://doi.org/10.1002/oby.2077.CrossRefPubMedGoogle Scholar
  47. 47.
    Hao Z, Münzberg H, Rezai-Zadeh K, Keenan M, Coulon D, Lu H, et al. Leptin deficient ob/ob mice and diet-induced obese mice responded differently to Roux-en-Y bypass surgery. Int J Obes. 2015;39(5):798–805.  https://doi.org/10.1038/ijo.2014.189.CrossRefGoogle Scholar
  48. 48.
    Guijarro A, Suzuki S, Chen C, Kirchner H, Middleton FA, Nadtochiy S, et al. Characterization of weight loss and weight regain mechanisms after Roux-en-Y gastric bypass in rats. Am J Phys Regul Integr Comp Phys. 2007;293(4):R1474–89.  https://doi.org/10.1152/ajpregu.00171.2007.CrossRefGoogle Scholar
  49. 49.
    Volkow ND, Baler RD. NOW vs LATER brain circuits: implications for obesity and addiction. Trends Neurosci. 2015;38:345–52.PubMedCrossRefGoogle Scholar
  50. 50.
    Marqués-Iturria I, Scholtens LH, Garolera M, Pueyo R, García-García I, González-Tartiere P, et al. Affected connectivity organization of the reward system structure in obesity. Neuroimage. 2015;111:100–6.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Tuominen L, Tuulari J, Karlsson H, Hirvonen J, Helin S, Salminen P, et al. Aberrant mesolimbic dopamine-opiate interaction in obesity. Neuroimage. 2015;122:80–6.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Geha P, Cecchi G, Todd Constable R, Abdallah C, Small DM. Reorganization of brain connectivity in obesity. Hum Brain Mapp. 2017;38:1403–20.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Avery JA, Powell JN, Breslin FJ, Lepping RJ, Martin LE, Patrician TM, et al. Obesity is associated with altered mid-insula functional connectivity to limbic regions underlying appetitive responses to foods. J Psychopharmacol (Oxford). 2017;31:1475–84.CrossRefGoogle Scholar
  54. 54.
    Ho M-C, Chen VC-H, Chao S-H, Fang C-T, Liu Y-C, Weng J-C. Neural correlates of executive functions in patients with obesity. PeerJ. 2018;6:e5002.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Chen VC-H, Liu Y-C, Chao S-H, McIntyre RS, Cha DS, Lee Y, et al. Brain structural networks and connectomes: the brain-obesity interface and its impact on mental health. Neuropsychiatr Dis Treat. 2018;14:3199–208.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Karlsson HK, Tuulari JJ, Tuominen L, Hirvonen J, Honka H, Parkkola R, et al. Weight loss after bariatric surgery normalizes brain opioid receptors in morbid obesity. Mol Psychiatry. 2016;21:1057–62.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Thanos PK, Michaelides M, Subrize M, Miller ML, Bellezza R, Cooney RN, et al. Roux-en-Y gastric bypass alters brain activity in regions that underlie reward and taste perception. PLoS One. 2015;10:e0125570.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wiemerslage L, Zhou W, Olivo G, Stark J, Hogenkamp PS, Larsson EM, et al. A resting-state fMRI study of obese females between pre- and postprandial states before and after bariatric surgery. Eur J Neurosci. 2017;45:333–41.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Olivo G, Zhou W, Sundbom M, Zhukovsky C, Hogenkamp P, Nikontovic L, et al. Resting-state brain connectivity changes in obese women after Roux-en-Y gastric bypass surgery: a longitudinal study. Sci Rep. 2017;7:6616.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Holsen LM, Davidson P, Cerit H, Hye T, Moondra P, Haimovici F, et al. Neural predictors of 12-month weight loss outcomes following bariatric surgery. Int J Obes. 2018;42:785–93.CrossRefGoogle Scholar
  61. 61.
    Pearce AL, Mackey E, Cherry JBC, Olson A, You X, Magge SN, et al. Effect of adolescent bariatric surgery on the brain and cognition: a pilot study. Obesity (Silver Spring). 2017;25:1852–60.CrossRefGoogle Scholar
  62. 62.
    Li P, Shan H, Liang S, et al. Sleeve gastrectomy recovering disordered brain function in subjects with obesity: a longitudinal fMRI study. Obes Surg. 2018;28:2421–8.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Han W, Tellez LA, Niu J, Medina S, Ferreira TL, Zhang X, et al. Striatal dopamine links gastrointestinal rerouting to altered sweet appetite. Cell Metab. 2016;23:103–12.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhang Y, Ji G, Xu M, Cai W, Zhu Q, Qian L, et al. Recovery of brain structural abnormalities in morbidly obese patients after bariatric surgery. Int J Obes. 2016;40:1558–65.CrossRefGoogle Scholar
  65. 65.
    Liu L, Ji G, Li G, et al. Structural changes in brain regions involved in executive-control and self-referential processing after sleeve gastrectomy in obese patients. Brain Imaging Behav 2018.Google Scholar
  66. 66.
    Faulconbridge LF, Ruparel K, Loughead J, Allison KC, Hesson LA, Fabricatore AN, et al. Changes in neural responsivity to highly palatable foods following Roux-en-Y gastric bypass, sleeve gastrectomy, or weight stability: an fMRI study. Obesity (Silver Spring). 2016;24:1054–60.PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Zoon HFA, de Bruijn SEM, Jager G, Smeets PAM, de Graaf C, Janssen IMC, et al. Altered neural inhibition responses to food cues after Roux-en-Y gastric bypass. Biol Psychol. 2018;137:34–41.PubMedCrossRefGoogle Scholar
  68. 68.
    Zoon HFA, de Bruijn SEM, Smeets PAM, de Graaf C, Janssen IMC, Schijns W, et al. Altered neural responsivity to food cues in relation to food preferences, but not appetite-related hormone concentrations after RYGB-surgery. Behav Brain Res. 2018;353:194–202.PubMedCrossRefGoogle Scholar
  69. 69.
    Karlsson HK, Tuulari JJ, Hirvonen J, Lepomäki V, Parkkola R, Hiltunen J, et al. Obesity is associated with white matter atrophy: a combined diffusion tensor imaging and voxel-based morphometric study. Obesity. 2013;21:2530–7.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Bohon C, Geliebter A. Change in brain volume and cortical thickness after behavioral and surgical weight loss intervention. Neuroimage Clin. 2019;21:101640.PubMedCrossRefGoogle Scholar
  71. 71.
    Volkow ND, Wang GJ, Fowler JS, Tomasi D, Baler R. Food and drug reward: overlapping circuits in human obesity and addiction. Curr Top Behav Neurosci. 2012;11:1–24.PubMedGoogle Scholar
  72. 72.
    Volkow ND, Wang G-J, Tomasi D, Baler RD. Obesity and addiction: neurobiological overlaps. Obes Rev. 2013;14:2–18.PubMedCrossRefGoogle Scholar
  73. 73.
    Hankir MK, Seyfried F, Hintschich CA, Diep TA, Kleberg K, Kranz M, et al. Gastric bypass surgery recruits a gut PPAR-α-striatal D1R pathway to reduce fat appetite in obese rats. Cell Metab. 2017;25:335–44.PubMedCrossRefGoogle Scholar
  74. 74.
    Wise RA. Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond Ser B Biol Sci. 2006;361:1149–58.CrossRefGoogle Scholar
  75. 75.
    Rodd ZA, Melendez RI, Bell RL, Kuc KA, Zhang Y, Murphy JM, et al. Intracranial self-administration of ethanol within the ventral tegmental area of male Wistar rats: evidence for involvement of dopamine neurons. JNeurosci. 2004;24:1050–7.CrossRefGoogle Scholar
  76. 76.
    Liu S, Globa AK, Mills F, Naef L, Qiao M, Bamji SX, et al. Consumption of palatable food primes food approach behavior by rapidly increasing synaptic density in the VTA. Proc Natl Acad Sci U S A. 2016;113:2520–5.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Diana M, Pistis M, Carboni S, Gessa GL, Rossetti ZL. Profound decrement of mesolimbic dopaminergic neuronal activity during ethanol withdrawal syndrome in rats: electrophysiological and biochemical evidence. Proc Natl Acad Sci U S A. 1993;90:7966–9.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Cook JB, Hendrickson LM, Garwood GM, Toungate KM, Nania CV, Morikawa H. Junk food diet-induced obesity increases D2 receptor autoinhibition in the ventral tegmental area and reduces ethanol drinking. PLoS One. 2017;12:e0183685.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Koyama S, Mori M, Kanamaru S, Sazawa T, Miyazaki A, Terai H, et al. Obesity attenuates D2 autoreceptor-mediated inhibition of putative ventral tegmental area dopaminergic neurons. Physiol Rep. 2014;2:e12004.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci. 2010;13:635–41.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    de Weijer BA, van de Giessen E, van Amelsvoort TA, Boot E, Braak B, Janssen IM, et al. Lower striatal dopamine D2/3 receptor availability in obese compared with non-obese subjects. EJNMMI Res. 2011;1:37.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Wu C, Garamszegi SP, Xie X, Mash DC. Altered dopamine synaptic markers in postmortem brain of obese subjects. Front Hum Neurosci. 2017;11:386.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Pak K, Kim S-J, Kim IJ. Obesity and brain positron emission tomography. Nucl Med Mol Imaging. 2018;52:16–23.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    van der Zwaal EM, de Weijer BA, van de Giessen EM, Janssen I, Berends FJ, van de Laar A, et al. Striatal dopamine D2/3 receptor availability increases after long-term bariatric surgery-induced weight loss. Eur Neuropsychopharmacol. 2016;26:1190–200.PubMedCrossRefGoogle Scholar
  85. 85.
    Blum K, Thanos PK, Wang G-J, Febo M, Demetrovics Z, Modestino EJ, et al. The food and drug addiction epidemic: targeting dopamine homeostasis. Curr Pharm Des. 2018;23:6050–61.PubMedCrossRefGoogle Scholar
  86. 86.
    de Weijer BA, van de Giessen E, Janssen I, Berends FJ, van de Laar A, Ackermans MT, et al. Striatal dopamine receptor binding in morbidly obese women before and after gastric bypass surgery and its relationship with insulin sensitivity. Diabetologia. 2014;57:1078–80.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Steele KE, Prokopowicz GP, Schweitzer MA, Magunsuon TH, Lidor AO, Kuwabawa H, et al. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes Surg. 2010;20:369–74.PubMedCrossRefGoogle Scholar
  88. 88.
    •• Hamilton J, Swenson S, Hajnal A, Thanos PK. Roux-en-Y gastric bypass surgery normalizes dopamine D1, D2, and DAT levels. Synapse. 2018;72:e22058. Found restoration of D2-receptor binding in striatum and hence mesolimbic dopamine function in RYGB rats relative to obese controls.CrossRefGoogle Scholar
  89. 89.
    Doumouras AG, Saleh F, Anvari S, Gmora S, Anvari M, Hong D. Mastery in bariatric surgery: the long-term surgeon learning curve of Roux-en-Y gastric bypass. Ann Surg. 2018;267:489–94.PubMedCrossRefGoogle Scholar
  90. 90.
    Merrer JL, Becker JAJ, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev. 2009;89:1379–412.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Hyytia P. Involvement of mu-opioid receptors in alcohol drinking by alcohol-preferring AA rats. Pharmacol Biochem Behav. 1993;45:697–701.PubMedCrossRefGoogle Scholar
  92. 92.
    Bazov I, Kononenko O, Watanabe H, et al. The endogenous opioid system in human alcoholics: molecular adaptations in brain areas involved in cognitive control of addiction. AddictBiol. 2011.Google Scholar
  93. 93.
    Nogueiras R, Romero-Picó A, Vazquez MJ, Novelle MG, López M, Diéguez C. The opioid system and food intake: homeostatic and hedonic mechanisms. Obes Facts. 2012;5:196–207.PubMedCrossRefGoogle Scholar
  94. 94.
    Joutsa J, Karlsson HK, Majuri J, et al. Binge eating disorder and morbid obesity are associated with lowered mu-opioid receptor availability in the brain. Psychiatry Res Neuroimaging. 2018;276:41–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Karlsson HK, Tuominen L, Tuulari JJ, Hirvonen J, Parkkola R, Helin S, et al. Obesity is associated with decreased μ-opioid but unaltered dopamine D2 receptor availability in the brain. J Neurosci. 2015;35:3959–65.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Sirohi S, Skripnikova E, Davis JF. Vertical sleeve gastrectomy attenuates hedonic feeding without impacting alcohol drinking in rats. Obesity (Silver Spring). 2019;27:603–11.CrossRefGoogle Scholar
  97. 97.
    Hankir MK, Patt M, Patt JTW, Becker GA, Rullmann M, Kranz M, et al. Suppressed fat appetite after Roux-en-Y gastric bypass surgery associates with reduced brain μ-opioid receptor availability in diet-induced obese male rats. Front Neurosci. 2017;10.Google Scholar
  98. 98.
    Pasternak GW, Pan Y-X. Mu opioids and their receptors: evolution of a concept. Pharmacol Rev. 2013;65:1257–317.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    le Roux CW, Welbourn R, Werling M, Osborne A, Kokkinos A, Laurenius A, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg. 2007;246(5):780–5.  https://doi.org/10.1097/SLA.0b013e3180caa3e3.CrossRefPubMedGoogle Scholar
  100. 100.
    Ivezaj V, Stoeckel LE, Avena NM, Benoit SC, Conason A, Davis JF, et al. Obesity and addiction: can a complication of surgery help us understand the connection? Obes Rev. 2017;18:765–75.  https://doi.org/10.1111/obr.12542.CrossRefPubMedGoogle Scholar
  101. 101.
    Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3:153–65. Retrieved from. https://doi.org/10.1016/j.cmet.2006.01.004\n.Google Scholar
  102. 102.
    Dar MS, Chapman WH, Pender JR, Drake AJ, O’Brien K, Tanenberg RJ, et al. GLP-1 response to a mixed meal: what happens 10 years after Roux-en-Y gastric bypass (RYGB)? Obes Surg. 2012;22(7):1077–83.  https://doi.org/10.1007/s11695-012-0624-1.CrossRefPubMedGoogle Scholar
  103. 103.
    Chambers AP, Jessen L, Ryan KK, Sisley S, Wilsonpérez HE, Stefater MA, et al. Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology. 2011;141(3):950–8.  https://doi.org/10.1053/j.gastro.2011.05.050.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Alhadeff AL, Rupprecht LE, Hayes MR. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology. 2012;153(2):647–58.  https://doi.org/10.1210/en.2011-1443.CrossRefPubMedGoogle Scholar
  105. 105.
    Fortin SM, Roitman MF. Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core. Physiol Behav. 2017;176:17–25.  https://doi.org/10.1016/j.physbeh.2017.03.019.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Schmidt HD, Mietlicki-Baase EG, Ige KY, Maurer JJ, Reiner DJ, Zimmer DJ, et al. Glucagon-like peptide-1 receptor activation in the ventral tegmental area decreases the reinforcing efficacy of cocaine. Neuropsychopharmacology. 2016;41(7):1917–28.  https://doi.org/10.1038/npp.2015.362.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Cummings DE, Weigle DS, Frayo RS, Breen P, Ma MK, Dellinger EP, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346(21):1623–30.  https://doi.org/10.1056/NEJMoa012908.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Camiña JP, Carreira MC, El Messari S, Llorens-Cortes C, Smith RG, Casanueva FF. Desensitization and endocytosis mechanisms of ghrelin-activated growth hormone secretagogue receptor 1a. Endocrinology. 2004;145(2):930–40.  https://doi.org/10.1210/en.2003-0974.CrossRefPubMedGoogle Scholar
  109. 109.
    Jerlhag E, Egecioglu E, Landgren S, Salomé N, Heilig M, Moechars D, et al. Requirement of central ghrelin signaling for alcohol reward. Proc Natl Acad Sci U S Am. 2009;106:11318–23.  https://doi.org/10.1073/pnas.0812809106.CrossRefGoogle Scholar
  110. 110.
    Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Investig. 2006;116(12):3229–39.  https://doi.org/10.1172/JCI29867.CrossRefPubMedGoogle Scholar
  111. 111.
    Zigman JM, Nakano Y, Coppari R, Balthasar N, Marcus JN, Lee CE, et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J Clin Invest. 2005;115(12):3564–72.  https://doi.org/10.1172/JCI26002.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Holst B, Schwartz TW. Constitutive ghrelin receptor activity as a signaling set-point in appetite regulation. Trends Pharmacol Sci. 2004;25:113–7.  https://doi.org/10.1016/j.tips.2004.01.010.CrossRefPubMedGoogle Scholar
  113. 113.
    Petersen PS, Woldbye DPD, Madsen AN, Egerod KL, Jin C, Lang M, et al. In vivo characterization of high basal signaling from the ghrelin receptor. Endocrinology. 2009;150(11):4920–30.  https://doi.org/10.1210/en.2008-1638.CrossRefPubMedGoogle Scholar
  114. 114.
    Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez De Fonseca F, … Piomelli D. Oleoylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature. 2003;425(6953). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12955147.PubMedCrossRefGoogle Scholar
  115. 115.
    Fu J, Gaetani S, Oveisi F, Verme JL, Serrano A, Rodríguez De Fonseca F, et al. Oleoylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature. 2003;425(6953):90–3.  https://doi.org/10.1038/nature01921.CrossRefPubMedGoogle Scholar
  116. 116.
    Tellez LA, Medina S, Han W, Ferreira JG, Licona-Limón P, Ren X, et al. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science. 2013;341(6147):800–2.  https://doi.org/10.1126/science.1239275.CrossRefPubMedGoogle Scholar
  117. 117.
    •• Hankir MK, Seyfried F, Hintschich CA, Diep TA, Kleberg K, Kranz M, et al. Gastric bypass surgery recruits a gut PPAR-α-striatal D1R pathway to reduce fat appetite in obese rats. Cell Metabol. 2017;25(2):335–44.  https://doi.org/10.1016/j.cmet.2016.12.006. Discovered that OEA-PPAR-α signaling increase mesolimbic dopamine secretion.CrossRefGoogle Scholar
  118. 118.
    Bottin JH, Thomas EL, Balogun B, Bech PR, Ghatei MA, Moorthy K, et al. Changes in appetite, food intake, and appetite regulating hormones during acute weight loss induced by Roux-en-y gastric bypass and low-calorie diet. Obes Facts. 2015;8:66–272.  https://doi.org/10.1159/000382140.CrossRefGoogle Scholar
  119. 119.
    Shin AC, Zheng H, Pistell PJ, Berthoud HR. Roux-en-Y gastric bypass surgery changes food reward in rats. Int J Obes. 2011;35(5):642–51.  https://doi.org/10.1038/ijo.2010.174.CrossRefGoogle Scholar
  120. 120.
    Habegger KM, Heppner KM, Amburgy SE, Ottaway N, Holland J, Raver C, et al. GLP-1R responsiveness predicts individual gastric bypass efficacy on glucose tolerance in rats. Diabetes. 2014;63(2):505–13.  https://doi.org/10.2337/db13-0511.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Hayes MR, Schmidt HD. GLP-1 influences food and drug reward. Curr Opin Behav Sci. 2016;9:66–70.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Menzies JRW, Skibicka KP, Leng G, Dickson SL. Ghrelin, reward and motivation. Endocr Dev. 2013;25:101–11.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Abizaid A, Liu Z-W, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest. 2006;116:3229–39.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Skibicka KP, Hansson C, Alvarez-Crespo M, Friberg PA, Dickson SL. Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience. 2011;180:129–37.PubMedCrossRefGoogle Scholar
  125. 125.
    Jerlhag E, Egecioglu E, Landgren S, Salome N, Heilig M, Moechars D, et al. Requirement of central ghrelin signaling for alcohol reward. Proc Natl Acad Sci U S A. 2009;106:11318–23.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Barkholt P, Pedersen PJ, Hay-Schmidt A, Jelsing J, Hansen HH, Vrang N. Alterations in hypothalamic gene expression following Roux-en-Y gastric bypass. Mol Metab. 2016;5:296–304.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Blum K, Bailey J, Gonzalez AM, et al. Neuro-genetics of reward deficiency syndrome (RDS) as the root cause of “addiction transfer”: a new phenomenon common after bariatric surgery. J Genet Syndr Gene Ther. 2011;2012.Google Scholar
  128. 128.
    Backman O, Stockeld D, Rasmussen F, Näslund E, Marsk R. Alcohol and substance abuse, depression and suicide attempts after Roux-en-Y gastric bypass surgery. Br J Surg. 2016;103:1336–42.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Julianna N. Brutman
    • 1
  • Sunil Sirohi
    • 2
  • Jon F. Davis
    • 1
    Email author
  1. 1.Department of Integrative Physiology and Neuroscience, College of Veterinary MedicineWashington State UniversityPullmanUSA
  2. 2.Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of PharmacyXavier University of LouisianaNew OrleansUSA

Personalised recommendations