Current Psychiatry Reports

, 21:89 | Cite as

Investigational and Therapeutic Applications of Transcranial Magnetic Stimulation in Schizophrenia

  • Urvakhsh Meherwan MehtaEmail author
  • Shalini S. Naik
  • Milind Vijay Thanki
  • Jagadisha Thirthalli
Schizophrenia and Other Psychotic Disorders (AK Pandurangi, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Schizophrenia and Other Psychotic Disorders


Purpose of Review

This current review summarizes the investigational and therapeutic applications of transcranial magnetic stimulation (TMS) in schizophrenia.

Recent Findings

Fairly consistent findings of an impaired cortical excitation-inhibition balance, cortical plasticity, and motor resonance have been reported in schizophrenia. Cortical connectivity impairments have also been demonstrated in motor and prefrontal brain regions. In terms of treatment, the best support is for 1-Hz TMS to the left temporoparietal cortex for the short-term treatment of persistent auditory hallucinations. High-frequency TMS to the left prefrontal cortex improves negative and cognitive symptoms, but with inconsistent and small effects.


TMS combined with diverse brain mapping techniques and clinical evaluation can unravel critical brain-behavior relationships relevant to schizophrenia. These provide critical support to the conceptualization of schizophrenia as a connectopathy with anomalous cortical plasticity. Adaptive modulation of these aberrant brain networks in a neuroscience-informed manner drives short-term therapeutic gains in difficult-to-treat symptoms of schizophrenia.


Brain stimulation Neuromodulation TMS Connectivity Treatment Psychosis Resistant schizophrenia 


Funding Information

UMM was supported by the Wellcome Trust/DBT India Alliance Early Career Fellowship, Grant/Award Number: IA/E/12/1/500755.

Compliance with Ethical Standards

Conflict of Interest

Urvakhsh Meherwan Mehta serves as an Associate Editor at Schizophrenia Research and receives an honorarium from Elsevier for the same.

Shalini S Naik, Milind Vijay Thanki, and Jagadisha Thirthalli each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388:86–97.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Tandon R, Keshavan MS, Nasrallah HA. Schizophrenia, "just the facts" what we know in 2008. 2. Epidemiology and etiology. Schizophr Res. 2008;102:1–18.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    de Araujo AN, de Sena EP, de Oliveira IR, Juruena MF. Antipsychotic agents: efficacy and safety in schizophrenia. Drug Healthc Patient Saf. 2012;4:173–80.PubMedPubMedCentralGoogle Scholar
  4. 4.
    McClintock SM, Freitas C, Oberman L, Lisanby SH, Pascual-Leone A. Transcranial magnetic stimulation: a neuroscientific probe of cortical function in schizophrenia. Biol Psychiatry. 2011;70:19–27.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    •• Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018;21:174–87. This is a state-of-the-art review of using neuromodulation techniques like TMS and others for investigating brain-behavior relationships over the last three decades. PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Dougall N, Maayan N, Soares-Weiser K, McDermott LM, McIntosh A. Transcranial magnetic stimulation (TMS) for schizophrenia. Cochrane Database Syst Rev. 2015.
  7. 7.
    Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;325:1106–7.CrossRefGoogle Scholar
  8. 8.
    Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011;477:171–8.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Paulus W, Classen J, Cohen LG, Large CH, Di Lazzaro V, Nitsche M, et al. State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimulation. 2008;1:151–63.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    • Radhu N, de Jesus DR, Ravindran LN, Zanjani A, Fitzgerald PB, Daskalakis ZJ. A meta-analysis of cortical inhibition and excitability using transcranial magnetic stimulation in psychiatric disorders. Clin Neurophysiol. 2013;124:1309–20. This is the only meta-analysis of investigational TMS studies in schizophrenia and other psychiatric disorders. PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al. Corticocortical inhibition in human motor cortex. J Physiol Lond. 1993;471:501–19.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Valls-Solé J, Pascual-Leone A, Wassermann EM, Hallett M. Human motor evoked responses to paired transcranial magnetic stimuli. Electroencephalogr Clin Neurophysiol. 1992;85:355–64.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Du X, Choa F-S, Chiappelli J, Wisner KM, Wittenberg G, Adhikari B, et al. Aberrant middle prefrontal-motor cortex connectivity mediates motor inhibitory biomarker in schizophrenia. Biol Psychiatry. 2019;85:49–59.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Mehta UM, Thirthalli J, Basavaraju R, Gangadhar BN. Association of intracortical inhibition with social cognition deficits in schizophrenia: findings from a transcranial magnetic stimulation study. Schizophr Res. 2014;158:146–50.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Takahashi S, Ukai S, Kose A, Hashimoto T, Iwatani J, Okumura M, et al. Reduction of cortical GABAergic inhibition correlates with working memory impairment in recent onset schizophrenia. Schizophr Res. 2013;146:238–43.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Daskalakis ZJ, Christensen BK, Fitzgerald PB, Moller B, Fountain SI, Chen R. Increased cortical inhibition in persons with schizophrenia treated with clozapine. J Psychopharmacol. 2008;22:203–9.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Liu SK, Fitzgerald PB, Daigle M, Chen R, Daskalakis ZJ. The relationship between cortical inhibition, antipsychotic treatment, and the symptoms of schizophrenia. Biol Psychiatry. 2009;65:503–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Basavaraju R, Sanjay TN, Mehta UM, Muralidharan K, Thirthalli J. Cortical inhibition in symptomatic and remitted mania compared to healthy subjects: a cross-sectional study. Bipolar Disord. 2017;19:698–703.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G. Understanding motor events: a neurophysiological study. Exp Brain Res. 1992;91:176–80.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Gallese V. Before and below “theory of mind”: embodied simulation and the neural correlates of social cognition. Philos Trans R Soc Lond Ser B Biol Sci. 2007;362:659–69.CrossRefGoogle Scholar
  21. 21.
    Fadiga L, Fogassi L, Pavesi G, Rizzolatti G. Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol. 1995;73:2608–11.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Mehta UM, Thirthalli J, Aneelraj D, Jadhav P, Gangadhar BN, Keshavan MS. Mirror neuron dysfunction in schizophrenia and its functional implications: a systematic review. Schizophr Res. 2014;160:9–19.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Mehta UM, Thirthalli J, Basavaraju R, Gangadhar BN, Pascual-Leone A. Reduced mirror neuron activity in schizophrenia and its association with theory of mind deficits: evidence from a transcranial magnetic stimulation study. Schizophr Bull. 2014;40:1083–94.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Mehta UM, Ashok AH, Thirthalli J, Keshavan MS. Early motor resonance differentiates schizophrenia patients from healthy subjects and predicts social cognition performance. Prog Brain Res. 2019. Scholar
  25. 25.
    Basavaraju R, Mehta UM, Pascual-Leone A, Thirthalli J. Elevated mirror neuron system activity in bipolar mania: evidence from a transcranial magnetic stimulation study. Bipolar Disord. 2019;21:259–69.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Enticott PG, Hoy KE, Herring SE, Johnston PJ, Daskalakis ZJ, Fitzgerald PB. Reduced motor facilitation during action observation in schizophrenia: a mirror neuron deficit? Schizophr Res. 2008;102:116–21.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Andrews SC, Enticott PG, Hoy KE, Thomson RH, Fitzgerald PB. No evidence for mirror system dysfunction in schizophrenia from a multimodal TMS/EEG study. Psychiatry Res. 2015;228:431–40.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Bagewadi VI, Mehta UM, Naik SS, Govindaraj R, Varambally S, Arumugham SS, et al. Diminished modulation of motor cortical reactivity during context-based action observation in schizophrenia. Schizophr Res. 2019;204:222–9.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD. Interhemispheric inhibition of the human motor cortex. J Physiol. 1992;453:525–46.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Chen R, Yung D, Li J-Y. Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. J Neurophysiol. 2003;89:1256–64.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hanajima R, Ugawa Y, Machii K, Mochizuki H, Terao Y, Enomoto H, et al. Interhemispheric facilitation of the hand motor area in humans. J Physiol. 2001;531:849–59.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Daskalakis ZJ, Christensen BK, Chen R, Fitzgerald PB, Zipursky RB, Kapur S. Evidence for impaired cortical inhibition in schizophrenia using transcranial magnetic stimulation. Arch Gen Psychiatry. 2002;59:347–54.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Hoy KE, Georgiou-Karistianis N, Laycock R, Fitzgerald PB. A transcranial magnetic stimulation study of transcallosal inhibition and facilitation in schizophrenia. J Clin Neurosci. 2008;15:863–7.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Fitzgerald PB, Brown TL, Daskalakis ZJ, deCastella A, Kulkarni J. A study of transcallosal inhibition in schizophrenia using transcranial magnetic stimulation. Schizophr Res. 2002;56:199–209.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Koch G, Fernandez Del Olmo M, Cheeran B, Ruge D, Schippling S, Caltagirone C, et al. Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex. J Neurosci. 2007;27:6815–22.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Koch G, Ribolsi M, Mori F, Sacchetti L, Codecà C, Rubino IA, et al. Connectivity between posterior parietal cortex and ipsilateral motor cortex is altered in schizophrenia. Biol Psychiatry. 2008;64:815–9.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ribolsi M, Mori F, Magni V, Codecà C, Kusayanagi H, Monteleone F, et al. Impaired inter-hemispheric facilitatory connectivity in schizophrenia. Clin Neurophysiol. 2011;122:512–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Daskalakis ZJ, Christensen BK, Fitzgerald PB, Fountain SI, Chen R. Reduced cerebellar inhibition in schizophrenia: a preliminary study. Am J Psychiatry. 2005;162:1203–5.PubMedCrossRefGoogle Scholar
  39. 39.
    • Brady RO, Gonsalvez I, Lee I, Öngür D, Seidman LJ, Schmahmann JD, et al. Cerebellar-prefrontal network connectivity and negative symptoms in schizophrenia. AJP Appi Ajp. 2019;2018:18040429. This article demonstrates the role of the cerebellar-prefrontal resting state network in negative symptoms of schizophrenia by using TMS to alter the connectivity and hence symptoms. Google Scholar
  40. 40.
    Guller Y, Ferrarelli F, Shackman AJ, Sarasso S, Peterson MJ, Langheim FJ, et al. Probing thalamic integrity in schizophrenia using concurrent transcranial magnetic stimulation and functional magnetic resonance imaging. Arch Gen Psychiatry. 2012;69:662–71.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Keshavan MS, Mehta UM, Padmanabhan JL, Shah JL. Dysplasticity, metaplasticity, and schizophrenia: implications for risk, illness, and novel interventions. Dev Psychopathol. 2015;27:615–35.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Bhandari A, Voineskos D, Daskalakis ZJ, Rajji TK, Blumberger DM. A review of impaired neuroplasticity in schizophrenia investigated with non-invasive brain stimulation. Front Psychiatry. 2016;7.
  43. 43.
    Hasan A, Falkai P, Wobrock T. Transcranial brain stimulation in schizophrenia: targeting cortical excitability, connectivity and plasticity. Curr Med Chem. 2013;20:405–13.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Voineskos D, Rogasch NC, Rajji TK, Fitzgerald PB, Daskalakis ZJ. A review of evidence linking disrupted neural plasticity to schizophrenia. Can J Psychiatr. 2013;58:86–92.CrossRefGoogle Scholar
  45. 45.
    Cooke SF, Bliss TV. Plasticity in the human central nervous system. Brain. 2006;129:1659–73.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature. 1999;402:421–5.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    • Mehta UM, Thanki MV, Padmanabhan J, Pascual-Leone A, Keshavan MS. Motor cortical plasticity in schizophrenia: a meta-analysis of transcranial magnetic stimulation – electromyography studies. Schizophr Res. 2019;207:37–47. This article reports a meta-analytic quantification of cortical plasticity impairments in schizophrenia as assessed using TMS-EMG studies. PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Hensch TK. Critical period plasticity in local cortical circuits. Nat Rev Neurosci. 2005;6:877–88.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Oxley T, Fitzgerald PB, Brown TL, de Castella A, Jeff Daskalakis Z, Kulkarni J. Repetitive transcranial magnetic stimulation reveals abnormal plastic response to premotor cortex stimulation in schizophrenia. Biol Psychiatry. 2004;56:628–33.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Meherwan Mehta U, Agarwal SM, Kalmady SV, Shivakumar V, Kumar CN, Venkatasubramanian G, et al. Enhancing putative mirror neuron activity with magnetic stimulation: a single-case functional neuroimaging study. Biol Psychiatry. 2013;74:e1–2.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Mehta UM, Waghmare AV, Thirthalli J, Venkatasubramanian G, Gangadhar BN. Is the human mirror neuron system plastic? Evidence from a transcranial magnetic stimulation study. Asian J Psychiatr. 2015;17:71–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    •• Tremblay S, Rogasch NC, Premoli I, et al. Clinical utility and prospective of TMS–EEG. Clin Neurophysiol. 2019;130:802–44. This manuscript is an up-to-date review on basic principles, clinical utility and future applications of TMS-EEG studies in brain disorders. PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu J, Aronen HJ, Näätänen R, et al. Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport. 1997;8:3537–40.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Kirschstein T, Köhling R. What is the source of the EEG? Clin EEG Neurosci. 2009;40:146–9.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Ferrarelli F, Massimini M, Peterson MJ, et al. Reduced evoked gamma oscillations in the frontal cortex in schizophrenia patients: a TMS/EEG study. Am J Psychiatry. 2008;165:996–1005.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Ferrarelli F, Sarasso S, Guller Y, Riedner BA, Peterson MJ, Bellesi M, et al. Reduced natural oscillatory frequency of frontal thalamocortical circuits in schizophrenia. Arch Gen Psychiatry. 2012;69:766–74.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ferrarelli F, Kaskie RE, Graziano B, Reis CC, Casali AG. Abnormalities in the evoked frontal oscillatory activity of first-episode psychosis: a TMS/EEG study. Schizophr Res. 2019;206:436–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Frantseva M, Cui J, Farzan F, Chinta LV, Perez Velazquez JL, Daskalakis ZJ. Disrupted cortical conductivity in schizophrenia: TMS-EEG study. Cereb Cortex. 2014;24:211–21.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Rogasch NC, Daskalakis ZJ, Fitzgerald PB. Mechanisms underlying long-interval cortical inhibition in the human motor cortex: a TMS-EEG study. J Neurophysiol. 2013;109:89–98.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Daskalakis ZJ, Farzan F, Barr MS, Maller JJ, Chen R, Fitzgerald PB. Long-interval cortical inhibition from the dorsolateral prefrontal cortex: a TMS-EEG study. Neuropsychopharmacology. 2008;33:2860–9.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Radhu N, Dominguez LG, Greenwood TA, Farzan F, Semeralul MO, Richter MA, et al. Investigating cortical inhibition in first-degree relatives and probands in schizophrenia. Sci Rep. 2017;7:43629.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Noda Y, Barr MS, Zomorrodi R, Cash RFH, Farzan F, Rajji TK, et al. Evaluation of short interval cortical inhibition and intracortical facilitation from the dorsolateral prefrontal cortex in patients with schizophrenia. Sci Rep. 2017;7:17106.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero A, Profice P, Insola A, et al. Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol. 2000;523:503–13.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Noda Y, Barr MS, Zomorrodi R, Cash RFH, Rajji TK, Farzan F, et al. Reduced short-latency afferent inhibition in prefrontal but not motor cortex and its association with executive function in schizophrenia: a combined TMS-EEG study. Schizophr Bull. 2018;44:193–202.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45:201–6.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Shergill SS, Brammer MJ, Williams SC, Murray RM, McGuire PK. Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch Gen Psychiatry. 2000;57:1033–8.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Hoffman RE, Boutros NN, Berman RM, Roessler E, Belger A, Krystal JH, et al. Transcranial magnetic stimulation of left temporoparietal cortex in three patients reporting hallucinated “voices.”. Biol Psychiatry. 1999;46:130–2.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    • He H, Lu J, Yang L, Zheng J, Gao F, Zhai Y, et al. Repetitive transcranial magnetic stimulation for treating the symptoms of schizophrenia: a PRISMA compliant meta-analysis. Clin Neurophysiol. 2017;128:716–24. This is one of the recent meta-analysis of therapeutic value of TMS in schizophrenia. PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Slotema CW, Blom JD, van Lutterveld R, Hoek HW, Sommer IEC. Review of the efficacy of transcranial magnetic stimulation for auditory verbal hallucinations. Biol Psychiatry. 2014;76:101–10.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Otani VHO, Shiozawa P, Cordeiro Q, Uchida RR. A systematic review and meta-analysis of the use of repetitive transcranial magnetic stimulation for auditory hallucinations treatment in refractory schizophrenic patients. Int J Psychiatry Clin Pract. 2015;19:228–32.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    •• Kennedy NI, Lee WH, Frangou S. Efficacy of non-invasive brain stimulation on the symptom dimensions of schizophrenia: a meta-analysis of randomized controlled trials. Eur Psychiatry. 2018;49:69–77. This is the most recent meta-analysis of therapeutic value of TMS in schizophrenia. PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Aleman A, Sommer IE, Kahn RS. Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of resistant auditory hallucinations in schizophrenia: a meta-analysis. J Clin Psychiatry. 2007;68:416–21.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Freitas C, Fregni F, Pascual-Leone A. Meta-analysis of the effects of repetitive transcranial magnetic stimulation (rTMS) on negative and positive symptoms in schizophrenia. Schizophr Res. 2009;108:11–24.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Dollfus S, Lecardeur L, Morello R, Etard O. Placebo response in repetitive transcranial magnetic stimulation trials of treatment of auditory hallucinations in schizophrenia: a meta-analysis. Schizophr Bull. 2016;42:301–8.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Thirthalli J, Bharadwaj B, Kulkarni S, Gangadhar BN, Kharawala S, Andrade C. Successful use of maintenance rTMS for 8 months in a patient with antipsychotic-refractory auditory hallucinations. Schizophr Res. 2008;100:351–2.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Koops S, Slotema CW, Kos C, Bais L, Aleman A, Blom JD, et al. Predicting response to rTMS for auditory hallucinations: younger patients and females do better. Schizophr Res. 2018;195:583–4.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Nathou C, Simon G, Dollfus S, Etard O. Cortical anatomical variations and efficacy of rTMS in the treatment of auditory hallucinations. Brain Stimulation. 2015;8:1162–7.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Homan P, Kindler J, Hauf M, Hubl D, Dierks T. Cerebral blood flow identifies responders to transcranial magnetic stimulation in auditory verbal hallucinations. Transl Psychiatry. 2012;2:e189–9.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Hoffman RE, Wu K, Pittman B, Cahill JD, Hawkins KA, Fernandez T, et al. Transcranial magnetic stimulation of Wernicke’s and right homologous sites to curtail “voices”: a randomized trial. Biol Psychiatry. 2013;73:1008–14.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    de Weijer AD, Sommer IEC, Lotte Meijering A, Bloemendaal M, Neggers SFW, Daalman K, et al. High frequency rTMS; a more effective treatment for auditory verbal hallucinations? Psychiatry Res. 2014;224:204–10.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Blumberger DM, Christensen BK, Zipursky RB, Moller B, Chen R, Fitzgerald PB, et al. MRI-targeted repetitive transcranial magnetic stimulation of Heschl’s gyrus for refractory auditory hallucinations. Brain Stimulation. 2012;5:577–85.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Dollfus S, Jaafari N, Guillin O, Trojak B, Plaze M, Saba G, et al. High-frequency neuronavigated rTMS in auditory verbal hallucinations: a pilot double-blind controlled study in patients with schizophrenia. Schizophr Bull. 2018;44:505–14.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Diederen KMJ, Charbonnier L, Neggers SFW, van Lutterveld R, Daalman K, Slotema CW, et al. Reproducibility of brain activation during auditory verbal hallucinations. Schizophr Res. 2013;146:320–5.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Koops S, Dellen E van Schutte MJL, Nieuwdorp W, Neggers SFW, Sommer IEC (2015) Theta burst transcranial magnetic stimulation for auditory verbal hallucinations: negative findings from a double-blind-randomized trial. Schizophrenia Bulletin sbv100.Google Scholar
  85. 85.
    Plewnia C, Zwissler B, Wasserka B, Fallgatter AJ, Klingberg S. Treatment of auditory hallucinations with bilateral theta burst stimulation: a randomized controlled pilot trial. Brain Stimulation. 2014;7:340–1.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Rosenberg O, Gersner R, Klein LD, Kotler M, Zangen A, Dannon P. Deep transcranial magnetic stimulation add-on for the treatment of auditory hallucinations: a double-blind study. Ann General Psychiatry. 2012;11:13.CrossRefGoogle Scholar
  87. 87.
    •• Aleman A, Enriquez-Geppert S, Knegtering H, Dlabac-de Lange JJ. Moderate effects of noninvasive brain stimulation of the frontal cortex for improving negative symptoms in schizophrenia: meta-analysis of controlled trials. Neurosci Biobehav Rev. 2018;89:111–8. This study is a recent meta-analysis of TMS and TES treatments in negative symptoms of schizophrenia. CrossRefGoogle Scholar
  88. 88.
    • Hasan A, Wobrock T, Guse B, et al. Structural brain changes are associated with response of negative symptoms to prefrontal repetitive transcranial magnetic stimulation in patients with schizophrenia. Mol Psychiatry. 2017;22:857–64. This study identifies structural brain markers (hippocampus and precuneus) that predict improvement in negative symptoms of schizophrenia. PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Lefaucheur J-P, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol. 2014;125:2150–206.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    • Wobrock T, Guse B, Cordes J, et al. Left prefrontal high-frequency repetitive transcranial magnetic stimulation for the treatment of schizophrenia with predominant negative symptoms: a sham-controlled, randomized multicenter trial. Biol Psychiatry. 2015;77:979–88. This is a large multi-center trial of rTMS to the prefrontal cortex for treating negative symptoms in schizophrenia. PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Zhao S, Kong J, Li S, Tong Z, Yang C, Zhong H. Randomized controlled trial of four protocols of repetitive transcranial magnetic stimulation for treating the negative symptoms of schizophrenia. Shanghai Arch Psychiatry. 2014;26:15–21.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Rabany L, Deutsch L, Levkovitz Y. Double-blind, randomized sham controlled study of deep-TMS add-on treatment for negative symptoms and cognitive deficits in schizophrenia. J Psychopharmacol. 2014;28:686–90.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Dlabac-de Lange JJ, Bais L, van Es FD, Visser BGJ, Reinink E, Bakker B, et al. Efficacy of bilateral repetitive transcranial magnetic stimulation for negative symptoms of schizophrenia: results of a multicenter double-blind randomized controlled trial. Psychol Med. 2015;45:1263–75.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar L, Ongur D, Stone WS, et al. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010;124:91–100.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Garg S, Sinha VK, Tikka SK, Mishra P, Goyal N. The efficacy of cerebellar vermal deep high frequency (theta range) repetitive transcranial magnetic stimulation (rTMS) in schizophrenia: a randomized rater blind-sham controlled study. Psychiatry Res. 2016;243:413–20.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Basavaraju R, Ithal D, Thanki M, Hr A, Thirthalli J, Pascual-Leone A, et al. T79. Intermittent theta burst stimulation of cerebellar vermis in schizophrenia: impact on negative symptoms and brain connectivity. Schizophr Bull. 2019;45:S234–4.CrossRefGoogle Scholar
  97. 97.
    Mehta UM, Thirthalli J, Subbakrishna DK, Gangadhar BN, Eack SM, Keshavan MS. Social and neuro-cognition as distinct cognitive factors in schizophrenia: a systematic review. Schizophr Res. 2013;148:3–11.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Mehta UM, Thirthalli J, Naveen Kumar C, Keshav KJ, Gangadhar BN, Keshavan MS. Schizophrenia patients experience substantial social cognition deficits across multiple domains in remission. Asian J Psychiatr. 2013;6:324–9.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Fett AK, Viechtbauer W, Dominguez MD, Penn DL, van Os J, Krabbendam L. The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: a meta-analysis. Neurosci Biobehav Rev. 2011;35:573–88.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Pascual-Leone A, Rubio B, Pallardó F, Catalá MD. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet. 1996;348:233–7.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Brown P. Shocking safety concerns. Lancet. 1996;348:959.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Hoy KE, Fitzgerald PB. Brain stimulation in psychiatry and its effects on cognition. Nat Rev Neurol. 2010;6:267–75.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Guse B, Falkai P, Wobrock T. Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review. J Neural Transm. 2010;117:105–22.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Mogg A, Purvis R, Eranti S, Contell F, Taylor JP, Nicholson T, et al. Repetitive transcranial magnetic stimulation for negative symptoms of schizophrenia: a randomized controlled pilot study. Schizophr Res. 2007;93:221–8.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Barch DM, Carter CS, Braver TS, Sabb FW, MacDonald A, Noll DC, et al. Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. Arch Gen Psychiatry. 2001;58:280–8.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Barr MS, Farzan F, Rajji TK, Voineskos AN, Blumberger DM, Arenovich T, et al. Can repetitive magnetic stimulation improve cognition in schizophrenia? Pilot data from a randomized controlled trial. Biol Psychiatry. 2013;73:510–7.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Barr MS, Farzan F, Arenovich T, Chen R, Fitzgerald PB, Daskalakis ZJ. The effect of repetitive transcranial magnetic stimulation on gamma oscillatory activity in schizophrenia. PLoS One. 2011;6:e22627.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Francis MM, Hummer TA, Vohs JL, Yung MG, Visco AC, Mehdiyoun NF, et al. Cognitive effects of bilateral high frequency repetitive transcranial magnetic stimulation in early phase psychosis: a pilot study. Brain Imaging Behav. 2018;13:852–61. Scholar
  109. 109.
    Hasan A, Guse B, Cordes J, Wölwer W, Winterer G, Gaebel W, et al. Cognitive effects of high-frequency rTMS in schizophrenia patients with predominant negative symptoms: results from a multicenter randomized sham-controlled trial. Schizophr Bull. 2016;42:608–18.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Wolwer W, Lowe A, Brinkmeyer J, Streit M, Habakuck M, Agelink MW, et al. Repetitive transcranial magnetic stimulation (rTMS) improves facial affect recognition in schizophrenia. Brain stimul. 2014;7:559–63.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    • Jiang Y, Guo Z, Xing G, He L, Peng H, Du F, et al. Effects of high-frequency transcranial magnetic stimulation for cognitive deficit in schizophrenia: a meta-analysis. Front Psychiatry. 2019;10:135. This is the only meta-analysis to examine the beneficial effects of rTMS in the treatment of cognitive deficits of schizophrenia. Google Scholar
  112. 112.
    • Wang JX, Rogers LM, Gross EZ, Ryals AJ, Dokucu ME, Brandstatt KL, et al. Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science. 2014;345:1054–7. This elegant study describes how engaging parietal-hippocampal connectivity using rTMS can improve associative memory in humans. PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Sathappan AV, Luber BM, Lisanby SH. The dynamic duo: combining noninvasive brain stimulation with cognitive interventions. Prog Neuro-Psychopharmacol Biol Psychiatry. 2019;89:347–60.CrossRefGoogle Scholar
  114. 114.
    Mehta UM, Keshavan MS (2015) Cognitive rehabilitation and modulating neuroplasticity with brain stimulation: promises and challenges. Journal of Psychosocial Rehabilitation and Mental Health 2:5–7.CrossRefGoogle Scholar
  115. 115.
    Navarro de Lara LI, Windischberger C, Kuehne A, Woletz M, Sieg J, Bestmann S, et al. A novel coil array for combined TMS/fMRI experiments at 3 T. Magn Reson Med. 2015;74:1492–501.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Du X, Hong LE. Test-retest reliability of short-interval intracortical inhibition and intracortical facilitation in patients with schizophrenia. Psychiatry Res. 2018;267:575–81.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Urvakhsh Meherwan Mehta
    • 1
    Email author
  • Shalini S. Naik
    • 1
  • Milind Vijay Thanki
    • 1
  • Jagadisha Thirthalli
    • 1
  1. 1.Department of PsychiatryNational Institute of Mental Health & Neurosciences (NIMHANS)BangaloreIndia

Personalised recommendations