Current Psychiatry Reports

, 21:81 | Cite as

Gene-Environment Interactions in Psychiatry: Recent Evidence and Clinical Implications

  • Rashelle J. MusciEmail author
  • Jura L. Augustinavicius
  • Heather Volk
Genetic Disorders (F Goes, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Genetic Disorders


Purpose of Review

We identify the recent evidence for gene-by-environment interaction studies in relation to psychiatric disorders. We focus on the key genotypic data as well as environmental exposures and how they interact to predict psychiatric disorders and psychiatric symptomatology. We direct our focus on the psychiatric outcomes that were focused on by the Psychiatric Genetics Consortium.

Recent Findings

Many of the studies focus on candidate gene approaches, with most of the studies drawing upon previous literature to decide the genes of interest. Other studies used a genome-wide approach. While some studies demonstrated positive replication of previous findings, replication is still an issue within gene-by-environment interaction studies.


Gene-by-environment interaction research in psychiatry globally suggests some susceptibility to environmental exposures based on genotype; however, greater clarity is needed around the idea that genetic risk may not be disorder specific.


Candidate genes Major depressive disorder Anxiety disorder Bipolar disorder Suicide Genome-wide association 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT Gene. 2003;301:5.Google Scholar
  2. 2.
    Thomas DC, Lewinger JP, Murcray CE, Gauderman WJ. Invited commentary: GE-whiz! Ratcheting gene-environment studies up to the whole genome and the whole exposome. Am J Epidemiol. 2012;175:203–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Dudbridge F. Power and predictive accuracy of polygenic risk scores. Wray NR, editor. PLoS Genet. 2013;9:e1003348.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Caspi A, Moffitt TE. Gene–environment interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci. 2006;7:583–90.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Kendler KS, Myers J, Prescott CA. The etiology of phobias: an evaluation of the stress-diathesis model. Arch Gen Psychiatry. 2002;59:242–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Belsky J, Bakermans-Kranenburg MJ, van IJzendoorn MH. For better and for worse: differential susceptibility to environmental influences. Curr Dir Psychol Sci. 2007;16:300–4.CrossRefGoogle Scholar
  7. 7.
    McAllister K, Mechanic LE, Amos C, Aschard H, Blair IA, Chatterjee N, et al. Current challenges and new opportunities for gene-environment interaction studies of complex diseases. Am J Epidemiol. 2017;186:753–61.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8:19–32.CrossRefGoogle Scholar
  9. 9.
    Cohen-Woods S, Fisher HL, Ahmetspahic D, Douroudis K, Stacey D, Hosang GM, et al. Interaction between childhood maltreatment on immunogenetic risk in depression: discovery and replication in clinical case-control samples. Brain Behav Immun. 2018;67:203–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Dunn EC, Wiste A, Radmanesh F, Almli LM, Gogarten SM, Sofer T, et al. Genome-wide association study (GWAS) and genome-wide by environment interaction study (GWEIS) of depressive symptoms in African American and Hispanic/Latina women: 2015 Donald F Klein investigator award winner: GWAS and GWEIS of depressive symptoms. Depress Anxiety. 2016;33:265–80.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Gonda X, Hullam G, Antal P, Eszlari N, Petschner P, Hökfelt TG, et al. Significance of risk polymorphisms for depression depends on stress exposure. Scientific Reports. 2018;8(1):3946. Available from:
  12. 12.
    Pishva E, Drukker M, Viechtbauer W, Decoster J, Collip D, van Winkel R, et al. Epigenetic genes and emotional reactivity to daily life events: a multi-step gene-environment interaction study. Dang Y, editor. PLoS One. 2014;9:e100935.Google Scholar
  13. 13.
    Van Assche E, Moons T, Cinar O, Viechtbauer W, Oldehinkel AJ, Van Leeuwen K, et al. Gene-based interaction analysis shows GABAergic genes interacting with parenting in adolescent depressive symptoms. J Child Psychol Psychiatry. 2017;58:1301–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Ware EB, Smith JA, Mukherjee B, Lee S, Kardia SLR, Diez-Roux AV. Applying novel methods for assessing individual- and neighborhood-level social and psychosocial environment interactions with genetic factors in the prediction of depressive symptoms in the multi-ethnic study of atherosclerosis. Behav Genet. 2016;46:89–99.PubMedCrossRefGoogle Scholar
  15. 15.
    Cattaneo A, Cattane N, Malpighi C, Czamara D, Suarez A, Mariani N, et al. FoxO1, A2M, and TGF-β1: three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses. Mol Psychiatry. 2018;23(11):2192 [cited 2018 Nov 21]; Available from: PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Van der Auwera S, Janowitz D, Schulz A, Homuth G, Nauck M, Völzke H, et al. Interaction among childhood trauma and functional polymorphisms in the serotonin pathway moderate the risk of depressive disorders. Eur Arch Psychiatry Clin Neurosci. 2014;264:45–54.CrossRefGoogle Scholar
  17. 17.
    Mullins N, Power RA, Fisher HL, Hanscombe KB, Euesden J, Iniesta R, et al. Polygenic interactions with environmental adversity in the aetiology of major depressive disorder. Psychol Med. 2016;46:759–70.PubMedCrossRefGoogle Scholar
  18. 18.
    Peterson RE, Cai N, Dahl AW, Bigdeli TB, Edwards AC, Webb BT, et al. Molecular genetic analysis subdivided by adversity exposure suggests etiologic heterogeneity in major depression. Am J Psychiatr. 2018;175:545–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Peyrot WJ, Milaneschi Y, Abdellaoui A, Sullivan PF, Hottenga JJ, Boomsma DI, et al. Effect of polygenic risk scores on depression in childhood trauma. Br J Psychiatry. 2014;205:113–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Åslund C, Nilsson KW. Individual biological sensitivity to environmental influences: testing the differential susceptibility properties of the 5HTTLPR polymorphism in relation to depressive symptoms and delinquency in two adolescent general samples. J Neural Transm. 2018;125:977–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Dalton ED, Hammen CL, Najman JM, Brennan PA. Genetic susceptibility to family environment: BDNF Val66met and 5-HTTLPR influence depressive symptoms. J Fam Psychol. 2014;28:947–56.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Risch N, Herrell R, Lehner T, Liang K-Y, Eaves L, Hoh J, et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA. 2009;301:2462.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Karg K, Burmeister M, Shedden K, Sen S. The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation. Arch Gen Psychiatry. 2011;68:444–54.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Chen Y, Brody GH. Family economic hardship, corticotropin-releasing hormone receptor polymorphisms, and depressive symptoms in rural African-American youths. J Adolesc Health. 2015;57:235–40.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hettema JM, Chen X, Sun C, Brown TA. Direct, indirect and pleiotropic effects of candidate genes on internalizing disorder psychopathology. Psychol Med. 2015;45:2227–36.PubMedCrossRefGoogle Scholar
  26. 26.
    Kovacs D, Eszlari N, Petschner P, Pap D, Vas S, Kovacs P, et al. Effects of IL1B single nucleotide polymorphisms on depressive and anxiety symptoms are determined by severity and type of life stress. Brain Behav Immun. 2016;56:96–104.PubMedCrossRefGoogle Scholar
  27. 27.
    Laas K, Reif A, Akkermann K, Kiive E, Domschke K, Lesch K-P, et al. Interaction of the neuropeptide S receptor gene Asn107Ile variant and environment: contribution to affective and anxiety disorders, and suicidal behaviour. Int J Neuropsychopharmacol. 2014;17:541–52.PubMedCrossRefGoogle Scholar
  28. 28.
    •• Musci RJ, Masyn KE, Benke K, Maher B, Uhl G, Ialongo NS. The effects of the interplay of genetics and early environmental risk on the course of internalizing symptoms from late childhood through adolescence. Dev Psychopathol. 2016;28:225–37. One of the few studies to utilize a polygenic approach, with the score being derived from the psychiatric genetics consortium, and one of the few studies to publish null findings for gene by environment interactions. PubMedCrossRefGoogle Scholar
  29. 29.
    Nobile M, Greco A, Perna G, Colombo P, Bianchi V, Bellina M, et al. Effect of the serotonin transporter gene and of environment on the continuity of anxiety and depression traits throughout adolescence. Epidemiol Psychiatr Sci. 2014;23:399–409.PubMedCrossRefGoogle Scholar
  30. 30.
    Pagliaccio D, Luby JL, Bogdan R, Agrawal A, Gaffrey MS, Belden AC, et al. Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation. J Abnorm Psychol. 2015;124:817–33.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Scheuer S, Ising M, Uhr M, Otto Y, von Klitzing K, Klein AM. FKBP5 polymorphisms moderate the influence of adverse life events on the risk of anxiety and depressive disorders in preschool children. J Psychiatr Res. 2016;72:30–6.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Sheikh HI, Kryski KR, Kotelnikova Y, Hayden EP, Singh SM. Catechol-O-methyltransferase gene (val158met) polymorphisms and anxious symptoms in early childhood: the roles of hypothalamus-pituitary-adrenal axis reactivity and life stress. Neurosci Lett. 2017;659:86–91.PubMedCrossRefGoogle Scholar
  33. 33.
    Tabak BA, Vrshek-Schallhorn S, Zinbarg RE, Prenoveau JM, Mineka S, Redei EE, et al. Interaction of CD38 variant and chronic interpersonal stress prospectively predicts social anxiety and depression symptoms over 6 years. Clin Psychol Sci. 2016;4:17–27.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Pérez-Pérez B, Cristóbal-Narváez P, Sheinbaum T, Kwapil TR, Ballespí S, Peña E, et al. Interaction between FKBP5 variability and recent life events in the anxiety spectrum: evidence for the differential susceptibility model. Branchi I, editor. PLoS One. 2018;13:e0193044.Google Scholar
  35. 35.
    de Castro-Catala M, Peña E, Kwapil TR, Papiol S, Sheinbaum T, Cristóbal-Narváez P, et al. Interaction between FKBP5 gene and childhood trauma on psychosis, depression and anxiety symptoms in a non-clinical sample. Psychoneuroendocrinology. 2017;85:200–9.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    •• Cicchetti D, Rogosch FA. Genetic moderation of child maltreatment effects on depression and internalizing symptoms by serotonin transporter linked polymorphic region (5-HTTLPR), brain-derived neurotrophic factor (BDNF), norepinephrine transporter (NET), and corticotropin releasing hormone receptor 1 (CRHR1) genes in African American children. Dev Psychopathol. 2014;26:1219–39. This study utilized an understudied population in genetics research to explore gene by environment interactions for a number of candidate genes. PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hemmings SMJ, Martin LI, van der Merwe L, Benecke R, Domschke K, Seedat S. Serotonin transporter variants play a role in anxiety sensitivity in South African adolescents. World J Biol Psychiatry. 2016;17:66–75.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Klauke B, Deckert J, Zwanzger P, Baumann C, Arolt V, Pauli P, et al. Neuropeptide S receptor gene ( NPSR ) and life events: G × E effects on anxiety sensitivity and its subdimensions. World J Biol Psychiatry. 2014;15:17–25.PubMedCrossRefGoogle Scholar
  39. 39.
    Martin L, Hemmings SMJ, Kidd M, Seedat S. No gene-by-environment interaction of BDNF Val66Met polymorphism and childhood maltreatment on anxiety sensitivity in a mixed race adolescent sample. Eur J Psychotraumatol. 2018;9:1472987.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    McGregor NW, Hemmings SMJ, Erdman L, Calmarza-Font I, Stein DJ, Lochner C. Modification of the association between early adversity and obsessive-compulsive disorder by polymorphisms in the MAOA. MAOB and COMT genes Psychiatry Research. 2016;246:527–32.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Min J-A, Lee H-J, Lee S-H, Park Y-M, Kang S-G, Park Y-G, et al. RORA polymorphism interacts with childhood maltreatment in determining anxiety sensitivity by sex: a preliminary study in healthy young adults. Clin Psychopharm Neu. 2017;15:402–6.Google Scholar
  42. 42.
    Schiele MA, Ziegler C, Holitschke K, Schartner C, Schmidt B, Weber H, et al. Influence of 5-HTT variation, childhood trauma and self-efficacy on anxiety traits: a gene-environment-coping interaction study. J Neural Transm. 2016;123:895–904.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Lazary J, Eszlari N, Juhasz G, Bagdy G. Genetically reduced FAAH activity may be a risk for the development of anxiety and depression in persons with repetitive childhood trauma. Eur Neuropsychopharmacol. 2016;26:1020–8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Ibarra P, Alemany S, Fatjó-Vilas M, Córdova-Palomera A, Goldberg X, Arias B, et al. The BDNF-Val66Met polymorphism modulates parental rearing effects on adult psychiatric symptoms: a community twin-based study. Eur Psychiatry. 2014;29:293–300.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Nelemans SA, van Assche E, Bijttebier P, Colpin H, van Leeuwen K, Verschueren K, et al. Parenting interacts with oxytocin polymorphisms to predict adolescent social anxiety symptom development: a novel polygenic approach. J Abnorm Child Psychol [Internet]. 2018 [cited 2018 Nov 21]; Available from: PubMedCentralCrossRefGoogle Scholar
  46. 46.
    Notzon S, Domschke K, Holitschke K, Ziegler C, Arolt V, Pauli P, et al. Attachment style and oxytocin receptor gene variation interact in influencing social anxiety. World J Biol Psychiatry. 2016;17:76–83.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Olofsdotter S, Åslund C, Furmark T, Comasco E, Nilsson KW. Differential susceptibility effects of oxytocin gene (OXT) polymorphisms and perceived parenting on social anxiety among adolescents. Dev Psychopathol. 2018;30:449–59.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Park S, Nam Y-Y, Sim Y, Hong JP. Interactions between the apolipoprotein E ɛ 4 allele status and adverse childhood experiences on depressive symptoms in older adults. Eur J Psychotraumatol. 2015;6:25178.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    • Reinelt E, Aldinger M, Stopsack M, Schwahn C, John U, Baumeister SE, et al. High social support buffers the effects of 5-HTTLPR genotypes within social anxiety disorder. Eur Arch Psychiatry Clin Neurosci. 2014;264:433–9. This study explored the potential resilience factors in place for individuals who are carriers of a particular genotype demonstrated to be associated with negative outcomes. PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Schiele MA, Costa B, Abelli M, Martini C, Baldwin DS, Domschke K, et al. Oxytocin receptor gene variation, behavioural inhibition, and adult separation anxiety: role in complicated grief. World J Biol Psychiatry. 2018;19:471–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Lahat A, van Lieshout RJ, Mathewson KJ, Mackillop J, Saigal S, Morrison KM, et al. Extremely low birth weight babies grown up: gene–environment interaction predicts internalizing problems in the third and fourth decades of life. Dev Psychopathol. 2017;29:837–43.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    O’Donnell KJ, Glover V, Holbrook JD, O’Connor TG. Maternal prenatal anxiety and child brain-derived neurotrophic factor (BDNF) genotype: effects on internalizing symptoms from 4 to 15 years of age. Dev Psychopathol. 2014;26:1255–66.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    van Os J, Rutten BP, Poulton R. Gene-environment interactions in schizophrenia: review of epidemiological findings and future directions. Schizophr Bull. 2008;34:1066–82.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Bernardo M, Bioque M, Cabrera B, Lobo A, González-Pinto A, Pina L, et al. Modelling gene-environment interaction in first episodes of psychosis. Schizophr Res. 2017;189:181–9.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Mandelli L, Toscano E, Porcelli S, Fabbri C, Serretti A. Age of onset in schizophrenia spectrum disorders: complex interactions between genetic and environmental factors. Psychiatry Investig. 2016;13:247.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hoffmann C, Van Rheenen TE, Mancuso SG, Zalesky A, Bruggemann J, Lenroot RK, et al. Exploring the moderating effects of dopaminergic polymorphisms and childhood adversity on brain morphology in schizophrenia-spectrum disorders. Psychiatry Res Neuroimaging. 2018;281:61–8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    McCarthy-Jones S, Green MJ, Scott RJ, Tooney PA, Cairns MJ, Wu JQ, et al. Preliminary evidence of an interaction between the FOXP2 gene and childhood emotional abuse predicting likelihood of auditory verbal hallucinations in schizophrenia. J Psychiatr Res. 2014;50:66–72.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Trotta A, Iyegbe C, Di Forti M, Sham PC, Campbell DD, Cherny SS, et al. Interplay between schizophrenia polygenic risk score and childhood adversity in first-presentation psychotic disorder: a pilot study. Walss-Bass C, editor. PLoS One. 2016;11:e0163319.Google Scholar
  59. 59.
    Colizzi M, Iyegbe C, Powell J, Ursini G, Porcelli A, Bonvino A, et al. Interaction between functional genetic variation of DRD2 and cannabis use on risk of psychosis. Schizophr Bull. 2015;41:1171–82.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    French L, Gray C, Leonard G, Perron M, Pike GB, Richer L, et al. Early cannabis use, polygenic risk score for schizophrenia and brain maturation in adolescence. JAMA Psychiatry. 2015;72:1002.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Liuhanen J, Suvisaari J, Kajantie E, Miettunen J, Sarin A-P, Järvelin M-R, et al. Interaction between compound genetic risk for schizophrenia and high birth weight contributes to social anhedonia and schizophrenia in women. Psychiatry Res. 2018;259:148–53.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Ursini G, Cavalleri T, Fazio L, Angrisano T, Iacovelli L, Porcelli A, et al. BDNF rs6265 methylation and genotype interact on risk for schizophrenia. Epigenetics. 2016;11:11–23.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Børglum AD, Demontis D, Grove J, Pallesen J, Hollegaard MV, Pedersen CB, et al. Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci. Mol Psychiatry. 2014;19:325–33.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Mihaljevic M, Zeljic K, Soldatovic I, Andric S, Mirjanic T, Richards A, et al. The emerging role of the FKBP5 gene polymorphisms in vulnerability–stress model of schizophrenia: further evidence from a Serbian population. Eur Arch Psychiatry Clin Neurosci. 2017;267:527–39.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Colodro-Conde L, Couvy-Duchesne B, Whitfield JB, Streit F, Gordon S, Rietschel M, et al. Higher genetic risk for schizophrenia is associated with living in urban and populated areas. Eur Neuropsychopharmacol. 2017;27:S488.CrossRefGoogle Scholar
  66. 66.
    Nigg J, Nikolas M, Burt SA. Measured gene-by-environment interaction in relation to attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2010;49:863–73.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Baptista J, Belsky J, Mesquita A, Soares I. Serotonin transporter polymorphism moderates the effects of caregiver intrusiveness on ADHD symptoms among institutionalized preschoolers. Eur Child Adolesc Psychiatry. 2017;26:303–13.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Elmore AL, Nigg JT, Friderici KH, Jernigan K, Nikolas MA. Does 5HTTLPR genotype moderate the association of family environment with child attention-deficit hyperactivity disorder symptomatology? J Clin Child Adolesc Psychol. 2016;45:348–60.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Morgan JE, Caplan B, Tung I, Noroña AN, Baker BL, Lee SS. COMT and DAT1 polymorphisms moderate the indirect effect of parenting behavior on youth ADHD symptoms through neurocognitive functioning. Child Neuropsychology. 2018;24:823–43.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Nikitopoulos J, Zohsel K, Blomeyer D, Buchmann AF, Schmid B, Jennen-Steinmetz C, et al. Are infants differentially sensitive to parenting? Early maternal care, DRD4 genotype and externalizing behavior during adolescence. J Psychiatr Res. 2014;59:53–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Nikolas MA, Momany AM. DRD4 variants moderate the impact of parental characteristics on child attention-deficit hyperactivity disorder: exploratory evidence from a multiplex family design. J Abnorm Child Psychol. 2017;45:429–42.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Richards JS, Hartman CA, Franke B, Hoekstra PJ, Heslenfeld DJ, Oosterlaan J, et al. Differential susceptibility to maternal expressed emotion in children with ADHD and their siblings? Investigating plasticity genes, prosocial and antisocial behaviour. Eur Child Adolesc Psychiatry. 2015;24:209–17.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Richards JS, Arias Vásquez A, von Rhein D, van der Meer D, Franke B, Hoekstra PJ, et al. Adolescent behavioral and neural reward sensitivity: a test of the differential susceptibility theory. Transl Psychiatry. 2016;6:e771–1.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Richards JS, Arias Vásquez A, van Rooij D, van der Meer D, Franke B, Hoekstra PJ, et al. Testing differential susceptibility: plasticity genes, the social environment, and their interplay in adolescent response inhibition. World J Biol Psychiatry. 2017;18:308–21.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Riva V, Battaglia M, Nobile M, Cattaneo F, Lazazzera C, Mascheretti S, et al. GRIN2B predicts attention problems among disadvantaged children. Eur Child Adolesc Psychiatry. 2015;24:827–36.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Stenseng F, Li Z, Belsky J, Hygen BW, Skalicka V, Guzey IC, et al. Peer problems and hyperactivity-impulsivity among Norwegian and American children: the role of 5-HTTLPR. Child Dev. 2018;89:509–24.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    van der Meer D, Hartman CA, van Rooij D, Franke B, Heslenfeld DJ, Oosterlaan J, et al. Effects of dopaminergic genes, prenatal adversities, and their interaction on attention-deficit/hyperactivity disorder and neural correlates of response inhibition. J Psychiatry Neurosci. 2017;42:113–21.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Boecker-Schlier R, Holz NE, Buchmann AF, Blomeyer D, Plichta MM, Jennen-Steinmetz C, et al. Interaction between COMT Val 158 met polymorphism and childhood adversity affects reward processing in adulthood. NeuroImage. 2016;132:556–70.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Brinksma DM, Hoekstra PJ, de Bildt A, Buitelaar JK, van den Hoofdakker BJ, Hartman CA, et al. ADHD symptoms in middle adolescence predict exposure to person-related life stressors in late adolescence in 5-HTTLPR S-allele homozygotes. J Abnorm Child Psychol. 2018;46:1427–37.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Morgan JE, Hammen C, Lee SS. Parental serotonin transporter polymorphism (5-HTTLPR) moderates associations of stress and child behavior with parenting behavior. J Clin Child Adolesc Psychol. 2016:1–12.Google Scholar
  81. 81.
    van der Meer D, Hoekstra PJ, Zwiers M, Mennes M, Schweren LJ, Franke B, et al. Brain correlates of the interaction between 5-HTTLPR and psychosocial stress mediating attention deficit hyperactivity disorder severity. Am J Psychiatr. 2015;172:768–75.PubMedCrossRefGoogle Scholar
  82. 82.
    van der Meer D, Hoekstra PJ, Bralten J, van Donkelaar M, Heslenfeld DJ, Oosterlaan J, et al. Interplay between stress response genes associated with attention-deficit hyperactivity disorder and brain volume: interplay between stress response genes in ADHD. Genes Brain Behav. 2016;15:627–36.PubMedCrossRefGoogle Scholar
  83. 83.
    Zohsel K, Bianchi V, Mascheretti S, Hohm E, Schmidt MH, Esser G, et al. Monoamine oxidase a polymorphism moderates stability of attention problems and susceptibility to life stress during adolescence: monoamine oxidase a polymorphism moderates stability. Genes Brain Behav. 2015;14:565–72.PubMedCrossRefGoogle Scholar
  84. 84.
    Sánchez-Mora C, Richarte V, Garcia-Martínez I, Pagerols M, Corrales M, Bosch R, et al. Dopamine receptor DRD4 gene and stressful life events in persistent attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2015;168:480–91.PubMedCrossRefGoogle Scholar
  85. 85.
    Park S, Kim B-N, Kim J-W, Shin M-S, Yoo HJ, Cho S-C. Interactions between early trauma and catechol-O-methyltransferase genes on inhibitory deficits in children with ADHD. J Atten Disord. 2017;21:183–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Gu X, Yuan F, Huang X, Hou Y, Wang M, Lin J, et al. Association of PIK3CG gene polymorphisms with attention-deficit/hyperactivity disorder: a case-control study. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;81:169–77.CrossRefGoogle Scholar
  87. 87.
    •• Kim JI, Kim J-W, Lee J-M, Yun HJ, Sohn C, Shin M-S, et al. Interaction between DRD2 and lead exposure on the cortical thickness of the frontal lobe in youth with attention-deficit/hyperactivity disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;82:169–76. A study demonstrating that an environmental toxicant is associated with changes in brain morphology among individuals with a particular genotype. CrossRefGoogle Scholar
  88. 88.
    Yuan F, Gu X, Huang X, Zhong Y, Wu J. SLC6A1 gene involvement in susceptibility to attention-deficit/hyperactivity disorder: a case-control study and gene-environment interaction. Prog Neuro-Psychopharmacol Biol Psychiatry. 2017;77:202–8.CrossRefGoogle Scholar
  89. 89.
    Park S, Kim B-N, Cho S-C, Kim Y, Kim J-W, Lee J-Y, et al. Association between urine phthalate levels and poor attentional performance in children with attention-deficit hyperactivity disorder with evidence of dopamine gene-phthalate interaction. Int J Environ Res Public Health. 2014;11:6743–56.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Chang C-H, Yu C-J, Du J-C, Chiou H-C, Chen H-C, Yang W, et al. The interactions among organophosphate pesticide exposure, oxidative stress, and genetic polymorphisms of dopamine receptor D4 increase the risk of attention deficit/hyperactivity disorder in children. Environ Res. 2018;160:339–46.PubMedCrossRefGoogle Scholar
  91. 91.
    Tung I, Morgan JE, Noroña AN, Lee SS. Prenatal programming of postnatal plasticity for externalizing behavior: testing an integrated developmental model of genetic and temperamental sensitivity to the environment. Dev Psychobiol. 2017;59:984–96.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Brinksma DM, Hoekstra PJ, van den Hoofdakker B, de Bildt A, Buitelaar JK, Hartman CA, et al. Age-dependent role of pre- and perinatal factors in interaction with genes on ADHD symptoms across adolescence. J Psychiatr Res. 2017;90:110–7.PubMedCrossRefGoogle Scholar
  93. 93.
    van der Meer D, Hartman CA, Richards J, Bralten JB, Franke B, Oosterlaan J, et al. The serotonin transporter gene polymorphism 5-HTTLPR moderates the effects of stress on attention-deficit/hyperactivity disorder. J Child Psychol Psychiatry. 2014;55:1363–71.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    van der Meer D, Hartman CA, Pruim RHR, Mennes M, Heslenfeld D, Oosterlaan J, et al. The interaction between 5-HTTLPR and stress exposure influences connectivity of the executive control and default mode brain networks. Brain Imaging Behav. 2017;11:1486–96.PubMedCrossRefGoogle Scholar
  95. 95.
    Waldie KE, Cornforth CM, Webb RE, Thompson JMD, Murphy R, Moreau D, et al. Dopamine transporter ( DAT1/SLC6A3 ) polymorphism and the association between being born small for gestational age and symptoms of ADHD. Behav Brain Res. 2017;333:90–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB, et al. Most genetic risk for autism resides with common variation. Nat Genet. 2014;46:881–5.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Ozonoff S, Young GS. Recurrence risk for autism spectrum disorders: a baby siblings research consortium study. 2018;128:10.Google Scholar
  98. 98.
    Webb SJ, Garrison MM, Bernier R, McClintic AM, King BH, Mourad PD. Severity of ASD symptoms and their correlation with the presence of copy number variations and exposure to first trimester ultrasound: ultrasound exposure and ASD severity. Autism Res. 2017;10:472–84.PubMedCrossRefGoogle Scholar
  99. 99.
    Mazina V, Gerdts J, Trinh S, Ankenman K, Ward T, Dennis MY, et al. Epigenetics of autism-related impairment: copy number variation and maternal infection. J Dev Behav Pediatr. 2015;36:61–7.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Kim D, Volk H, Girirajan S, Pendergrass S, Hall MA, Verma SS, et al. The joint effect of air pollution exposure and copy number variation on risk for autism: genetic and environment interaction in autism. Autism Res. 2017;10:1470–80.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Schmidt RJ, Tancredi DJ, Ozonoff S, Hansen RL, Hartiala J, Allayee H, et al. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (CHildhood Autism Risks from Genetics and Environment) case-control study. Am J Clin Nutr. 2012;96:80–9.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Volk HE, Kerin T, Lurmann F, Hertz-Picciotto I, McConnell R, Campbell DB. Autism spectrum disorder: interaction of air pollution with the MET receptor tyrosine kinase gene. Epidemiology. 2014;25:44–7.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ackerman S, Schoenbrun S, Hudac C, Bernier R. Interactive effects of prenatal antidepressant exposure and likely gene disrupting mutations on the severity of autism spectrum disorder. J Autism Dev Disord. 2017;47:3489–96.PubMedCrossRefGoogle Scholar
  104. 104.
    Anand A, Koller DL, Lawson WB, Gershon ES, Nurnberger JI. Genetic and childhood trauma interaction effect on age of onset in bipolar disorder: an exploratory analysis. J Affect Disord. 2015;179:1–5.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Hosang GM, Fisher HL, Cohen-Woods S, McGuffin P, Farmer AE. Stressful life events and catechol-O-methyl-transferase (COMT) gene in bipolar disorder: H osang et al. Depress Anxiety. 2017;34:419–26.PubMedCrossRefGoogle Scholar
  106. 106.
    Oliveira J, Etain B, Lajnef M, Hamdani N, Bennabi M, Bengoufa D, et al. Combined effect of TLR2 gene polymorphism and early life stress on the age at onset of bipolar disorders. PLoS One. 2015;13.Google Scholar
  107. 107.
    Aas M, Haukvik UK, Djurovic S, Tesli M, Athanasiu L, Bjella T, et al. Interplay between childhood trauma and BDNF val66met variants on blood BDNF mRNA levels and on hippocampus subfields volumes in schizophrenia spectrum and bipolar disorders. J Psychiatr Res. 2014;59:14–21.PubMedCrossRefGoogle Scholar
  108. 108.
    • Breen ME, Seifuddin F, Zandi PP, Potash JB, Willour VL. Investigating the role of early childhood abuse and HPA axis genes in suicide attempters with bipolar disorder. Psychiatr Genet. 2015;25:106–11. A gene pathway approach goes beyond candidate genes to focus on genes within a particular mechanism (HPA Axis) to explore the role of early childhood abuse among suicide attempters with bipolar disorder. PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Karanović J, Ivković M, Jovanović VM, Šviković S, Pantović-Stefanović M, Brkušanin M, et al. Effect of childhood general traumas on suicide attempt depends on TPH2 and ADARB1 variants in psychiatric patients. J Neural Transm. 2017;124:621–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Fraguas D, Díaz-Caneja CM, Corripio I, González-Pinto A, Lobo A, Bioque M, et al. Gene-environment interaction as a predictor of early adjustment in first episode psychosis. Schizophr Res. 2017;189:196–203.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Bortolasci CC, Vargas HO, Souza-Nogueira A, Barbosa DS, Moreira EG, Nunes SOV, et al. Lowered plasma paraoxonase (PON)1 activity is a trait marker of major depression and PON1 Q192R gene polymorphism–smoking interactions differentially predict the odds of major depression and bipolar disorder. J Affect Disord. 2014;159:23–30.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Oliveira J, Kazma R, Le Floch E, Bennabi M, Hamdani N, Bengoufa D, et al. Toxoplasma gondii exposure may modulate the influence of TLR2 genetic variation on bipolar disorder: a gene–environment interaction study. International Journal of Bipolar Disorders. 2016;4(1). Available from:
  113. 113.
    Palmer RHC, Nugent NR, Brick LA, Bidwell CL, McGeary JE, Keller MC, et al. Evidence of shared genome-wide additive genetic effects on interpersonal trauma exposure and generalized vulnerability to drug dependence in a population of substance users: genetics of drug dependence and trauma. J Trauma Stress. 2016;29:197–204.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Richmond-Rakerd LS, Slutske WS, Lynskey MT, Agrawal A, Madden PAF, Bucholz KK, et al. Age at first use and later substance use disorder: shared genetic and environmental pathways for nicotine, alcohol, and cannabis. J Abnorm Psychol. 2016;125:946–59.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Polimanti R, Zhao H, Farrer LA, Kranzler HR, Gelernter J. Ancestry-specific and sex-specific risk alleles identified in a genome-wide gene-by-alcohol dependence interaction study of risky sexual behaviors. Am J Med Genet B Neuropsychiatr Genet. 2017;174:846–53.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Polimanti R, Meda SA, Pearlson GD, Zhao H, Sherva R, Farrer LA, et al. S100A10 identified in a genome-wide gene × cannabis dependence interaction analysis of risky sexual behaviours. J Psychiatry Neurosci. 2017;42:252–61.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Prom-Wormley EC, Ebejer J, Dick DM, Bowers MS. The genetic epidemiology of substance use disorder: a review. Drug Alcohol Depend. 2017;180:241–59.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Petersen L, Sørensen TIA, Kragh Andersen P, Bo Mortensen P, Hawton K. Genetic and familial environmental effects on suicide attempts: a study of Danish adoptees and their biological and adoptive siblings. J Affect Disord. 2014;155:273–7.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Brodsky BS. Early childhood environment and genetic interactions: the diathesis for suicidal behavior. Current Psychiatry Reports. 2016;18(9):86. Available from:
  120. 120.
    Turecki G, Ota VK, Belangero SI, Jackowski A, Kaufman J. Early life adversity, genomic plasticity, and psychopathology. Lancet Psychiatry. 2014;1:461–6.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Benedetti F, Riccaboni R, Poletti S, Radaelli D, Locatelli C, Lorenzi C, et al. The serotonin transporter genotype modulates the relationship between early stress and adult suicidality in bipolar disorder. Bipolar Disord. 2014;16:857–66.PubMedCrossRefGoogle Scholar
  122. 122.
    Doorley J, Williams C, Mallard T, Esposito-Smythers C, McGeary J. Sexual trauma, the dopamine D4 receptor, and suicidal ideation among hospitalized adolescents: a preliminary investigation. Arch Suicide Res. 2017;21:279–92.PubMedCrossRefGoogle Scholar
  123. 123.
    Cross-Disorder Group of the Psychiatric Genetics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381:1371–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rashelle J. Musci
    • 1
    Email author
  • Jura L. Augustinavicius
    • 1
  • Heather Volk
    • 1
  1. 1.Department of Mental HealthJohns Hopkins University Bloomberg School of Public HealthBaltimoreUSA

Personalised recommendations