Current Psychiatry Reports

, 17:98 | Cite as

Circadian Clocks as Modulators of Metabolic Comorbidity in Psychiatric Disorders

  • Rita Barandas
  • Dominic Landgraf
  • Michael J. McCarthy
  • David K. Welsh
Sleep Disorders (P Gehrman, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Sleep Disorders


Psychiatric disorders such as schizophrenia, bipolar disorder, and major depressive disorder are often accompanied by metabolic dysfunction symptoms, including obesity and diabetes. Since the circadian system controls important brain systems that regulate affective, cognitive, and metabolic functions, and neuropsychiatric and metabolic diseases are often correlated with disturbances of circadian rhythms, we hypothesize that dysregulation of circadian clocks plays a central role in metabolic comorbidity in psychiatric disorders. In this review paper, we highlight the role of circadian clocks in glucocorticoid, dopamine, and orexin/melanin-concentrating hormone systems and describe how a dysfunction of these clocks may contribute to the simultaneous development of psychiatric and metabolic symptoms.


Circadian rhythm Psychiatric disorders Metabolic syndrome Depression Reward Obesity 



Supported by a Veterans Affairs Merit Award (1I01BX001146) and a NARSAD Young Investigator Award to David K. Welsh. The authors declare no competing financial interests.

Compliance with Ethical Standards

Conflict of Interest

Rita Barandas, Dominic Landgraf, and David K. Welsh declare that they have no conflict of interest.

Michael J. McCarthy reports personal fees from Janssen Pharmaceuticals.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Garaulet M, Gomez-Abellan P. Chronobiology and obesity. Nutr Hosp. 2013;28 Suppl 5:114–20. doi: 10.3305/nh.2013.28.sup5.6926.PubMedGoogle Scholar
  2. 2.
    Garaulet M, Gomez-Abellan P. Timing of food intake and obesity: a novel association. Physiol Behav. 2014;134:44–50. doi: 10.1016/j.physbeh.2014.01.001.PubMedCrossRefGoogle Scholar
  3. 3.•
    Orozco-Solis R, Sassone-Corsi P. Circadian clock: linking epigenetics to aging. Curr Opin Genet Dev. 2014;26(0):66–72. doi: 10.1016/j.gde.2014.06.003. Environmental circadian disrupters interact with different brain areas.PubMedCrossRefGoogle Scholar
  4. 4.
    Lowrey PL, Takahashi JS. Genetics of circadian rhythms in mammalian model organisms. Adv Genet. 2011;74:175–230. doi: 10.1016/b978-0-12-387690-4.00006-4.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A. 2014;111(45):16219–24. doi: 10.1073/pnas.1408886111.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Yan J, Wang H, Liu Y, Shao C. Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput Biol. 2008;4(10), e1000193. doi: 10.1371/journal.pcbi.1000193.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Sancar G, Brunner M. Circadian clocks and energy metabolism. Cell Mol Life Sci. 2014;71(14):2667–80. doi: 10.1007/s00018-014-1574-7.PubMedCrossRefGoogle Scholar
  8. 8.••
    Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron. 2012;74(2):246–60. doi: 10.1016/j.neuron.2012.04.006. Disturbances in the communication among body clocks can desynchronize the circadian system, contributing to the development of metabolic and neuropsychiatric disorders.PubMedCrossRefGoogle Scholar
  9. 9.
    Forni D, Pozzoli U, Cagliani R, Tresoldi C, Menozzi G, Riva S, et al. Genetic adaptation of the human circadian clock to day-length latitudinal variations and relevance for affective disorders. Genome Biol. 2014;15(10):499.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    De Hert M, Correll CU, Bobes J, Cetkovich-Bakmas M, Cohen DAN, Asai I, et al. Physical illness in patients with severe mental disorders. I. Prevalence, impact of medications and disparities in health care. World Psychiatry. 2011;10(1):52–77.CrossRefGoogle Scholar
  11. 11.
    Kahl KG, Schweiger U, Correll C, Muller C, Busch ML, Bauer M et al. Depression, anxiety disorders, and metabolic syndrome in a population at risk for type 2 diabetes mellitus. Brain and behavior. 2015:e00306. doi: 10.1002/brb3.306.
  12. 12.
    Ohaeri JU, Akanji AO. Metabolic syndrome in severe mental disorders. Metab Syndr Relat Disord. 2011;9(2):91–8. doi: 10.1089/met.2010.0053.PubMedCrossRefGoogle Scholar
  13. 13.•
    Jauch-Chara K, Oltmanns KM. Obesity—a neuropsychological disease? Systematic review and neuropsychological model. Prog Neurobiol. 2014;114:84–101. doi: 10.1016/j.pneurobio.2013.12.001. Role of mood disturbances, altered reward perception and motivation in the development of obesity and other metabolic disturbances. PubMedCrossRefGoogle Scholar
  14. 14.
    Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5. doi: 10.1161/CIRCULATIONAHA.109.192644.PubMedCrossRefGoogle Scholar
  15. 15.
    Ringen PA, Engh JA, Birkenaes AB, Dieset I, Andreassen OA. Increased mortality in schizophrenia due to cardiovascular disease—a non-systematic review of epidemiology, possible causes, and interventions. Front Psychiatry. 2014;5:137. doi: 10.3389/fpsyt.2014.00137.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Vancampfort D, Vansteelandt K, Correll CU, Mitchell AJ, De Herdt A, Sienaert P, et al. Metabolic syndrome and metabolic abnormalities in bipolar disorder: a meta-analysis of prevalence rates and moderators. Am J Psychiatry. 2013;170(3):265–74. doi: 10.1176/appi.ajp.2012.12050620.PubMedCrossRefGoogle Scholar
  17. 17.
    Sarnyai Z, Jashar C, Olivier B. Modeling combined schizophrenia-related behavioral and metabolic phenotypes in rodents. Behav Brain Res. 2015;276:130–42. doi: 10.1016/j.bbr.2014.04.016.PubMedCrossRefGoogle Scholar
  18. 18.
    Harris LW, Guest PC, Wayland MT, Umrania Y, Krishnamurthy D, Rahmoune H, et al. Schizophrenia: metabolic aspects of aetiology, diagnosis and future treatment strategies. Psychoneuroendocrinology. 2013;38(6):752–66. doi: 10.1016/j.psyneuen.2012.09.009.PubMedCrossRefGoogle Scholar
  19. 19.
    Guest PC, Wang L, Harris LW, Burling K, Levin Y, Ernst A, et al. Increased levels of circulating insulin-related peptides in first-onset, antipsychotic naive schizophrenia patients. Mol Psychiatry. 2010;15(2):118–9. doi: 10.1038/mp.2009.81.PubMedCrossRefGoogle Scholar
  20. 20.
    Levitan RD, Davis C, Kaplan AS, Arenovich T, Phillips DI, Ravindran AV. Obesity comorbidity in unipolar major depressive disorder: refining the core phenotype. J Clin Psychiatry. 2012;73(8):1119–24. doi: 10.4088/JCP.11m07394.PubMedCrossRefGoogle Scholar
  21. 21.
    Vogelzangs N, Beekman AT, Boelhouwer IG, Bandinelli S, Milaneschi Y, Ferrucci L, et al. Metabolic depression: a chronic depressive subtype? Findings from the InCHIANTI study of older persons. J Clin Psychiatry. 2011;72(5):598–604. doi: 10.4088/JCP.10m06559.PubMedCrossRefGoogle Scholar
  22. 22.
    McIntyre RS, Soczynska JK, Konarski JZ, Woldeyohannes HO, Law CW, Miranda A, et al. Should depressive syndromes be reclassified as “metabolic syndrome type II”? Ann Clin Psychiatry : Off J Am Acad Clin Psychiatrists. 2007;19(4):257–64. doi: 10.1080/10401230701653377.CrossRefGoogle Scholar
  23. 23.
    Mansur RB, Brietzke E, McIntyre RS. Is there a “metabolic-mood syndrome”? A review of the relationship between obesity and mood disorders. Neurosci Biobehav Rev. 2015. doi: 10.1016/j.neubiorev.2014.12.017.PubMedGoogle Scholar
  24. 24.
    Kiecolt-Glaser JK, Habash DL, Fagundes CP, Andridge R, Peng J, Malarkey WB, et al. Daily stressors, past depression, and metabolic responses to high-fat meals: a novel path to obesity. Biol Psychiatry. 2015;77(7):653–60. doi: 10.1016/j.biopsych.2014.05.018.PubMedCrossRefGoogle Scholar
  25. 25.
    Germain A, Nofzinger EA, Meltzer CC, Wood A, Kupfer DJ, Moore RY, et al. Diurnal variation in regional brain glucose metabolism in depression. Biol Psychiatry. 2007;62(5):438–45. doi: 10.1016/j.biopsych.2006.09.043.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Hampp G, Albrecht U. The circadian clock and mood-related behavior. Commun Int Biol. 2008;1(1):1–3.CrossRefGoogle Scholar
  27. 27.
    Rutters F, Lemmens SG, Adam TC, Bremmer MA, Elders PJ, Nijpels G, et al. Is social jetlag associated with an adverse endocrine, behavioral, and cardiovascular risk profile? J Biol Rhythm. 2014;29(5):377–83. doi: 10.1177/0748730414550199.CrossRefGoogle Scholar
  28. 28.
    Robillard R, Naismith SL, Hickie IB. Recent advances in sleep-wake cycle and biological rhythms in bipolar disorder. Curr Psychiatry Rep. 2013;15(10):402. doi: 10.1007/s11920-013-0402-3.PubMedCrossRefGoogle Scholar
  29. 29.
    Baron KG, Reid KJ. Circadian misalignment and health. Int Rev Psychiatry. 2014;26(2):139–54. doi: 10.3109/09540261.2014.911149.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Gonnissen HK, Hulshof T, Westerterp-Plantenga MS. Chronobiology, endocrinology, and energy- and food-reward homeostasis. Obes Rev : Off J Int Assoc Study Obes. 2013;14(5):405–16. doi: 10.1111/obr.12019.CrossRefGoogle Scholar
  31. 31.
    Depner CM, Stothard ER, Wright Jr KP. Metabolic consequences of sleep and circadian disorders. Curr Diabetes Rep. 2014;14(7):507. doi: 10.1007/s11892-014-0507-z.CrossRefGoogle Scholar
  32. 32.
    Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49. doi: 10.1146/annurev-physiol-021909-135821.PubMedCrossRefGoogle Scholar
  33. 33.
    McCarthy MJ, Welsh DK. Cellular circadian clocks in mood disorders. J Biol Rhythm. 2012;27(5):339–52. doi: 10.1177/0748730412456367.CrossRefGoogle Scholar
  34. 34.
    Lamont EW, Legault-Coutu D, Cermakian N, Boivin DB. The role of circadian clock genes in mental disorders. Dialogues Clin Neurosci. 2007;9(3):333–42.PubMedGoogle Scholar
  35. 35.
    Dallaspezia S, Benedetti F. Chronobiology of bipolar disorder: therapeutic implication. Curr Psychiatry Rep. 2015;17(8):606. doi: 10.1007/s11920-015-0606-9.PubMedCrossRefGoogle Scholar
  36. 36.
    Lamont EW, Coutu DL, Cermakian N, Boivin DB. Circadian rhythms and clock genes in psychotic disorders. Isr J Psychiatry Relat Sci. 2010;47(1):27–35.PubMedGoogle Scholar
  37. 37.
    Parekh PK, Ozburn AR, McClung CA. Circadian clock genes: effects on dopamine, reward and addiction. Alcohol. 2015. doi: 10.1016/j.alcohol.2014.09.034.PubMedGoogle Scholar
  38. 38.
    Menet JS, Rosbash M. When brain clocks lose track of time: cause or consequence of neuropsychiatric disorders. Curr Opin Neurobiol. 2011;21(6):849–57. doi: 10.1016/j.conb.2011.06.008.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Abad VC, Guilleminault C. Sleep and psychiatry. Dialogues Clin Neurosci. 2005;7(4):291–303.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Soreca I. Circadian rhythms and sleep in bipolar disorder: implications for pathophysiology and treatment. Curr Opin Psychiatry. 2014;27(6):467–71. doi: 10.1097/YCO.0000000000000108.PubMedCrossRefGoogle Scholar
  41. 41.
    Striegel-Moore RH, Rosselli F, Wilson GT, Perrin N, Harvey K, DeBar L. Nocturnal eating: association with binge eating, obesity, and psychological distress. Int J Eating Disord. 2010;43(6):520–6. doi: 10.1002/eat.20735.CrossRefGoogle Scholar
  42. 42.
    Cleator J, Abbott J, Judd P, Sutton C, Wilding JP. Night eating syndrome: implications for severe obesity. Nutr Diabetes. 2012;2, e44. doi: 10.1038/nutd.2012.16.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Terman M, Terman JS. Light therapy for seasonal and nonseasonal depression: efficacy, protocol, safety, and side effects. CNS Spectr. 2005;10(8):647–63. quiz 72.PubMedCrossRefGoogle Scholar
  44. 44.
    Kripke DF. Bright light treatment reduces symptoms in older adults with non-seasonal major depression. Evid Based Ment Health. 2011;14(3):75. doi: 10.1136/ebmh.14.3.75.PubMedCrossRefGoogle Scholar
  45. 45.
    Wirz-Justice A, Terman M. Chronotherapeutics (light and wake therapy) as a class of interventions for affective disorders. Handb Clin Neurol. 2012;106:697–713. doi: 10.1016/B978-0-444-52002-9.00042-5.PubMedCrossRefGoogle Scholar
  46. 46.
    Wu JC, Kelsoe JR, Schachat C, Bunney BG, DeModena A, Golshan S, et al. Rapid and sustained antidepressant response with sleep deprivation and chronotherapy in bipolar disorder. Biol Psychiatry. 2009;66(3):298–301. doi: 10.1016/j.biopsych.2009.02.018.PubMedCrossRefGoogle Scholar
  47. 47.
    McCarthy MJ, Nievergelt CM, Kelsoe JR, Welsh DK. A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response. PLoS ONE. 2012;7(2), e32091. doi: 10.1371/journal.pone.0032091.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Landgraf D, Shostak A, Oster H. Clock genes and sleep. Pflugers Arch - Eur J Physiol. 2012;463(1):3–14. doi: 10.1007/s00424-011-1003-9.CrossRefGoogle Scholar
  49. 49.
    Landgraf D, McCarthy MJ, Welsh DK. The role of the circadian clock in animal models of mood disorders. Behav Neurosci. 2014;128(3):344–59. doi: 10.1037/a0036029.PubMedCrossRefGoogle Scholar
  50. 50.
    Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science. 1994;264(5159):719–25.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V, et al. Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci U S A. 2007;104(15):6406–11. doi: 10.1073/pnas.0609625104.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Stokkan K-A, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in the liver by feeding. Science. 2001;291(5503):490–3. doi: 10.1126/science.291.5503.490.PubMedCrossRefGoogle Scholar
  53. 53.
    Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. Circadian timing of food intake contributes to weight gain. Obes (Silver Spring, Md). 2009;17(11):2100–2. doi: 10.1038/oby.2009.264.CrossRefGoogle Scholar
  54. 54.
    Bray MS, Tsai JY, Villegas-Montoya C, Boland BB, Blasier Z, Egbejimi O, et al. Time-of-day-dependent dietary fat consumption influences multiple cardiometabolic syndrome parameters in mice. Int J Obes (Lond). 2010;34(11):1589–98. doi: 10.1038/ijo.2010.63.CrossRefGoogle Scholar
  55. 55.••
    McHill AW, Melanson EL, Higgins J, Connick E, Moehlman TM, Stothard ER, et al. Impact of circadian misalignment on energy metabolism during simulated nightshift work. Proc Natl Acad Sci U S A. 2014;111(48):17302–7. doi: 10.1073/pnas.1412021111. Human study providing evidence that circadian misalignment leads to metabolic dysregulation.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Schibler U, Ripperger J, Brown SA. Peripheral circadian oscillators in mammals: time and food. J Biol Rhythm. 2003;18(3):250–60. doi: 10.1177/0748730403018003007.CrossRefGoogle Scholar
  57. 57.
    Oike H, Oishi K, Kobori M. Nutrients, clock genes, and chrononutrition. Curr Nutr Rep. 2014;3:204–12. doi: 10.1007/s13668-014-0082-6.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Gonnissen HKJ, Hulshof T, Westerterp-Plantenga MS. Chronobiology, endocrinology, and energy- and food-reward homeostasis. Obes Rev. 2013;14(5):405–16. doi: 10.1111/obr.12019.PubMedCrossRefGoogle Scholar
  59. 59.
    Bass J. Circadian topology of metabolism. Nature. 2012;491(7424):348–56.PubMedCrossRefGoogle Scholar
  60. 60.
    Gonnissen HKJ, Rutters F, Mazuy C, Martens EAP, Adam TC, Westerterp-Plantenga MS. Effect of a phase advance and phase delay of the 24-h cycle on energy metabolism, appetite, and related hormones. Am J Clin Nutr. 2012;96(4):689–97. doi: 10.3945/ajcn.112.037192.PubMedCrossRefGoogle Scholar
  61. 61.
    Shostak A, Meyer-Kovac J, Oster H. Circadian regulation of lipid mobilization in white adipose tissues. Diabetes. 2013;62(7):2195–203. doi: 10.2337/db12-1449.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Barclay JL, Husse J, Bode B, Naujokat N, Meyer-Kovac J, Schmid SM, et al. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLoS ONE. 2012;7(5), e37150. doi: 10.1371/journal.pone.0037150.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.••
    Gerhart-Hines Z, Lazar MA. Circadian metabolism in the light of evolution. Endocrine reviews. 2015:er20151007. doi: 10.1210/er.2015-1007. Circadian networks have evolved to achieve energetic balance and adaptability.
  64. 64.
    Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science. 2010;330(6009):1349–54. doi: 10.1126/science.1195027.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004;2(11), e377. doi: 10.1371/journal.pbio.0020377.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Landgraf D, Tsang AH, Leliavski A, Koch CE, Barclay JL, Drucker DJ et al. Oxyntomodulin regulates resetting of the liver circadian clock by food. eLife. 2015;4. doi: 10.7554/eLife.06253.
  67. 67.
    Orozco-Solis R, Sassone-Corsi P. Epigenetic control and the circadian clock: linking metabolism to neuronal responses. Neuroscience. 2014;264:76–87. doi: 10.1016/j.neuroscience.2014.01.043.PubMedCrossRefGoogle Scholar
  68. 68.
    Jordan SD, Lamia KA. AMPK at the crossroads of circadian clocks and metabolism. Mol Cell Endocrinol. 2013;366(2):163–9. doi: 10.1016/j.mce.2012.06.017.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Shamsi NA, Salkeld MD, Rattanatray L, Voultsios A, Varcoe TJ, Boden MJ, et al. Metabolic consequences of timed feeding in mice. Physiol Behav. 2014;128(0):188–201. doi: 10.1016/j.physbeh.2014.02.021.PubMedCrossRefGoogle Scholar
  70. 70.
    Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15(6):848–60. doi: 10.1016/j.cmet.2012.04.019.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005;308(5724):1043–5. doi: 10.1126/science.1108750.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Abarca C, Albrecht U, Spanagel R. Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc Natl Acad Sci U S A. 2002;99(13):9026–30. doi: 10.1073/pnas.142039099.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Dallmann R, Touma C, Palme R, Albrecht U, Steinlechner S. Impaired daily glucocorticoid rhythm in Per1 (Brd) mice. J Comp Physiol A, Neuroethol, Sens, Neural, Behav Physiol. 2006;192(7):769–75. doi: 10.1007/s00359-006-0114-9.CrossRefGoogle Scholar
  74. 74.
    Yang S, Liu A, Weidenhammer A, Cooksey RC, McClain D, Kim MK, et al. The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology. 2009;150(5):2153–60. doi: 10.1210/en.2008-0705.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Carvas JM, Vukolic A, Yepuri G, Xiong Y, Popp K, Schmutz I, et al. Period2 gene mutant mice show compromised insulin-mediated endothelial nitric oxide release and altered glucose homeostasis. Front Physiol. 2012;3:337. doi: 10.3389/fphys.2012.00337.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    De Bundel D, Gangarossa G, Biever A, Bonnefont X, Valjent E. Cognitive dysfunction, elevated anxiety, and reduced cocaine response in circadian clock-deficient cryptochrome knockout mice. Front Behav Neurosci. 2013;7:152. doi: 10.3389/fnbeh.2013.00152.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Griebel G, Ravinet-Trillou C, Beeske S, Avenet P, Pichat P. Mice deficient in cryptochrome 1 (Cry1 (−/−)) exhibit resistance to obesity induced by a high-fat diet. Front Endocrinol. 2014;5:49. doi: 10.3389/fendo.2014.00049.CrossRefGoogle Scholar
  78. 78.
    Savalli G, Diao W, Berger S, Ronovsky M, Partonen T, Pollak DD. Anhedonic behavior in cryptochrome 2-deficient mice is paralleled by altered diurnal patterns of amygdala gene expression. Amino Acids. 2015. doi: 10.1007/s00726-015-1968-3.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH, Jonker JW, et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature. 2011;480(7378):552–6. doi: 10.1038/nature10700.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Barclay JL, Shostak A, Leliavski A, Tsang AH, Johren O, Muller-Fielitz H, et al. High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice. Am J Physiol Endocrinol Metab. 2013;304(10):E1053–63. doi: 10.1152/ajpendo.00512.2012.PubMedCrossRefGoogle Scholar
  81. 81.
    Tsang AH, Barclay JL, Oster H. Interactions between endocrine and circadian systems. J Mol Endocrinol. 2014;52(1):R1–16. doi: 10.1530/JME-13-0118.PubMedCrossRefGoogle Scholar
  82. 82.••
    Silver R, Kriegsfeld LJ. Circadian rhythms have broad implications for understanding brain and behavior. Eur J Neurosci. 2014;39(11):1866–80. doi: 10.1111/ejn.12593. Circadian timing system and its relevance in neuroscience.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Landgraf D, McCarthy M, Welsh D. Circadian clock and stress interactions in the molecular biology of psychiatric disorders. Curr Psychiatry Rep. 2014;16(10):1–11. doi: 10.1007/s11920-014-0483-7.CrossRefGoogle Scholar
  84. 84.
    Nicolaides NC, Charmandari E, Chrousos GP, Kino T. Circadian endocrine rhythms: the hypothalamic-pituitary-adrenal axis and its actions. Ann N Y Acad Sci. 2014;1318:71–80. doi: 10.1111/nyas.12464.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.••
    Dickmeis T, Weger BD, Weger M. The circadian clock and glucocorticoids—interactions across many time scales. Mol Cell Endocrinol. 2013;380(1–2):2–15. doi: 10.1016/j.mce.2013.05.012. Dynamic interaction between the glucocorticoid and the circadian systems across different time scales ensures proper stress response, metabolic regulation, and many other physiological processes.PubMedCrossRefGoogle Scholar
  86. 86.
    de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005;6(6):463–75. doi: 10.1038/nrn1683.PubMedCrossRefGoogle Scholar
  87. 87.
    Hryhorczuk C, Sharma S, Fulton SE. Metabolic disturbances connecting obesity and depression. Front Neurosci. 2013;7:177. doi: 10.3389/fnins.2013.00177.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Parker KJ, Schatzberg AF, Lyons DM. Neuroendocrine aspects of hypercortisolism in major depression. Horm Behav. 2003;43(1):60–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Lustman PJ, Anderson RJ, Freedland KE, de Groot M, Carney RM, Clouse RE. Depression and poor glycemic control: a meta-analytic review of the literature. Diabetes Care. 2000;23(7):934–42.PubMedCrossRefGoogle Scholar
  90. 90.
    Rush AJ, Giles DE, Schlesser MA, Orsulak PJ, Parker Jr CR, Weissenburger JE, et al. The dexamethasone suppression test in patients with mood disorders. J Clin Psychiatry. 1996;57(10):470–84.PubMedCrossRefGoogle Scholar
  91. 91.
    Hinkelmann K, Moritz S, Botzenhardt J, Muhtz C, Wiedemann K, Kellner M, et al. Changes in cortisol secretion during antidepressive treatment and cognitive improvement in patients with major depression: a longitudinal study. Psychoneuroendocrinology. 2012;37(5):685–92. doi: 10.1016/j.psyneuen.2011.08.012.PubMedCrossRefGoogle Scholar
  92. 92.
    Himmerich H, Zimmermann P, Ising M, Kloiber S, Lucae S, Kunzel HE, et al. Changes in the hypothalamic-pituitary-adrenal axis and leptin levels during antidepressant treatment. Neuropsychobiology. 2007;55(1):28–35. doi: 10.1159/000103573.PubMedCrossRefGoogle Scholar
  93. 93.
    Abrahamian H, Hofmann P, Kinzl J, Toplak H. Diabetes mellitus and comorbid depression: improvement of both diseases with milnacipran. A replication study (results of the Austrian Major Depression Diabetes Mellitus study group). Neuropsychiatr Dis Treat. 2012;8:355–60. doi: 10.2147/NDT.S33679.PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Stieg MR, Sievers C, Farr O, Stalla GK, Mantzoros CS. Leptin: a hormone linking activation of neuroendocrine axes with neuropathology. Psychoneuroendocrinology. 2015;51:47–57. doi: 10.1016/j.psyneuen.2014.09.004.PubMedCrossRefGoogle Scholar
  95. 95.
    Aschbacher K, Rodriguez-Fernandez M, van Wietmarschen H, Tomiyama AJ, Jain S, Epel E et al. The hypothalamic–pituitary–adrenal–leptin axis and metabolic health: a systems approach to resilience, robustness and control. 2014.Google Scholar
  96. 96.
    Grosbellet E, Gourmelen S, Pevet P, Criscuolo F, Challet E. Leptin normalizes photic synchronization in male ob/ob mice, via indirect effects on the suprachiasmatic nucleus. Endocrinology. 2015;156(3):1080–90. doi: 10.1210/en.2014-1570.PubMedCrossRefGoogle Scholar
  97. 97.
    Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, et al. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382(6588):250–2. doi: 10.1038/382250a0.PubMedCrossRefGoogle Scholar
  98. 98.
    Roubos EW, Dahmen M, Kozicz T, Xu L. Leptin and the hypothalamo-pituitary-adrenal stress axis. Gen Comp Endocrinol. 2012;177(1):28–36. doi: 10.1016/j.ygcen.2012.01.009.PubMedCrossRefGoogle Scholar
  99. 99.
    Licinio J, Negrao AB, Wong ML. Plasma leptin concentrations are highly correlated to emotional states throughout the day. Translat Psychiatry. 2014;4, e475. doi: 10.1038/tp.2014.115.CrossRefGoogle Scholar
  100. 100.
    Kloiber S, Ripke S, Kohli MA, Reppermund S, Salyakina D, Uher R, et al. Resistance to antidepressant treatment is associated with polymorphisms in the leptin gene, decreased leptin mRNA expression, and decreased leptin serum levels. Eur Neuropsychopharmacol : J Eur Coll Neuropsychopharmacol. 2013;23(7):653–62. doi: 10.1016/j.euroneuro.2012.08.010.CrossRefGoogle Scholar
  101. 101.•
    Whitton AE, Treadway MT, Pizzagalli DA. Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr Opin Psychiatry. 2015;28(1):7–12. doi: 10.1097/YCO.0000000000000122. Dysregulation of reward processing as a key common feature of major depression, bipolar disorder and schizophrenia.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Nestler EJ, Carlezon Jr WA. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry. 2006;59(12):1151–9. doi: 10.1016/j.biopsych.2005.09.018.PubMedCrossRefGoogle Scholar
  103. 103.
    Romer Thomsen K, Whybrow PC, Kringelbach ML. Reconceptualizing anhedonia: novel perspectives on balancing the pleasure networks in the human brain. Front Behav Neurosci. 2015;9:49. doi: 10.3389/fnbeh.2015.00049.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Boivin DB, Czeisler CA, Dijk DJ, Duffy JF, Folkard S, Minors DS, et al. Complex interaction of the sleep-wake cycle and circadian phase modulates mood in healthy subjects. Arch Gen Psychiatry. 1997;54(2):145–52.PubMedCrossRefGoogle Scholar
  105. 105.
    Birchler-Pedross A, Schroder CM, Munch M, Knoblauch V, Blatter K, Schnitzler-Sack C, et al. Subjective well-being is modulated by circadian phase, sleep pressure, age, and gender. J Biol Rhythm. 2009;24(3):232–42. doi: 10.1177/0748730409335546.CrossRefGoogle Scholar
  106. 106.
    Hasler BP, Forbes EE, Franzen PL. Time-of-day differences and short-term stability of the neural response to monetary reward: a pilot study. Psychiatry Res. 2014;224(1):22–7. doi: 10.1016/j.pscychresns.2014.07.005.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Hood S, Cassidy P, Cossette MP, Weigl Y, Verwey M, Robinson B, et al. Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. J Neurosci : Off J Soc Neurosci. 2010;30(42):14046–58. doi: 10.1523/JNEUROSCI.2128-10.2010.CrossRefGoogle Scholar
  108. 108.
    Mendoza J, Challet E. Circadian insights into dopamine mechanisms. Neuroscience. 2014;282C:230–42. doi: 10.1016/j.neuroscience.2014.07.081.PubMedCrossRefGoogle Scholar
  109. 109.
    McClung CA, Sidiropoulou K, Vitaterna M, Takahashi JS, White FJ, Cooper DC, et al. Regulation of dopaminergic transmission and cocaine reward by the Clock gene. Proc Natl Acad Sci U S A. 2005;102(26):9377–81. doi: 10.1073/pnas.0503584102.PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Ferris MJ, Espana RA, Locke JL, Konstantopoulos JK, Rose JH, Chen R, et al. Dopamine transporters govern diurnal variation in extracellular dopamine tone. Proc Natl Acad Sci U S A. 2014;111(26):E2751–9. doi: 10.1073/pnas.1407935111.PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Webb IC, Baltazar RM, Lehman MN, Coolen LM. Bidirectional interactions between the circadian and reward systems: is restricted food access a unique zeitgeber? Eur J Neurosci. 2009;30(9):1739–48. doi: 10.1111/j.1460-9568.2009.06966.x.PubMedCrossRefGoogle Scholar
  112. 112.
    Baird AL, Coogan AN, Kaufling J, Barrot M, Thome J. Daily methylphenidate and atomoxetine treatment impacts on clock gene protein expression in the mouse brain. Brain Res. 2013;1513:61–71. doi: 10.1016/j.brainres.2013.03.038.PubMedCrossRefGoogle Scholar
  113. 113.
    Yujnovsky I, Hirayama J, Doi M, Borrelli E, Sassone-Corsi P. Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1. Proc Natl Acad Sci U S A. 2006;103(16):6386–91. doi: 10.1073/pnas.0510691103.PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.••
    Khanh DV, Choi YH, Moh SH, Kinyua AW, Kim KW. Leptin and insulin signaling in dopaminergic neurons: relationship between energy balance and reward system. Front Psychol. 2014;5:846. doi: 10.3389/fpsyg.2014.00846. The convergence of energy homeostasis and reward system, mediated by leptin and insulin signaling in the midbrain dopaminergic neurons.PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Kok P, Roelfsema F, Frölich M, van Pelt J, Meinders AE, Pijl H. Activation of dopamine D2 receptors lowers circadian leptin concentrations in obese women. J Clin Endocrinol Metabo. 2006;91(8):3236–40. doi: 10.1210/jc.2005-2529.CrossRefGoogle Scholar
  116. 116.
    Beeler JA, Frazier CR, Zhuang X. Putting desire on a budget: dopamine and energy expenditure, reconciling reward and resources. Front Integr Neurosci. 2012;6:49. doi: 10.3389/fnint.2012.00049.PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Kang SH, Lee JI. Metabolic disturbances independent of body mass in patients with schizophrenia taking atypical antipsychotics. Psychiatry Investig. 2015;12(2):242–8. doi: 10.4306/pi.2015.12.2.242.PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Bray GA. Medical treatment of obesity: the past, the present and the future. Best Pract Res Clin Gastroenterol. 2014;28(4):665–84. doi: 10.1016/j.bpg.2014.07.015.PubMedCrossRefGoogle Scholar
  119. 119.
    Girault EM, Yi CX, Fliers E, Kalsbeek A. Orexins, feeding, and energy balance. Prog Brain Res. 2012;198:47–64. doi: 10.1016/B978-0-444-59489-1.00005-7.PubMedCrossRefGoogle Scholar
  120. 120.
    Adeghate E. Orexins: tissue localization, functions, and its relation to insulin secretion and diabetes mellitus. Vitam Horm. 2012;89:111–33. doi: 10.1016/B978-0-12-394623-2.00007-X.PubMedCrossRefGoogle Scholar
  121. 121.
    Lutter M, Nestler EJ. Homeostatic and hedonic signals interact in the regulation of food intake. J Nutr. 2009;139(3):629–32. doi: 10.3945/jn.108.097618.PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Conductier G, Nahon JL, Guyon A. Dopamine depresses melanin concentrating hormone neuronal activity through multiple effects on alpha2-noradrenergic, D1 and D2-like dopaminergic receptors. Neuroscience. 2011;178:89–100. doi: 10.1016/j.neuroscience.2011.01.030.PubMedCrossRefGoogle Scholar
  123. 123.
    Mignot E, Taheri S, Nishino S. Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders. Nat Neurosci. 2002;5(Suppl):1071–5. doi: 10.1038/nn944.PubMedCrossRefGoogle Scholar
  124. 124.
    Siegel JM. Hypocretin (orexin): role in normal behavior and neuropathology. Annu Rev Psychol. 2004;55:125–48. doi: 10.1146/annurev.psych.55.090902.141545.PubMedCrossRefGoogle Scholar
  125. 125.
    Marston OJ, Williams RH, Canal MM, Samuels RE, Upton N, Piggins HD. Circadian and dark-pulse activation of orexin/hypocretin neurons. Mol Brain. 2008;1:19. doi: 10.1186/1756-6606-1-19.PubMedCentralPubMedCrossRefGoogle Scholar
  126. 126.
    Garcia-Fuster MJ, Parks GS, Clinton SM, Watson SJ, Akil H, Civelli O. The melanin-concentrating hormone (MCH) system in an animal model of depression-like behavior. Eur Neuropsychopharmacol : J Eur Coll Neuropsychopharmacol. 2012;22(8):607–13. doi: 10.1016/j.euroneuro.2011.12.001.CrossRefGoogle Scholar
  127. 127.
    Blouin AM, Fried I, Wilson CL, Staba RJ, Behnke EJ, Lam HA, et al. Human hypocretin and melanin-concentrating hormone levels are linked to emotion and social interaction. Nat Commun. 2013;4:1547. doi: 10.1038/ncomms2461.PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Nollet M, Leman S. Role of orexin in the pathophysiology of depression: potential for pharmacological intervention. CNS Drugs. 2013;27(6):411–22. doi: 10.1007/s40263-013-0064-z.PubMedCrossRefGoogle Scholar
  129. 129.
    Urbanavicius J, Lagos P, Torterolo P, Scorza C. Prodepressive effect induced by microinjections of MCH into the dorsal raphe: time course, dose dependence, effects on anxiety-related behaviors, and reversion by nortriptyline. Behav Pharmacol. 2014;25(4):316–24. doi: 10.1097/FBP.0000000000000056.PubMedCrossRefGoogle Scholar
  130. 130.
    Chung S, Parks GS, Lee C, Civelli O. Recent updates on the melanin-concentrating hormone (MCH) and its receptor system: lessons from MCH1R antagonists. J Mol Neurosci : MN. 2011;43(1):115–21. doi: 10.1007/s12031-010-9411-4.PubMedCentralPubMedCrossRefGoogle Scholar
  131. 131.
    Winsky-Sommerer R, Yamanaka A, Diano S, Borok E, Roberts AJ, Sakurai T, et al. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci : Off J Soc Neurosci. 2004;24(50):11439–48. doi: 10.1523/JNEUROSCI.3459-04.2004.CrossRefGoogle Scholar
  132. 132.
    Spinazzi R, Andreis PG, Rossi GP, Nussdorfer GG. Orexins in the regulation of the hypothalamic-pituitary-adrenal axis. Pharmacol Rev. 2006;58(1):46–57. doi: 10.1124/pr.58.1.4.PubMedCrossRefGoogle Scholar
  133. 133.
    Kayaba Y, Nakamura A, Kasuya Y, Ohuchi T, Yanagisawa M, Komuro I, et al. Attenuated defense response and low basal blood pressure in orexin knockout mice. Am J Physiol Regul, Integr Comp Physiol. 2003;285(3):R581–93. doi: 10.1152/ajpregu.00671.2002.CrossRefGoogle Scholar
  134. 134.
    Salomon RM, Ripley B, Kennedy JS, Johnson B, Schmidt D, Zeitzer JM, et al. Diurnal variation of cerebrospinal fluid hypocretin-1 (orexin-A) levels in control and depressed subjects. Biol Psychiatry. 2003;54(2):96–104.PubMedCrossRefGoogle Scholar
  135. 135.
    Thompson JL, Borgland SL. A role for hypocretin/orexin in motivation. Behav Brain Res. 2011;217(2):446–53. doi: 10.1016/j.bbr.2010.09.028.PubMedCrossRefGoogle Scholar
  136. 136.
    Hopf FW, Seif T, Chung S, Civelli O. MCH and apomorphine in combination enhance action potential firing of nucleus accumbens shell neurons in vitro. Peer J. 2013;1, e61. doi: 10.7717/peerj.61.PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Leinninger GM. Lateral thinking about leptin: a review of leptin action via the lateral hypothalamus. Physiol Behav. 2011;104(4):572–81. doi: 10.1016/j.physbeh.2011.04.060.PubMedCentralPubMedCrossRefGoogle Scholar
  138. 138.•
    Bonnavion P, Jackson AC, Carter ME, de Lecea L. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat Commun. 2015;6:6266. doi: 10.1038/ncomms7266. Dysfunction of leptin and orexin interactions contribute to hyperarousal, altered metabolism states and abnormal stress response.PubMedCentralPubMedCrossRefGoogle Scholar
  139. 139.
    Deurveilher S, Semba K. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience. 2005;130(1):165–83. doi: 10.1016/j.neuroscience.2004.08.030.PubMedCrossRefGoogle Scholar
  140. 140.••
    Tsujino N, Sakurai T. Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci. 2013;7:28. doi: 10.3389/fnbeh.2013.00028. Role of orexin neurons in regulating sleep/wake states, feeding behavior, energy homeostasis, emotion, reward processes and stress-related behavior.PubMedCentralPubMedCrossRefGoogle Scholar
  141. 141.
    Selbach O, Haas HL. Hypocretins: the timing of sleep and waking. Chronobiol Int. 2006;23(1–2):63–70. doi: 10.1080/07420520500545961.PubMedCrossRefGoogle Scholar
  142. 142.
    Burdakov D. Electrical signaling in central orexin/hypocretin circuits: tuning arousal and appetite to fit the environment. Neuroscientist : Rev J Neurobiol, Neurol Psychiatry. 2004;10(4):286–91. doi: 10.1177/1073858404263597.CrossRefGoogle Scholar
  143. 143.
    Kalsbeek A, Bruinstroop E, Yi CX, Klieverik LP, La Fleur SE, Fliers E. Hypothalamic control of energy metabolism via the autonomic nervous system. Ann N Y Acad Sci. 2010;1212:114–29. doi: 10.1111/j.1749-6632.2010.05800.x.PubMedCrossRefGoogle Scholar
  144. 144.
    Adamantidis A, de Lecea L. The hypocretins as sensors for metabolism and arousal. J Physiol. 2009;587(Pt 1):33–40. doi: 10.1113/jphysiol.2008.164400.PubMedCentralPubMedCrossRefGoogle Scholar
  145. 145.
    Boutrel B, Cannella N, de Lecea L. The role of hypocretin in driving arousal and goal-oriented behaviors. Brain Res. 2010;1314:103–11. doi: 10.1016/j.brainres.2009.11.054.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Rita Barandas
    • 1
    • 2
    • 3
    • 4
  • Dominic Landgraf
    • 3
    • 4
  • Michael J. McCarthy
    • 3
    • 4
  • David K. Welsh
    • 3
    • 4
  1. 1.Department of PsychiatryHospital de Santa Maria, Centro Hospitalar Lisboa NorteLisbonPortugal
  2. 2.Faculty of MedicineUniversity of LisbonLisbonPortugal
  3. 3.VA San Diego Healthcare System Psychiatry ServiceLa JollaUSA
  4. 4.Department of Psychiatry and Center for Circadian BiologyUniversity of CaliforniaLa JollaUSA

Personalised recommendations