Advertisement

Current Psychiatry Reports

, 17:87 | Cite as

Premenstrual Dysphoric Disorder: Epidemiology and Treatment

  • Liisa Hantsoo
  • C. Neill Epperson
Women's Mental Health (CN Epperson, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Women's Mental Health

Abstract

Recently designated as a disorder in the DSM-5, premenstrual dysphoric disorder (PMDD) presents an array of avenues for further research. PMDD’s profile, characterized by cognitive–affective symptoms during the premenstruum, is unique from that of other affective disorders in its symptoms and cyclicity. Neurosteroids may be a key contributor to PMDD’s clinical presentation and etiology, and represent a potential avenue for drug development. This review will present recent literature on potential contributors to PMDD’s pathophysiology, including neurosteroids and stress, and explore potential treatment targets.

Keywords

Premenstrual Menstrual cycle PMS PMDD GABA 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Liisa Hantsoo declares that she has no conflict of interest. Her current research supported by P50 MH099910.

Dr. Epperson has received grant funding from Shire Plc, has been a consultant for Forest Laboratories, and has personal investments in Pfizer, Johnson & Johnson, Merck, Abbott and Abbvie. Current research supported by P50 MH099910.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Dennerstein L, Lehert P, Heinemann K. Epidemiology of premenstrual symptoms and disorders. Menopause Int. 2012;18:48–51.PubMedGoogle Scholar
  2. 2.
    Epperson C, Steiner M, Hartlage SA, Eriksson E, Schmidt PJ, Jones I, et al. Premenstrual dysphoric disorder: evidence for a new category for DSM-5. Am J Psychiatry. 2012;169:465–75.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    American Psychiatric Assn A. Diagnostic and statistical manual of mental disorders (5th ed.). 5th ed. Arlington: American Psychiatric Publishing; 2013.Google Scholar
  4. 4.
    Hartlage SA, Freels S, Gotman N, Yonkers K. Criteria for premenstrual dysphoric disorder: secondary analyses of relevant data sets. Arch Gen Psychiatry. 2012;69:300–5.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Freeman EW, Halberstadt SM, Rickels K, Legler JM, Lin H, Sammel MD. Core symptoms that discriminate premenstrual syndrome. J Womens Health (Larchmt). 2011;20:29–35.CrossRefGoogle Scholar
  6. 6.
    Endicott J, Nee J, Harrison W. Daily record of severity of problems (DRSP): reliability and validity. Arch Womens Ment Health. 2006;9:41–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Feuerstein M, Shaw WS. Measurement properties of the calendar of premenstrual experience in patients with premenstrual syndrome. J Reprod Med. 2002;47:279–89.PubMedGoogle Scholar
  8. 8.
    Allen SS, McBride CM, Pirie PL. The shortened premenstrual assessment form. J Reprod Med. 1991;36:769–72.PubMedGoogle Scholar
  9. 9.
    O’Brien PMS, Bäckström T, Brown C, Dennerstein L, Endicott J, Epperson CN, et al. Towards a consensus on diagnostic criteria, measurement and trial design of the premenstrual disorders: the ISPMD Montreal consensus. Arch Womens Ment Health. 2011;14:13–21.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    ACOG: ACOG Practice Bulletin. Premenstrual syndrome. Clinical management guidelines for obsetrician-gynecologists. Int J Obstet Gynecol. 2001;73:183–91.CrossRefGoogle Scholar
  11. 11.
    WHO WHO. The ICD-1 classification of mental, behavioral and developmental disorders. 10th revision (2nd ed.). Geneva, Switzerland; 2004.Google Scholar
  12. 12.
    Smith SS, Ruderman Y, Frye C, Homanics G, Yuan M. Steroid withdrawal in the mouse results in anxiogenic effects of 3alpha,5beta-THP: a possible model of premenstrual dysphoric disorder. Psychopharmacology (Berl). 2006;186:323–33.CrossRefGoogle Scholar
  13. 13.
    Li Y, Pehrson AL, Budac DP, Sánchez C, Gulinello M. A rodent model of premenstrual dysphoria: progesterone withdrawal induces depression-like behavior that is differentially sensitive to classes of antidepressants. Behav Brain Res. 2012;234:238–47.PubMedCrossRefGoogle Scholar
  14. 14.
    Schneider T, Popik P. An animal model of premenstrual dysphoric disorder sensitive to antidepressants. Curr Protoc Neurosci. 2009; Chapter 9:Unit 9.31Google Scholar
  15. 15.
    Bäckström T, Haage D, Löfgren M, Johansson IM, Strömberg J, Nyberg S, et al. Paradoxical effects of GABA-A modulators may explain sex steroid induced negative mood symptoms in some persons. Neuroscience. 2011;191:46–54.PubMedCrossRefGoogle Scholar
  16. 16.••
    Schüle C, Nothdurfter C, Rupprecht R. The role of allopregnanolone in depression and anxiety. Prog Neurobiol. 2014;113:79–87. Review article summarizing the importance of allopregnanolone in emotion regulation, potential for therapeutic use in depression and anxiety via GABAergic mechanisms, enhancement of neurogenesis, myelination, neuroprotection, and regulatory effects on HPA axis.PubMedCrossRefGoogle Scholar
  17. 17.
    Nelson M, Pinna G. S-norfluoxetine microinfused into the basolateral amygdala increases allopregnanolone levels and reduces aggression in socially isolated mice. Neuropharmacology. 2011;60:1154–9.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Shanmugan S, Epperson CN. Estrogen and the prefrontal cortex: towards a new understanding of estrogen’s effects on executive functions in the menopause transition. Hum Brain Mapp. 2014;35:847–65.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kugaya A, Epperson CN, Zoghbi S, van Dyck CH, Hou Y, Fujita M, et al. Increase in prefrontal cortex serotonin 2A receptors following estrogen treatment in postmenopausal women. Am J Psychiatry. 2003;160:1522–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Fink G, Sumner BE, McQueen JK, Wilson H, Rosie R. Sex steroid control of mood, mental state and memory. Clin Exp Pharmacol Physiol. 1998;25:764–75.PubMedCrossRefGoogle Scholar
  21. 21.
    Rehavi M, Goldin M, Roz N, Weizman A. Regulation of rat brain vesicular monoamine transporter by chronic treatment with ovarian hormones. Brain Res Mol Brain Res. 1998;57:31–7.PubMedCrossRefGoogle Scholar
  22. 22.
    McQueen JK, Wilson H, Fink G. Estradiol-17 beta increases serotonin transporter (SERT) mRNA levels and the density of SERT-binding sites in female rat brain. Brain Res Mol Brain Res. 1997;45:13–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Bertrand PP, Paranavitane UT, Chavez C, Gogos A, Jones M, van den Buuse M. The effect of low estrogen state on serotonin transporter function in mouse hippocampus: a behavioral and electrochemical study. Brain Res. 2005;1064:10–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Gundlah C, Lu NZ, Bethea CL. Ovarian steroid regulation of monoamine oxidase-A and -B mRNAs in the macaque dorsal raphe and hypothalamic nuclei. Psychopharmacology (Berlin). 2002;160:271–82.CrossRefGoogle Scholar
  25. 25.
    Schendzielorz N, Rysa A, Reenila I, Raasmaja A, Mannisto PT. Complex estrogenic regulation of catechol-O-methyltransferase (COMT) in rats. J Physiol Pharmacol. 2011;62:483–90.PubMedGoogle Scholar
  26. 26.
    Aguirre CC, Baudry M. Progesterone reverses 17beta-estradiol-mediated neuroprotection and BDNF induction in cultured hippocampal slices. Eur J Neurosci. 2009;29:447–54.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Bimonte-Nelson HA, Nelson ME, Granholm A-CE. Progesterone counteracts estrogen-induced increases in neurotrophins in the aged female rat brain. Neuroreport. 2004;15:2659–63.PubMedCrossRefGoogle Scholar
  28. 28.
    Rapkin AJ, Edelmuth E, Chang LC, Reading AE, McGuire MT, Su TP. Whole-blood serotonin in premenstrual syndrome. Obstet Gynecol. 1987;70:533–7.PubMedGoogle Scholar
  29. 29.
    Rasgon N, McGuire M, Tanavoli S, Fairbanks L, Rapkin A. Neuroendocrine response to an intravenous L-tryptophan challenge in women with premenstrual syndrome. Fertil Steril. 2000;73:144–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Menkes DB, Coates DC, Fawcett JP. Acute tryptophan depletion aggravates premenstrual syndrome. J Affect Disord. 1994;32:37–44.PubMedCrossRefGoogle Scholar
  31. 31.
    Huo L, Straub RE, Roca C, Schmidt PJ, Shi K, Vakkalanka R, et al. Risk for premenstrual dysphoric disorder is associated with genetic variation in ESR1, the estrogen receptor alpha gene. Biol Psychiatry. 2007;62:925–33.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Dhingra V, Magnay JL, O’Brien PMS, Chapman G, Fryer AA, Ismail KMK. Serotonin receptor 1A C(-1019)G polymorphism associated with premenstrual dysphoric disorder. Obstet Gynecol. 2007;110:788–92.PubMedCrossRefGoogle Scholar
  33. 33.
    Gingnell M, Comasco E, Oreland L, Fredrikson M, Sundström-Poromaa I. Neuroticism-related personality traits are related to symptom severity in patients with premenstrual dysphoric disorder and to the serotonin transporter gene-linked polymorphism 5-HTTPLPR. Arch Womens Ment Health. 2010;13:417–23.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Magnay JL, El-Shourbagy M, Fryer AA, O’Brien S, Ismail KMK. Analysis of the serotonin transporter promoter rs25531 polymorphism in premenstrual dysphoric disorder. Am J Obstet Gynecol. 2010;203:181. e1–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Gray JD, Milner TA, McEwen BS. Dynamic plasticity: the role of glucocorticoids, brain-derived neurotrophic factor and other trophic factors. Neuroscience. 2013;239:214–27.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Colle R, Gressier F, Verstuyft C, Deflesselle E, Lépine J-P, Ferreri F, et al. Brain-derived neurotrophic factor Val66Met polymorphism and 6-month antidepressant remission in depressed Caucasian patients. J Affect Disord. 2015;175:233–40.PubMedCrossRefGoogle Scholar
  37. 37.
    Harrisberger F, Smieskova R, Schmidt A, Lenz C, Walter A, Wittfeld K, et al. BDNF Val66Met polymorphism and hippocampal volume in neuropsychiatric disorders: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2015;55:107–18.PubMedCrossRefGoogle Scholar
  38. 38.
    Elfving B, Buttenschøn HN, Foldager L, Poulsen PHP, Andersen JH, Grynderup MB, et al. Depression, the Val66Met polymorphism, age, and gender influence the serum BDNF level. J Psychiatr Res. 2012;46:1118–25.PubMedCrossRefGoogle Scholar
  39. 39.
    Carbone DL, Handa RJ. Sex and stress hormone influences on the expression and activity of brain-derived neurotrophic factor. Neuroscience. 2013;239:295–303.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Pilar-Cuéllar F, Vidal R, Pazos A. Subchronic treatment with fluoxetine and ketanserin increases hippocampal brain-derived neurotrophic factor, β-catenin and antidepressant-like effects. Br J Pharmacol. 2012;165:1046–57.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Deuschle M, Gilles M, Scharnholz B, Lederbogen F, Lang UE, Hellweg R. Changes of serum concentrations of brain-derived neurotrophic factor (BDNF) during treatment with venlafaxine and mirtazapine: role of medication and response to treatment. Pharmacopsychiatry. 2013;46:54–8.PubMedGoogle Scholar
  42. 42.••
    Comasco E, Hahn A, Ganger S, Gingnell M, Bannbers E, Oreland L, et al. Emotional fronto-cingulate cortex activation and brain derived neurotrophic factor polymorphism in premenstrual dysphoric disorder. Hum Brain Mapp. 2014;35:4450–8. PMDD women with the BDNF Val66Met Met allele had lower fronto-cingulate cortex activation during the luteal phase compared to female controls with the Met allele.PubMedCrossRefGoogle Scholar
  43. 43.
    Oral E, Kirkan TS, Yildirim A, Kotan Z, Cansever Z, Ozcan H, et al. Serum brain-derived neurotrophic factor differences between the luteal and follicular phases in premenstrual dysphoric disorder. Gen Hosp Psychiatry. 2015;37:266–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Cubeddu A, Bucci F, Giannini A, Russo M, Daino D, Russo N, et al. Brain-derived neurotrophic factor plasma variation during the different phases of the menstrual cycle in women with premenstrual syndrome. Psychoneuroendocrinology. 2011;36:523–30.PubMedCrossRefGoogle Scholar
  45. 45.
    Pilver CE, Levy BR, Libby DJ, Desai RA. Posttraumatic stress disorder and trauma characteristics are correlates of premenstrual dysphoric disorder. Arch Womens Ment Health. 2011;14:383–93.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.••
    Bertone-Johnson ER, Whitcomb BW, Missmer SA, Manson JE, Hankinson SE, Rich-Edwards JW. Early life emotional, physical, and sexual abuse and the development of premenstrual syndrome: a longitudinal study. J Womens Health (Larchmt). 2014;23:729–39. History of emotional and physical abuse were strongly correlated with moderate to severe PMS.CrossRefGoogle Scholar
  47. 47.
    Segebladh B, Bannbers E, Kask K, Nyberg S, Bixo M, Heimer G, et al. Prevalence of violence exposure in women with premenstrual dysphoric disorder in comparison with other gynecological patients and asymptomatic controls. Acta Obstet Gynecol Scand. 2011;90:746–52.PubMedCrossRefGoogle Scholar
  48. 48.
    Klatzkin RR, Morrow AL, Light KC, Pedersen CA, Girdler SS. Associations of histories of depression and PMDD diagnosis with allopregnanolone concentrations following the oral administration of micronized progesterone. Psychoneuroendocrinology. 2006;31:1208–19.PubMedCrossRefGoogle Scholar
  49. 49.
    Crowley SK, Girdler SS. Neurosteroid, GABAergic and hypothalamic pituitary adrenal (HPA) axis regulation: what is the current state of knowledge in humans? Psychopharmacology (Berl). 2014;231:3619–34.CrossRefGoogle Scholar
  50. 50.
    Girdler SS, Straneva PA, Light KC, Pedersen CA, Morrow AL. Allopregnanolone levels and reactivity to mental stress in premenstrual dysphoric disorder. Biol Psychiatry. 2001;49:788–97.PubMedCrossRefGoogle Scholar
  51. 51.
    Serra M, Sanna E, Mostallino MC, Biggio G. Social isolation stress and neuroactive steroids. Eur Neuropsychopharmacol. 2007;17:1–11.PubMedCrossRefGoogle Scholar
  52. 52.
    Evans J, Sun Y, McGregor A, Connor B. Allopregnanolone regulates neurogenesis and depressive/anxiety-like behaviour in a social isolation rodent model of chronic stress. Neuropharmacology. 2012;63:1315–26.PubMedCrossRefGoogle Scholar
  53. 53.
    Porcu P, O’Buckley TK, Alward SE, Marx CE, Shampine LJ, Girdler SS, et al. Simultaneous quantification of GABAergic 3alpha,5alpha/3alpha,5beta neuroactive steroids in human and rat serum. Steroids. 2009;74:463–73.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.•
    Wium-Andersen MK, Orsted DD, Nielsen SF, Nordestgaard BG. Elevated C-reactive protein levels, psychological distress, and depression in 73, 131 individuals. JAMA Psychiatry. 2013;70:176–84. Large-scale study that found elevated CRP was associated with increased risk for depression in the general population.PubMedCrossRefGoogle Scholar
  55. 55.
    O’Brien SM, Fitzgerald P, Scully P, Landers A, Scott LV, Dinan TG. Impact of gender and menstrual cycle phase on plasma cytokine concentrations. Neuroimmunomodulation. 2007;14:84–90.PubMedCrossRefGoogle Scholar
  56. 56.
    Northoff H, Symons S, Zieker D, Schaible EV, Schäfer K, Thoma S, et al. Gender- and menstrual phase dependent regulation of inflammatory gene expression in response to aerobic exercise. Exerc Immunol Rev. 2008;14:86–103.PubMedGoogle Scholar
  57. 57.
    Gaskins AJ, Wilchesky M, Mumford SL, Whitcomb BW, Browne RW, Wactawski-Wende J, et al. Endogenous reproductive hormones and C-reactive protein across the menstrual cycle: the BioCycle study. Am J Epidemiol. 2012;175:423–31.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Wander K, Brindle E, O’Connor KA. C-reactive protein across the menstrual cycle. Am J Phys Anthropol. 2008;136:138–46.PubMedCrossRefGoogle Scholar
  59. 59.
    Puder JJ, Blum CA, Mueller B, De Geyter C, Dye L, Keller U. Menstrual cycle symptoms are associated with changes in low-grade inflammation. Eur J Clin Investig. 2006;36:58–64.CrossRefGoogle Scholar
  60. 60.
    Jane Z-Y, Chang C-C, Lin H-K, Liu Y-C, Chen W-L. The association between the exacerbation of irritable bowel syndrome and menstrual symptoms in young Taiwanese women. Gastroenterol Nurs. 2011;34:277–86.PubMedCrossRefGoogle Scholar
  61. 61.
    Kane SV, Sable K, Hanauer SB. The menstrual cycle and its effect on inflammatory bowel disease and irritable bowel syndrome: a prevalence study. Am J Gastroenterol. 1998;93:1867–72.PubMedCrossRefGoogle Scholar
  62. 62.
    Shourie V, Dwarakanath CD, Prashanth GV, Alampalli RV, Padmanabhan S, Bali S. The effect of menstrual cycle on periodontal health—a clinical and microbiological study. Oral Health Prev Dent. 2012;10:185–92.PubMedGoogle Scholar
  63. 63.
    Bertone-Johnson ER, Ronnenberg AG, Houghton SC, Nobles C, Zagarins SE, Takashima-Uebelhoer BB, et al. Association of inflammation markers with menstrual symptom severity and premenstrual syndrome in young women. Hum Reprod. 2014;29:1987–94.PubMedCrossRefGoogle Scholar
  64. 64.•
    Berman SM, London ED, Morgan M, Rapkin AJ. Elevated gray matter volume of the emotional cerebellum in women with premenstrual dysphoric disorder. J Affect Disord. 2013;146:266–71. Women with PMDD had greater gray matter volume in the posterior cerebellum compared with controls.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Jeong H-G, Ham B-J, Yeo HB, Jung I-K, Joe S-H. Gray matter abnormalities in patients with premenstrual dysphoric disorder: an optimized voxel-based morphometry. J Affect Disord. 2012;140:260–7.PubMedCrossRefGoogle Scholar
  66. 66.••
    Ossewaarde L, van Wingen GA, Rijpkema M, Bäckström T, Hermans EJ, Fernández G. Menstrual cycle-related changes in amygdala morphology are associated with changes in stress sensitivity. Hum Brain Mapp. 2013;34:1187–93. Among non-PMDD women, gray matter volume in the dorsal left amygdala increased during the luteal phase compared with the follicular phase; this volume increase positively correlated with stress-induced negative affect.PubMedCrossRefGoogle Scholar
  67. 67.
    Protopopescu X, Tuescher O, Pan H, Epstein J, Root J, Chang L, et al. Toward a functional neuroanatomy of premenstrual dysphoric disorder. J Affect Disord. 2008;108:87–94.PubMedCrossRefGoogle Scholar
  68. 68.
    Gingnell M, Morell A, Bannbers E, Wikström J, Sundström Poromaa I. Menstrual cycle effects on amygdala reactivity to emotional stimulation in premenstrual dysphoric disorder. Horm Behav. 2012;62:400–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Epperson CN, Haga K, Mason GF, Sellers E, Gueorguieva R, Zhang W, et al. Cortical gamma-aminobutyric acid levels across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry. 2002;59:851–8.PubMedCrossRefGoogle Scholar
  70. 70.••
    Liu B, Wang G, Gao D, Gao F, Zhao B, Qiao M, et al. Alterations of GABA and glutamate-glutamine levels in premenstrual dysphoric disorder: a 3T proton magnetic resonance spectroscopy study. Psychiatry Res. 2015;231:64–70. Significantly lower GABA concentrations in the anterior cingulate cortex, medial prefrontal cortex and left basal ganglia of women with PMDD.PubMedCrossRefGoogle Scholar
  71. 71.••
    Gingnell M, Bannbers E, Wikström J, Fredrikson M, Sundström-Poromaa I. Premenstrual dysphoric disorder and prefrontal reactivity during anticipation of emotional stimuli. Eur Neuropsychopharmacol. 2013;23:1474–83. PMDD women showed enhanced dorsolateral prefrontal cortex reactivity during the anticipation of negative stimuli during the luteal phase, which was positively correlated with progesterone levels.PubMedCrossRefGoogle Scholar
  72. 72.••
    Baller EB, Wei S-M, Kohn PD, Rubinow DR, Alarcón G, Schmidt PJ, et al. Abnormalities of dorsolateral prefrontal function in women with premenstrual dysphoric disorder: a multimodal neuroimaging study. Am J Psychiatry. 2013;170:305–14. PMDD patients showed greater dorsolateral prefrontal cortex activation than control subjects, which may represent a risk factor for PMDD.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Epperson C, Pittman B, Czarkowski KA, Stiklus S, Krystal JH, Grillon C. Luteal-phase accentuation of acoustic startle response in women with premenstrual dysphoric disorder. Neuropsychopharmacology. 2007;32:2190–8.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Kask K, Gulinello M, Bäckström T, Geyer MA, Sundström-Poromaa I. Patients with premenstrual dysphoric disorder have increased startle response across both cycle phases and lower levels of prepulse inhibition during the late luteal phase of the menstrual cycle. Neuropsychopharmacology. 2008;33:2283–90.PubMedCrossRefGoogle Scholar
  75. 75.
    Huang Y, Zhou R, Wu M, Wang Q, Zhao Y. Premenstrual syndrome is associated with blunted cortisol reactivity to the TSST. Stress. 2015;1–9.Google Scholar
  76. 76.
    Lee EE, Nieman LK, Martinez PE, Harsh VL, Rubinow DR, Schmidt PJ. ACTH and cortisol response to Dex/CRH testing in women with and without premenstrual dysphoria during GnRH agonist-induced hypogonadism and ovarian steroid replacement. J Clin Endocrinol Metab. 2012;97:1887–96.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.••
    Segebladh B, Bannbers E, Moby L, Nyberg S, Bixo M, Bäckström T, et al. Allopregnanolone serum concentrations and diurnal cortisol secretion in women with premenstrual dysphoric disorder. Arch Womens Ment Health. 2013. PMDD women with high serum levels of ALLO had blunted cortisol.Google Scholar
  78. 78.
    Maeng LY, Milad MR. Sex differences in anxiety disorders: interactions between fear, stress, and gonadal hormones. Horm Behav. 2015.Google Scholar
  79. 79.
    Brown J, O’Brien PMS, Marjoribanks J, Wyatt K. Selective serotonin reuptake inhibitors for premenstrual syndrome. Cochrane Database Syst Rev. 2009; CD001396.Google Scholar
  80. 80.
    Shah NR, Jones JB, Aperi J, Shemtov R, Karne A, Borenstein J. Selective serotonin reuptake inhibitors for premenstrual syndrome and premenstrual dysphoric disorder: a meta-analysis. Obstet Gynecol. 2008;111:1175–82.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.••
    Marjoribanks J, Brown J, O’Brien PMS, Wyatt K. Selective serotonin reuptake inhibitors for premenstrual syndrome. Cochrane Database Syst Rev. 2013;6:CD001396. Cochrane review finding that SSRIs are effective in reducing premenstrual symptoms with luteal or continuous dosing.PubMedGoogle Scholar
  82. 82.
    Kleinstäuber M, Witthöft M, Hiller W. Cognitive-behavioral and pharmacological interventions for premenstrual syndrome or premenstrual dysphoric disorder: a meta-analysis. J Clin Psychol Med Settings. 2012;19:308–19.PubMedCrossRefGoogle Scholar
  83. 83.
    Halbreich U. Selective serotonin reuptake inhibitors and initial oral contraceptives for the treatment of PMDD: effective but not enough. CNS Spectr. 2008;13:566–72.PubMedCrossRefGoogle Scholar
  84. 84.
    Landén M, Thase ME. A model to explain the therapeutic effects of serotonin reuptake inhibitors: the role of 5-HT2 receptors. Psychopharmacol Bull. 2006;39:147–66.PubMedGoogle Scholar
  85. 85.
    Steinberg EM, Cardoso GMP, Martinez PE, Rubinow DR, Schmidt PJ. Rapid response to fluoxetine in women with premenstrual dysphoric disorder. Depress Anxiety. 2012;29:531–40.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Griffin LD, Mellon SH. Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. Proc Natl Acad Sci U S A. 1999;96:13512–7.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Trauger JW, Jiang A, Stearns BA, LoGrasso PV. Kinetics of allopregnanolone formation catalyzed by human 3 alpha-hydroxysteroid dehydrogenase type III (AKR1C2). Biochemistry. 2002;41:13451–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Freeman EW. Luteal phase administration of agents for the treatment of premenstrual dysphoric disorder. CNS Drugs. 2004;18:453–68.PubMedCrossRefGoogle Scholar
  89. 89.
    Kornstein SG, Pearlstein TB, Fayyad R, Farfel GM, Gillespie JA. Low-dose sertraline in the treatment of moderate-to-severe premenstrual syndrome: efficacy of 3 dosing strategies. J Clin Psychiatry. 2006;67:1624–32.PubMedCrossRefGoogle Scholar
  90. 90.
    Landén M, Nissbrandt H, Allgulander C, Sörvik K, Ysander C, Eriksson E. Placebo-controlled trial comparing intermittent and continuous paroxetine in premenstrual dysphoric disorder. Neuropsychopharmacology. 2007;32:153–61.PubMedCrossRefGoogle Scholar
  91. 91.
    Ravindran LN, Woods S-A, Steiner M, Ravindran AV. Symptom-onset dosing with citalopram in the treatment of premenstrual dysphoric disorder (PMDD): a case series. Arch Womens Ment Health. 2007;10:125–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Yonkers KA, Holthausen GA, Poschman K, Howell HB. Symptom-onset treatment for women with premenstrual dysphoric disorder. J Clin Psychopharmacol. 2006;26:198–202.PubMedCrossRefGoogle Scholar
  93. 93.
    Freeman EW, Sondheimer SJ, Sammel MD, Ferdousi T, Lin H. A preliminary study of luteal phase versus symptom-onset dosing with escitalopram for premenstrual dysphoric disorder. J Clin Psychiatry. 2005;66:769–73.PubMedCrossRefGoogle Scholar
  94. 94.•
    Lovick T. SSRIs and the female brain—potential for utilizing steroid-stimulating properties to treat menstrual cycle-linked dysphorias. J Psychopharmacol (Oxford). 2013;27:1180–5. Proposes steroid-stimulating properties of SSRIs offer opportunities for new treatments for menstrual cycle-linked disorders in women.CrossRefGoogle Scholar
  95. 95.
    Cunningham J, Yonkers KA, O’Brien S, Eriksson E. Update on research and treatment of premenstrual dysphoric disorder. Harv Rev Psychiatry. 2009;17:120–37.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Lopez LM, Kaptein AA, Helmerhorst FM. Oral contraceptives containing drospirenone for premenstrual syndrome. Cochrane Database Syst Rev. 2012;2:CD006586.PubMedGoogle Scholar
  97. 97.
    Freeman EW, Halbreich U, Grubb GS, Rapkin AJ, Skouby SO, Smith L, et al. An overview of four studies of a continuous oral contraceptive (levonorgestrel 90 mcg/ethinyl estradiol 20 mcg) on premenstrual dysphoric disorder and premenstrual syndrome. Contraception. 2012;85:437–45.PubMedCrossRefGoogle Scholar
  98. 98.
    Ford O, Lethaby A, Roberts H, Mol BWJ. Progesterone for premenstrual syndrome. Cochrane Database Syst Rev. 2012;3:CD003415.PubMedGoogle Scholar
  99. 99.
    Pincus SM, Alam S, Rubinow DR, Bhuvaneswar CG, Schmidt PJ. Predicting response to leuprolide of women with premenstrual dysphoric disorder by daily mood rating dynamics. J Psychiatr Res. 2011;45:386–94.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Freeman EW, Sondheimer SJ, Rickels K. Gonadotropin-releasing hormone agonist in the treatment of premenstrual symptoms with and without ongoing dysphoria: a controlled study. Psychopharmacol Bull. 1997;33:303–9.PubMedGoogle Scholar
  101. 101.
    Wyatt KM, Dimmock PW, Ismail KMK, Jones PW, O’Brien PMS. The effectiveness of GnRHa with and without “add-back” therapy in treating premenstrual syndrome: a meta analysis. BJOG. 2004;111:585–93.PubMedCrossRefGoogle Scholar
  102. 102.
    Busse JW, Montori VM, Krasnik C, Patelis-Siotis I, Guyatt GH. Psychological intervention for premenstrual syndrome: a meta-analysis of randomized controlled trials. Psychother Psychosom. 2009;78:6–15.PubMedCrossRefGoogle Scholar
  103. 103.
    Lustyk MKB, Gerrish WG, Shaver S, Keys SL. Cognitive-behavioral therapy for premenstrual syndrome and premenstrual dysphoric disorder: a systematic review. Arch Womens Ment Health. 2009;12:85–96.PubMedCrossRefGoogle Scholar
  104. 104.•
    Kim DR, Hantsoo L, Thase ME, Sammel M, Epperson CN. Computer-assisted cognitive behavioral therapy for pregnant women with major depressive disorder. J Womens Health (Larchmt). 2014;23:842–8. Internet-based cognitive-behavioral therapy reduces burden on the patient in female-specific affective disorder.CrossRefGoogle Scholar
  105. 105.•
    Kues JN, Janda C, Kleinstäuber M, Weise C. Internet-based cognitive behavioural self-help for premenstrual syndrome: study protocol for a randomised controlled trial. Trials. 2014;15:472. Proposed criteria for internet based CBT program for PMS/PMDD.PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.•
    Yonkers KA, Pearlstein TB, Gotman N. A pilot study to compare fluoxetine, calcium, and placebo in the treatment of premenstrual syndrome. J Clin Psychopharmacol. 2013;33:614–20. Placebo-controlled study showing calcium carbonate reduced PMS symptoms, but not to the degree of fluoxetine.PubMedCrossRefGoogle Scholar
  107. 107.•
    Sohrabi N, Kashanian M, Ghafoori SS, Malakouti SK. Evaluation of the effect of omega-3 fatty acids in the treatment of premenstrual syndrome: “a pilot trial.”. Complement Ther Med. 2013;21:141–6. A randomized double blind controlled trial showing that after 45 days of taking two grams omega-3 fatty acids daily, women with PMS showed decreased depression, anxiety, and cognitive symptoms.PubMedCrossRefGoogle Scholar
  108. 108.
    Dante G, Facchinetti F. Herbal treatments for alleviating premenstrual symptoms: a systematic review. J Psychosom Obstet Gynaecol. 2011;32:42–51.PubMedCrossRefGoogle Scholar
  109. 109.
    Daley A. Exercise and premenstrual symptomatology: a comprehensive review. J Womens Health (Larchmt). 2009;18:895–9.CrossRefGoogle Scholar
  110. 110.
    Bäckström T, Bixo M, Johansson M, Nyberg S, Ossewaarde L, Ragagnin G, et al. Allopregnanolone and mood disorders. Prog Neurobiol. 2014;113:88–94.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PsychiatryPenn Center for Women’s Behavioral WellnessPhiladelphiaUSA

Personalised recommendations