Current Psychiatry Reports

, 16:483 | Cite as

Circadian Clock and Stress Interactions in the Molecular Biology of Psychiatric Disorders

  • Dominic Landgraf
  • Michael J. McCarthy
  • David K. Welsh
Sleep Disorders (P Gehrman, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Sleep Disorders

Abstract

Many psychiatric disorders are characterized by circadian rhythm abnormalities, including disturbed sleep/wake cycles, changes in locomotor activity, and abnormal endocrine function. Animal models with mutations in circadian “clock genes” commonly show disturbances in reward processing, locomotor activity and novelty seeking behaviors, further supporting the idea of a connection between the circadian clock and psychiatric disorders. However, if circadian clock dysfunction is a common risk factor for multiple psychiatric disorders, it is unknown if and how these putative clock abnormalities could be expressed differently, and contribute to multiple, distinct phenotypes. One possible explanation is that the circadian clock modulates the biological responses to stressful environmental factors that vary with an individual’s experience. It is known that the circadian clock and the stress response systems are closely related: Circadian clock genes regulate the physiological sensitivity to and rhythmic release of glucocorticoids (GC). In turn, GCs have reciprocal effects on the clock. Since stressful life events or increased vulnerability to stress are risk factors for multiple psychiatric disorders, including post-traumatic stress disorder (PTSD), attention deficit hyperactivity disorder (ADHD), bipolar disorder (BD), major depressive disorder (MDD), alcohol use disorder (AUD) and schizophrenia (SCZ), we propose that modulation of the stress response is a common mechanism by which circadian clock genes affect these illnesses. Presently, we review how molecular components of the circadian clock may contribute to these six psychiatric disorders, and present the hypothesis that modulation of the stress response may constitute a common mechanism by which the circadian clock affects multiple psychiatric disorders.

Keywords

Circadian clock Stress Attention deficit hyperactivity disorder Alcohol use disorder Bipolar disorder Major depressive disorder Post-traumatic stress disorder Schizophrenia 

Notes

Acknowledgments

This work was supported by a Veterans Affairs Merit Award (1I01BX001146) to DKW, and a VA Career Development Award (1IK2BX001275) to MJM. The funders had no role in the analysis, decision to publish, or preparation of the manuscript.

Compliance with Ethics Guidelines

Conflict of Interest

Dominic Landgraf and Michael J. McCarthy have received a grant from the U.S. Department of Veterans Affairs for research on circadian rhythms and bipolar disorder.

David K. Welsh has received a grant from the U.S. Department of Veterans Affairs and consultancy fees from Orphagen Pharmaceuticals.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Daan S, Pittendrigh CS. A Functional analysis of circadian pacemakers in nocturnal rodents. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 1976;106(3):223–355.Google Scholar
  2. 2.
    Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49. doi:10.1146/annurev-physiol-021909-135821.PubMedGoogle Scholar
  3. 3.
    Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen SK, LeGates T, et al. Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron. 2010;67(1):49–60. doi:10.1016/j.neuron.2010.05.023.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science. 2012;338(6105):349–54. doi:10.1126/science.1226339.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Lowrey PL, Takahashi JS. Genetics of circadian rhythms in Mammalian model organisms. Adv Genet. 2011;74:175–230. doi:10.1016/B978-0-12-387690-4.00006-4.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Wulff K, Gatti S, Wettstein JG, Foster RG. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci. 2010;11(8):589–99. doi:10.1038/nrn2868.PubMedGoogle Scholar
  7. 7.
    Rosenberg R, Doghramji PP. Is shift work making your patient sick? Emerging theories and therapies for treating shift work disorder. Postgrad Med. 2011;123(5):106–15. doi:10.3810/pgm.2011.09.2465.PubMedGoogle Scholar
  8. 8.
    Katz G, Durst R, Zislin Y, Barel Y, Knobler HY. Psychiatric aspects of jet lag: review and hypothesis. Med Hypotheses. 2001;56(1):20–3. doi:10.1054/mehy.2000.1094.PubMedGoogle Scholar
  9. 9.
    Landgraf D, McCarthy MJ, Welsh DK. The Role of the Circadian Clock in Animal Models of Mood Disorders. Behav Neurosci. 2014. doi:10.1037/a0036029.PubMedGoogle Scholar
  10. 10.
    Carr CP, Martins CM, Stingel AM, Lemgruber VB, Juruena MF. The role of early life stress in adult psychiatric disorders: a systematic review according to childhood trauma subtypes. J Nerv Ment Dis. 2013;201(12):1007–20. doi:10.1097/NMD.0000000000000049.PubMedGoogle Scholar
  11. 11.
    Ouyang L, Fang X, Mercy J, Perou R, Grosse SD. Attention-deficit/hyperactivity disorder symptoms and child maltreatment: a population-based study. J Pediatr. 2008;153(6):851–6. doi:10.1016/j.jpeds.2008.06.002.PubMedGoogle Scholar
  12. 12.
    Lara C, Fayyad J, de Graaf R, Kessler RC, Aguilar-Gaxiola S, Angermeyer M, et al. Childhood predictors of adult attention-deficit/hyperactivity disorder: results from the World Health Organization World Mental Health Survey Initiative. Biol Psychiatry. 2009;65(1):46–54. doi:10.1016/j.biopsych.2008.10.005.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Brietzke E, Kauer Sant'anna M, Jackowski A, Grassi-Oliveira R, Bucker J, Zugman A, et al. Impact of childhood stress on psychopathology. Rev Bras Psiquiatr. 2012;34(4):480–8.PubMedGoogle Scholar
  14. 14.
    de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005;6(6):463–75. doi:10.1038/nrn1683.PubMedGoogle Scholar
  15. 15.
    Lecocq FR, Mebane D, Madison LL. The Acute Effect of Hydrocortisone on Hepatic Glucose Output and Peripheral Glucose Utilization. J Clin Invest. 1964;43:237–46. doi:10.1172/JCI104908.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Peckett AJ, Wright DC, Riddell MC. The effects of glucocorticoids on adipose tissue lipid metabolism. Metab Clin Exp. 2011;60(11):1500–10. doi:10.1016/j.metabol.2011.06.012.PubMedGoogle Scholar
  17. 17.
    Maniam J, Antoniadis C, Morris MJ. Early-Life Stress, HPA Axis Adaptation, and Mechanisms Contributing to Later Health Outcomes. Front Endocrinol. 2014;5:73. doi:10.3389/fendo.2014.00073.Google Scholar
  18. 18.
    Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry. 2000;57(10):925–35.PubMedGoogle Scholar
  19. 19.
    Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):2–13. doi:10.1016/j.mce.2010.04.005.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Carroll BJ. The dexamethasone suppression test for melancholia. Br J Psychiatr J Mental Sci. 1982;140:292–304.Google Scholar
  21. 21.
    Zhang J, Abdallah CG, Chen Y, Huang T, Huang Q, Xu C, et al. Behavioral deficits, abnormal corticosterone, and reduced prefrontal metabolites of adolescent rats subject to early life stress. Neurosci Lett. 2013;545:132–7. doi:10.1016/j.neulet.2013.04.035.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Nader N, Chrousos GP, Kino T. Interactions of the circadian CLOCK system and the HPA axis. Trends Endocrinol Metab TEM. 2010;21(5):277–86. doi:10.1016/j.tem.2009.12.011.Google Scholar
  23. 23.
    Kiessling S, Eichele G, Oster H. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J Clin Invest. 2010;120(7):2600–9. doi:10.1172/JCI41192.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Le Minh N, Damiola F, Tronche F, Schutz G, Schibler U. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J. 2001;20(24):7128–36. doi:10.1093/emboj/20.24.7128.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Kalsbeek A, van der Spek R, Lei J, Endert E, Buijs RM, Fliers E. Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis. Mol Cell Endocrinol. 2012;349(1):20–9. doi:10.1016/j.mce.2011.06.042.PubMedGoogle Scholar
  26. 26.
    Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, et al. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 2006;4(2):163–73. doi:10.1016/j.cmet.2006.07.002.PubMedGoogle Scholar
  27. 27.
    Charmandari E, Chrousos GP, Lambrou GI, Pavlaki A, Koide H, Ng SS, et al. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man. PLoS One. 2011;6(9):e25612. doi:10.1371/journal.pone.0025612.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Leliavski A, Shostak A, Husse J, Oster H. Impaired glucocorticoid production and response to stress in Arntl-deficient male mice. Endocrinology. 2014;155(1):133–42. doi:10.1210/en.2013-1531.PubMedGoogle Scholar
  29. 29.
    Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH, Jonker JW, et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature. 2011;480(7378):552–6. doi:10.1038/nature10700.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Dallmann R, Touma C, Palme R, Albrecht U, Steinlechner S. Impaired daily glucocorticoid rhythm in Per1 ( Brd ) mice. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006;192(7):769–75. doi:10.1007/s00359-006-0114-9.PubMedGoogle Scholar
  31. 31.
    Reddy TE, Pauli F, Sprouse RO, Neff NF, Newberry KM, Garabedian MJ, et al. Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation. Genome Res. 2009;19(12):2163–71. doi:10.1101/gr.097022.109.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Yan J, Wang H, Liu Y, Shao C. Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput Biol. 2008;4(10):e1000193. doi:10.1371/journal.pcbi.1000193.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Boyson CO, Holly EN, Shimamoto A, Albrechet-Souza L, Weiner LA, Debold JF, et al. Social Stress and CRF-Dopamine Interactions in the VTA: Role in Long-Term Escalation of Cocaine Self-Administration. J Neurosci Off J Soc Neurosci. 2014;34(19):6659–67. doi:10.1523/JNEUROSCI.3942-13.2014.Google Scholar
  34. 34.
    Parnaudeau S, Dongelmans ML, Turiault M, Ambroggi F, Delbes AS, Cansell C, et al. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine. Front Behav Neurosci. 2014;8:35. doi:10.3389/fnbeh.2014.00035.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Spanagel R, Pendyala G, Abarca C, Zghoul T, Sanchis-Segura C, Magnone MC, et al. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med. 2005;11(1):35–42. doi:10.1038/nm1163.PubMedGoogle Scholar
  36. 36.
    Holubova K, Nekovarova T, Pistovcakova J, Sulcova A, Stuchlik A, Vales K. Pregnanolone Glutamate, a Novel Use-Dependent NMDA Receptor Inhibitor, Exerts Antidepressant-Like Properties in Animal Models. Front Behav Neurosci. 2014;8:130. doi:10.3389/fnbeh.2014.00130.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Castaneda TR, de Prado BM, Prieto D, Mora F. Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light. J Pineal Res. 2004;36(3):177–85.PubMedGoogle Scholar
  38. 38.
    Wagner S, Castel M, Gainer H, Yarom Y. GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature. 1997;387(6633):598–603. doi:10.1038/42468.PubMedGoogle Scholar
  39. 39.
    Liu C, Reppert SM. GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron. 2000;25(1):123–8.PubMedGoogle Scholar
  40. 40.
    Di S, Maxson MM, Franco A, Tasker JG. Glucocorticoids regulate glutamate and GABA synapse-specific retrograde transmission via divergent nongenomic signaling pathways. J Neurosci Off J Soc Neurosci. 2009;29(2):393–401. doi:10.1523/JNEUROSCI.4546-08.2009.Google Scholar
  41. 41.
    Kitayama N, Vaccarino V, Kutner M, Weiss P, Bremner JD. Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: a meta-analysis. J Affect Disord. 2005;88(1):79–86. doi:10.1016/j.jad.2005.05.014.PubMedGoogle Scholar
  42. 42.
    Loh DH, Navarro J, Hagopian A, Wang LM, Deboer T, Colwell CS. Rapid changes in the light/dark cycle disrupt memory of conditioned fear in mice. PloS one. 2010;5(9):e12546. doi:10.1371/journal.pone.0012546.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Koenen KC, Saxe G, Purcell S, Smoller JW, Bartholomew D, Miller A, et al. Polymorphisms in FKBP5 are associated with peritraumatic dissociation in medically injured children. Mol Psychiatry. 2005;10(12):1058–9. doi:10.1038/sj.mp.4001727.PubMedGoogle Scholar
  44. 44.
    Roy A, Gorodetsky E, Yuan Q, Goldman D, Enoch MA. Interaction of FKBP5, a stress-related gene, with childhood trauma increases the risk for attempting suicide. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2010;35(8):1674–83. doi:10.1038/npp.2009.236.Google Scholar
  45. 45.
    Ising M, Depping AM, Siebertz A, Lucae S, Unschuld PG, Kloiber S, et al. Polymorphisms in the FKBP5 gene region modulate recovery from psychosocial stress in healthy controls. Eur J Neurosci. 2008;28(2):389–98. doi:10.1111/j.1460-9568.2008.06332.x.PubMedGoogle Scholar
  46. 46.
    Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Putz B, et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet. 2004;36(12):1319–25. doi:10.1038/ng1479.PubMedGoogle Scholar
  47. 47.
    Binder EB, Bradley RG, Liu W, Epstein MP, Deveau TC, Mercer KB, et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA J Am Med Assoc. 2008;299(11):1291–305. doi:10.1001/jama.299.11.1291.Google Scholar
  48. 48.
    Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelievre V, et al. Selective deficits in the circadian light response in mice lacking PACAP. Am J Physiol Regul Integr Comp Physiol. 2004;287(5):R1194–201. doi:10.1152/ajpregu.00268.2004.PubMedGoogle Scholar
  49. 49.
    Ressler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, Kerley K, et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature. 2011;470(7335):492–7. doi:10.1038/nature09856.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Almli LM, Mercer KB, Kerley K, Feng H, Bradley B, Conneely KN, et al. ADCYAP1R1 genotype associates with post-traumatic stress symptoms in highly traumatized African-American females. Am J Med Genet B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2013;162B(3):262–72. doi:10.1002/ajmg.b.32145.Google Scholar
  51. 51.
    Stevens JS, Almli LM, Fani N, Gutman DA, Bradley B, Norrholm SD, et al. PACAP receptor gene polymorphism impacts fear responses in the amygdala and hippocampus. Proc Natl Acad Sci U S A. 2014;111(8):3158–63. doi:10.1073/pnas.1318954111.PubMedPubMedCentralGoogle Scholar
  52. 52.•
    Logue MW, Baldwin C, Guffanti G, Melista E, Wolf EJ, Reardon AF, et al. A genome-wide association study of post-traumatic stress disorder identifies the retinoid-related orphan receptor alpha (RORA) gene as a significant risk locus. Mol Psychiatry. 2013;18(8):937–42. doi:10.1038/mp.2012.113. The first genome wide analysis of PTSD, revealed variant RORA as the strongest association. PubMedPubMedCentralGoogle Scholar
  53. 53.
    Amstadter AB, Sumner JA, Acierno R, Ruggiero KJ, Koenen KC, Kilpatrick DG, et al. Support for association of RORA variant and post traumatic stress symptoms in a population-based study of hurricane exposed adults. Mol Psychiatry. 2013;18(11):1148–9. doi:10.1038/mp.2012.189.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Garriock HA, Kraft JB, Shyn SI, Peters EJ, Yokoyama JS, Jenkins GD, et al. A genomewide association study of citalopram response in major depressive disorder. Biol Psychiatry. 2010;67(2):133–8. doi:10.1016/j.biopsych.2009.08.029.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Smith EN, Bloss CS, Badner JA, Barrett T, Belmonte PL, Berrettini W, et al. Genome-wide association study of bipolar disorder in European American and African American individuals. Mol Psychiatry. 2009;14(8):755–63. doi:10.1038/mp.2009.43.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Terracciano A, Tanaka T, Sutin AR, Sanna S, Deiana B, Lai S, et al. Genome-wide association scan of trait depression. Biol Psychiatry. 2010;68(9):811–7. doi:10.1016/j.biopsych.2010.06.030.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Nguyen A, Rauch TA, Pfeifer GP, Hu VW. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J Off Publ Fed Am Soc Exp Biol. 2010;24(8):3036–51. doi:10.1096/fj.10-154484.Google Scholar
  58. 58.
    McCarthy MJ, Nievergelt CM, Kelsoe JR, Welsh DK. A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response. PLoS One. 2012;7(2):e32091. doi:10.1371/journal.pone.0032091.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Antshel KM, Kaul P, Biederman J, Spencer TJ, Hier BO, Hendricks K, et al. Posttraumatic stress disorder in adult attention-deficit/hyperactivity disorder: clinical features and familial transmission. J Clin Psychiatry. 2013;74(3):e197–204. doi:10.4088/JCP.12m07698.PubMedGoogle Scholar
  60. 60.
    Peyre H, Hoertel N, Cortese S, Acquaviva E, De Maricourt P, Limosin F, et al. Attention-deficit/hyperactivity disorder symptom expression: a comparison of individual age at onset using item response theory. J Clin Psychiatry. 2014;75(4):386–92. doi:10.4088/JCP.13m08638.PubMedGoogle Scholar
  61. 61.
    Faraone SV, Biederman J, Mick E. The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies. Psychol Med. 2006;36(2):159–65. doi:10.1017/S003329170500471X.PubMedGoogle Scholar
  62. 62.
    Arns M, van der Heijden KB, Arnold LE, Kenemans JL. Geographic variation in the prevalence of attention-deficit/hyperactivity disorder: the sunny perspective. Biol Psychiatry. 2013;74(8):585–90. doi:10.1016/j.biopsych.2013.02.010.PubMedGoogle Scholar
  63. 63.
    Kissling C, Retz W, Wiemann S, Coogan AN, Clement RM, Hunnerkopf R, et al. A polymorphism at the 3'-untranslated region of the CLOCK gene is associated with adult attention-deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2008;147(3):333–8. doi:10.1002/ajmg.b.30602.Google Scholar
  64. 64.
    Xu X, Breen G, Chen CK, Huang YS, Wu YY, Asherson P. Association study between a polymorphism at the 3'-untranslated region of CLOCK gene and attention deficit hyperactivity disorder. Behav Brain Funct BBF. 2010;6:48. doi:10.1186/1744-9081-6-48.Google Scholar
  65. 65.
    Jeong SH, Yu JC, Lee CH, Choi KS, Choi JE, Kim SH, et al. Human CLOCK gene-associated attention deficit hyperactivity disorder-related features in healthy adults: quantitative association study using Wender Utah Rating Scale. Eur Arch Psychiatry Clin Neurosci. 2014;264(1):71–81. doi:10.1007/s00406-013-0443-y.PubMedGoogle Scholar
  66. 66.•
    Baird AL, Coogan AN, Siddiqui A, Donev RM, Thome J. Adult attention-deficit hyperactivity disorder is associated with alterations in circadian rhythms at the behavioural, endocrine and molecular levels. Mol Psychiatry. 2012;17(10):988–95. doi:10.1038/mp.2011.149. The first molecular characterization of clock gene expression in human patients with ADHD.PubMedGoogle Scholar
  67. 67.
    Zhou M, Rebholz H, Brocia C, Warner-Schmidt JL, Fienberg AA, Nairn AC, et al. Forebrain overexpression of CK1delta leads to down-regulation of dopamine receptors and altered locomotor activity reminiscent of ADHD. Proc Natl Acad Sci U S A. 2010;107(9):4401–6. doi:10.1073/pnas.0915173107.PubMedPubMedCentralGoogle Scholar
  68. 68.
    O'Keeffe SM, Thome J, Coogan AN. The noradrenaline reuptake inhibitor atomoxetine phase-shifts the circadian clock in mice. Neuroscience. 2012;201:219–30. doi:10.1016/j.neuroscience.2011.11.002.PubMedGoogle Scholar
  69. 69.
    Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2010;167(3):261–80. doi:10.1176/appi.ajp.2009.09030361.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Susser E, St Clair D, He L. Latent effects of prenatal malnutrition on adult health: the example of schizophrenia. Ann N Y Acad Sci. 2008;1136:185–92. doi:10.1196/annals.1425.024.PubMedGoogle Scholar
  71. 71.
    Cantor-Graae E, Selten JP. Schizophrenia and migration: a meta-analysis and review. Am J Psychiatry. 2005;162(1):12–24. doi:10.1176/appi.ajp.162.1.12.PubMedGoogle Scholar
  72. 72.
    Byrne EM, Heath AC, Madden PA, Pergadia ML, Hickie IB, Montgomery GW, et al. Testing the role of circadian genes in conferring risk for psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2014;165B(3):254–60. doi:10.1002/ajmg.b.32230.Google Scholar
  73. 73.
    Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014. doi:10.1038/nature13595. advance online publication.Google Scholar
  74. 74.
    Green EK, Hamshere M, Forty L, Gordon-Smith K, Fraser C, Russell E, et al. Replication of bipolar disorder susceptibility alleles and identification of two novel genome-wide significant associations in a new bipolar disorder case-control sample. Mol Psychiatry. 2013;18(12):1302–7. doi:10.1038/mp.2012.142.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Byrne EM, Gehrman PR, Medland SE, Nyholt DR, Heath AC, Madden PA, et al. A genome-wide association study of sleep habits and insomnia. Am J Med Genet B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2013;162B(5):439–51. doi:10.1002/ajmg.b.32168.Google Scholar
  76. 76.
    Colwell CS. Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus. Eur J Neurosci. 2000;12(2):571–6.PubMedGoogle Scholar
  77. 77.
    Lundkvist GB, Kwak Y, Davis EK, Tei H, Block GD. A calcium flux is required for circadian rhythm generation in mammalian pacemaker neurons. J Neurosci Off J Soc Neurosci. 2005;25(33):7682–6. doi:10.1523/JNEUROSCI.2211-05.2005.Google Scholar
  78. 78.
    Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell. 2012;148(6):1223–41. doi:10.1016/j.cell.2012.02.039.PubMedPubMedCentralGoogle Scholar
  79. 79.••
    Vacic V, McCarthy S, Malhotra D, Murray F, Chou HH, Peoples A, et al. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature. 2011;471(7339):499–503. doi:10.1038/nature09884. Clock gene variant with very high effect size implicated in schizophrenia.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Evans JA, Leise TL, Castanon-Cervantes O, Davidson AJ. Dynamic interactions mediated by nonredundant signaling mechanisms couple circadian clock neurons. Neuron. 2013;80(4):973–83. doi:10.1016/j.neuron.2013.08.022.PubMedGoogle Scholar
  81. 81.
    Harmar AJ. An essential role for peptidergic signalling in the control of circadian rhythms in the suprachiasmatic nuclei. J Neuroendocrinol. 2003;15(4):335–8.PubMedGoogle Scholar
  82. 82.
    Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry. 2000;157(10):1552–62.PubMedGoogle Scholar
  83. 83.
    McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A. The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry. 2003;60(5):497–502. doi:10.1001/archpsyc.60.5.497.PubMedGoogle Scholar
  84. 84.
    McClung CA. Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther. 2007;114(2):222–32. doi:10.1016/j.pharmthera.2007.02.003.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Boyce P, Barriball E. Circadian rhythms and depression. Aust Fam Physician. 2010;39(5):307–10.PubMedGoogle Scholar
  86. 86.
    Zunszain PA, Anacker C, Cattaneo A, Carvalho LA, Pariante CM. Glucocorticoids, cytokines and brain abnormalities in depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35(3):722–9. doi:10.1016/j.pnpbp.2010.04.011.Google Scholar
  87. 87.
    Daban C, Vieta E, Mackin P, Young AH. Hypothalamic-pituitary-adrenal axis and bipolar disorder. Psychiatr Clin N Am. 2005;28(2):469–80. doi:10.1016/j.psc.2005.01.005.Google Scholar
  88. 88.
    Pail G, Huf W, Pjrek E, Winkler D, Willeit M, Praschak-Rieder N, et al. Bright-light therapy in the treatment of mood disorders. Neuropsychobiology. 2011;64(3):152–62. doi:10.1159/000328950.PubMedGoogle Scholar
  89. 89.
    Lewy AJ, Rough JN, Songer JB, Mishra N, Yuhas K, Emens JS. The phase shift hypothesis for the circadian component of winter depression. Dialogues Clin Neurosci. 2007;9(3):291–300.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Wu JC, Kelsoe JR, Schachat C, Bunney BG, DeModena A, Golshan S, et al. Rapid and sustained antidepressant response with sleep deprivation and chronotherapy in bipolar disorder. Biol Psychiatry. 2009;66(3):298–301. doi:10.1016/j.biopsych.2009.02.018.PubMedGoogle Scholar
  91. 91.
    Di Giannantonio M, Martinotti G. Anhedonia and major depression: the role of agomelatine. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2012;22 Suppl 3:S505–10. doi:10.1016/j.euroneuro.2012.07.004.Google Scholar
  92. 92.
    Fornaro M, McCarthy MJ, De Berardis D, De Pasquale C, Tabaton M, Martino M, et al. Adjunctive agomelatine therapy in the treatment of acute bipolar II depression: a preliminary open label study. Neuropsychiatr Dis Treat. 2013;9:243–51. doi:10.2147/NDT.S41557.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Benedetti F, Serretti A, Colombo C, Barbini B, Lorenzi C, Campori E, et al. Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2003;123B(1):23–6. doi:10.1002/ajmg.b.20038.Google Scholar
  94. 94.
    Soria V, Martinez-Amoros E, Escaramis G, Valero J, Perez-Egea R, Garcia C, et al. Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2010;35(6):1279–89. doi:10.1038/npp.2009.230.Google Scholar
  95. 95.
    Utge SJ, Soronen P, Loukola A, Kronholm E, Ollila HM, Pirkola S, et al. Systematic analysis of circadian genes in a population-based sample reveals association of TIMELESS with depression and sleep disturbance. PLoS One. 2010;5(2):e9259. doi:10.1371/journal.pone.0009259.PubMedPubMedCentralGoogle Scholar
  96. 96.••
    Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP, et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci USA. 2013;110(24):9950–5. doi:10.1073/pnas.1305814110. Human brain samples of subjects with depression unveil disturbed circadian rhythms in mood-regulating brain areas.PubMedPubMedCentralGoogle Scholar
  97. 97.
    McCarthy MJ, Wei H, Marnoy Z, Darvish RM, McPhie DL, Cohen BM, et al. Genetic and clinical factors predict lithium's effects on PER2 gene expression rhythms in cells from bipolar disorder patients. Transl Psychiatry. 2013;3:e318. doi:10.1038/tp.2013.90.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Naylor E, Bergmann BM, Krauski K, Zee PC, Takahashi JS, Vitaterna MH, et al. The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci Off J Soc Neurosci. 2000;20(21):8138–43.Google Scholar
  99. 99.
    Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V, et al. Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci U S A. 2007;104(15):6406–11. doi:10.1073/pnas.0609625104.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Ozburn AR, Larson EB, Self DW, McClung CA. Cocaine self-administration behaviors in ClockDelta19 mice. Psychopharmacology. 2012;223(2):169–77. doi:10.1007/s00213-012-2704-2.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Abarca C, Albrecht U, Spanagel R. Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc Natl Acad Sci U S A. 2002;99(13):9026–30. doi:10.1073/pnas.142039099.PubMedPubMedCentralGoogle Scholar
  102. 102.•
    Spencer S, Falcon E, Kumar J, Krishnan V, Mukherjee S, Birnbaum SG, et al. Circadian genes Period 1 and Period 2 in the nucleus accumbens regulate anxiety-related behavior. Eur J Neurosci. 2013;37(2):242–50. doi:10.1111/ejn.12010. Reduced PER1/2 levels in the nucleus accumbens are correlated with anxiety-like behavior in mice.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Le-Niculescu H, McFarland MJ, Ogden CA, Balaraman Y, Patel S, Tan J, et al. Phenomic, convergent functional genomic, and biomarker studies in a stress-reactive genetic animal model of bipolar disorder and co-morbid alcoholism. Am J Med Genet B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2008;147B(2):134–66. doi:10.1002/ajmg.b.30707.Google Scholar
  104. 104.
    Ewing JA. Detecting alcoholism. The CAGE questionnaire. JAMA J Am Med Assoc. 1984;252(14):1905–7.Google Scholar
  105. 105.
    Mayfield RD, Harris RA, Schuckit MA. Genetic factors influencing alcohol dependence. Br J Pharmacol. 2008;154(2):275–87. doi:10.1038/bjp.2008.88.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Drummond SP, Gillin JC, Smith TL, DeModena A. The sleep of abstinent pure primary alcoholic patients: natural course and relationship to relapse. Alcohol Clin Exp Res. 1998;22(8):1796–802.PubMedGoogle Scholar
  107. 107.
    Wong MM, Brower KJ, Nigg JT, Zucker RA. Childhood sleep problems, response inhibition, and alcohol and drug outcomes in adolescence and young adulthood. Alcohol Clin Exp Res. 2010;34(6):1033–44. doi:10.1111/j.1530-0277.2010.01178.x.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Wittmann M, Paulus M, Roenneberg T. Decreased psychological well-being in late 'chronotypes' is mediated by smoking and alcohol consumption. Subst Use Misuse. 2010;45(1–2):15–30. doi:10.3109/10826080903498952.PubMedGoogle Scholar
  109. 109.
    Adan A. Chronotype and personality factors in the daily consumption of alcohol and psychostimulants. Addiction. 1994;89(4):455–62.PubMedGoogle Scholar
  110. 110.
    Gianoulakis C, Dai X, Thavundayil J, Brown T. Levels and circadian rhythmicity of plasma ACTH, cortisol, and beta-endorphin as a function of family history of alcoholism. Psychopharmacology. 2005;181(3):437–44. doi:10.1007/s00213-005-0129-x.PubMedGoogle Scholar
  111. 111.
    Garcia-Burgos D, Gonzalez F, Manrique T, Gallo M. Patterns of ethanol intake in preadolescent, adolescent, and adult Wistar rats under acquisition, maintenance, and relapse-like conditions. Alcohol Clin Exp Res. 2009;33(4):722–8. doi:10.1111/j.1530-0277.2008.00889.x.PubMedGoogle Scholar
  112. 112.
    Perreau-Lenz S, Zghoul T, de Fonseca FR, Spanagel R, Bilbao A. Circadian regulation of central ethanol sensitivity by the mPer2 gene. Addict Biol. 2009;14(3):253–9. doi:10.1111/j.1369-1600.2009.00165.x.PubMedGoogle Scholar
  113. 113.
    Dong L, Bilbao A, Laucht M, Henriksson R, Yakovleva T, Ridinger M, et al. Effects of the circadian rhythm gene period 1 (per1) on psychosocial stress-induced alcohol drinking. Am J Psychiatry. 2011;168(10):1090–8. doi:10.1176/appi.ajp.2011.10111579.PubMedGoogle Scholar
  114. 114.
    Wang X, Mozhui K, Li Z, Mulligan MK, Ingels JF, Zhou X, et al. A promoter polymorphism in the Per3 gene is associated with alcohol and stress response. Transl Psychiatry. 2012;2:e73. doi:10.1038/tp.2011.71.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Hofstetter JR, Grahame NJ, Mayeda AR. Circadian activity rhythms in high-alcohol-preferring and low-alcohol-preferring mice. Alcohol. 2003;30(1):81–5.PubMedGoogle Scholar
  116. 116.
    Rosenwasser AM, Fecteau ME, Logan RW, Reed JD, Cotter SJ, Seggio JA. Circadian activity rhythms in selectively bred ethanol-preferring and nonpreferring rats. Alcohol. 2005;36(2):69–81. doi:10.1016/j.alcohol.2005.07.001.PubMedGoogle Scholar
  117. 117.
    Kovanen L, Saarikoski ST, Haukka J, Pirkola S, Aromaa A, Lonnqvist J, et al. Circadian clock gene polymorphisms in alcohol use disorders and alcohol consumption. Alcohol Alcohol. 2010;45(4):303–11. doi:10.1093/alcalc/agq035.PubMedGoogle Scholar
  118. 118.
    Comasco E, Nordquist N, Gokturk C, Aslund C, Hallman J, Oreland L, et al. The clock gene PER2 and sleep problems: association with alcohol consumption among Swedish adolescents. Ups J Med Sci. 2010;115(1):41–8. doi:10.3109/03009731003597127.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Sjoholm LK, Kovanen L, Saarikoski ST, Schalling M, Lavebratt C, Partonen T. CLOCK is suggested to associate with comorbid alcohol use and depressive disorders. J Circadian Rhythm. 2010;8:1. doi:10.1186/1740-3391-8-1.Google Scholar
  120. 120.
    McCarthy MJ, Fernandes M, Kranzler HR, Covault JM, Welsh DK. Circadian clock period inversely correlates with illness severity in cells from patients with alcohol use disorders. Alcohol Clin Exp Res. 2013;37(8):1304–10. doi:10.1111/acer.12106.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Perreau-Lenz S, Vengeliene V, Noori HR, Merlo-Pich EV, Corsi MA, Corti C, et al. Inhibition of the casein-kinase-1-epsilon/delta/ prevents relapse-like alcohol drinking. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2012;37(9):2121–31. doi:10.1038/npp.2012.62.Google Scholar
  122. 122.
    Arey R, McClung CA. An inhibitor of casein kinase 1 epsilon/delta partially normalizes the manic-like behaviors of the ClockDelta19 mouse. Behav Pharmacol. 2012;23(4):392–6. doi:10.1097/FBP.0b013e32835651fd.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Kojetin DJ, Burris TP. REV-ERB and ROR nuclear receptors as drug targets. Nat Rev Drug Discov. 2014;13(3):197–216. doi:10.1038/nrd4100.PubMedGoogle Scholar
  124. 124.
    Hirota T, Lee JW, St John PC, Sawa M, Iwaisako K, Noguchi T, et al. Identification of small molecule activators of cryptochrome. Science. 2012;337(6098):1094–7. doi:10.1126/science.1223710.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Jones KA, Hatori M, Mure LS, Bramley JR, Artymyshyn R, Hong SP, et al. Small-molecule antagonists of melanopsin-mediated phototransduction. Nat Chem Biol. 2013;9(10):630–5. doi:10.1038/nchembio.1333.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2014

Authors and Affiliations

  • Dominic Landgraf
    • 1
    • 2
  • Michael J. McCarthy
    • 1
    • 2
  • David K. Welsh
    • 1
    • 2
  1. 1.Veterans Affairs San Diego Healthcare SystemSan DiegoUSA
  2. 2.Department of Psychiatry, and Center for Circadian BiologyUniversity of California, San DiegoLa JollaUSA

Personalised recommendations