Current Prostate Reports

, Volume 3, Issue 3, pp 112–117 | Cite as

Biomarkers for the detection and prognosis of prostate cancer

  • Javier Hernandez
  • Edith Canby-Hagino
  • Ian M. Thompson


Recent studies have cast doubt on the reliability of serum total prostate-specific antigen as a biomarker for the detection and prognosis of prostate cancer. Biomarkers that can identify those men at risk for clinically significant prostate cancer are desperately needed. The search for biomarkers that may improve the detection of biologically consequential prostate cancer is one of the most active areas under current investigation. In this review, we highlight some of these ongoing efforts. Proper validation of newly discovered biomarkers is of paramount importance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Ablin R, Bronson P, Soanes W, Witebsky E: Tissue- and species-specific antigens of normal human prostatic tissue. J Immunol 1970, 104:1329–1339.PubMedGoogle Scholar
  2. 2.
    Ablin R, Soanes W, Bronson P, Witebsky E: Precipitating antigens of the normal human prostate. J Reprod Fertil 1970, 22:573–574.PubMedCrossRefGoogle Scholar
  3. 3.
    Chodak G, Schoenberg H: Early detection of prostate cancer by routine screening. JAMA 1984, 252:3261–3264.PubMedCrossRefGoogle Scholar
  4. 4.
    Thompson I, Ernst J, Gangai M, Spence C: Adenocarcinoma of the prostate: results of routine urological screening. J Urol 1984, 132:690–692.PubMedGoogle Scholar
  5. 5.
    Stamey T, Yang N, Hay A, et al.: Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N Engl J Med 1987, 317:909–916. This is a landmark paper that contributed to launching the "PSA era" for prostate cancer.PubMedCrossRefGoogle Scholar
  6. 6.
    Stamey T: The era of serum prostate-specific antigen as a marker for biopsy of the prostate and detecting prostate cancer is now over in the USA. BJU Int 2004, 94:963–964.PubMedCrossRefGoogle Scholar
  7. 7.
    Stamey T, Caldwell M, McNeal J, et al.: The prostate-specific antigen era in the United States is over for prostate cancer: What happened in the last 20 years? J Uni 2004, 172:1297–1301.Google Scholar
  8. 8.
    Thompson I, Pauler D, Goodman P, et al.: Prevalence of prostate cancer among men with a prostate-specific antigen level < or = 4.0 ng per milliliter. N Engl J Med 2004, 350:2239–2246.PubMedCrossRefGoogle Scholar
  9. 9.
    Hernandez J, Thompson I: Prostate-specific antigen: a review of the validation of the most commonly used cancer biomarker. Cancer 2004, 101:894–904.PubMedCrossRefGoogle Scholar
  10. 10.
    Chu K, Tarone R, Freeman H: Trends in prostate cancer mortality among black men and white men in the United States. Cancer 2003, 97:1507–1516. This is one of the first publications suggesting that increased screening for prostate cancer may explain the recent decrease in mortality rates.PubMedCrossRefGoogle Scholar
  11. 11.
    Partin A, Yoo J, Carter H, et al.: The use of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage in men with localized prostate cancer. J Urol 1993, 150:110–114.PubMedGoogle Scholar
  12. 12.
    Kattan M, Eastham J, Stapleton A, et al.: A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst 1998, 90:766–771.PubMedCrossRefGoogle Scholar
  13. 13.
    D’Amico A: Combined-modality staging for localized adenocarcinoma of the prostate. Oncology (Huntingt) 2001, 15:1049–1059; discussion 60–62, 64–65, 69–70, 73–75.Google Scholar
  14. 14.
    Wagner P, Verma M, Srivastava S: Challenges for biomarkers in cancer detection. Ann N Y Acad Sci 2004, 1022:9–16.PubMedCrossRefGoogle Scholar
  15. 15.
    Killian C, Chu T: Prostate-specific antigen: questions often asked. Cancer Invest 1990, 8:27–37.PubMedCrossRefGoogle Scholar
  16. 16.
    Seamonds B, Yang N, Anderson K, et al.: Evaluation of prostate-specific antigen and prostatic acid phosphatase as prostate cancer markers. Urology 1986, 28:472–479.PubMedCrossRefGoogle Scholar
  17. 17.
    Catalona W, Smith D, Ornstein D: Prostate cancer detection in men with serum PSA concentrations of 2.6 to 4.0 ng/mL and benign prostate examination: enhancement of specificity with free PSA measurements. JAMA 1997, 277:1452–1455.PubMedCrossRefGoogle Scholar
  18. 18.
    Gretzer M, Partin A: PSA markers in prostate cancer detection. Urol Clin North Am 2003, 30:677–686.PubMedCrossRefGoogle Scholar
  19. 19.
    Catalona W, Bartsch G, Rittenhouse H, et al.: Serum pro prostate-specific antigen improves cancer detection compared to free and complexed prostate-specific antigen in men with prostate specific antigen 2 to 4 ng/mL. J Urol 2003, 170:2181–2185.PubMedCrossRefGoogle Scholar
  20. 20.
    Catalona W, Bartsch G, Rittenhouse H, et al.: Serum pro-prostate-specific antigen preferentially detects aggressive prostate cancers in men with 2 to 4 ng/mL prostate-specific antigen. J Urol 2004, 171:2239–2244.PubMedCrossRefGoogle Scholar
  21. 21.
    Carter H, Pearson J, Metter E, et al.: Longitudinal evaluation of prostate-specific antigen levels in men with and without prostate disease. JAMA 1992, 267:2215–2220.PubMedCrossRefGoogle Scholar
  22. 22.
    Goluboff E, Heitjan D, De VG, et al.: Pretreatment prostate-specific antigen doubling times: use in patients before radical prostatectomy. J Urol 1997, 158:1876–1878; discussion 8–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Egawa S, Arai Y, Tobisu K, et al.: Use of pretreatment prostate-specific antigen doubling time to predict outcome after radical prostatectomy. Prostate Cancer Prostatic Dis 2000, 3:269–274.PubMedCrossRefGoogle Scholar
  24. 24.
    Albertsen P, Hanley J, Penson D, Fine J: Validation of increasing prostate-specific antigen as a predictor of prostate cancer death after treatment of localized prostate cancer with surgery or radiation. J Urol 2004, 171:2221–2225.PubMedCrossRefGoogle Scholar
  25. 25.
    Pound C, Partin A, Eisenberger M, et al.: Natural history of progression after PSA elevation following radical prostatectomy. JAMA 1999, 281:1591–1597.PubMedCrossRefGoogle Scholar
  26. 26.
    D’Amico A, Chen M, Roehl K, Catalona W: Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. N Engl J Med 2004, 351:125–135.PubMedCrossRefGoogle Scholar
  27. 27.
    Brawn P, Johnson E, Kuhl D, et al.: Stage at presentation and survival of white and black patients with prostate carcinoma. Cancer 1993, 71:2569–2573.PubMedCrossRefGoogle Scholar
  28. 28.
    Hoffman R, Gilliland F, Eley J, et al.: Racial and ethnic differences in advanced-stage prostate cancer: the Prostate Cancer Outcomes Study. J Natl Cancer Inst 2001, 93:388–395.PubMedCrossRefGoogle Scholar
  29. 29.
    Thompson I, Tangen C, Tolcher A et al.: Association of African-American ethnic background with survival in men with metastatic prostate cancer. J Natl Cancer Inst 2001, 93:219–225.PubMedCrossRefGoogle Scholar
  30. 30.
    Powell I: Prostate cancer in the African American: Is this a different disease? Semin Urol Oncol 1998, 16:221–226.PubMedGoogle Scholar
  31. 31.
    Stanford J, Ostrander E: Familial prostate cancer. Epidemiol Rev 2001, 23:19–23.PubMedCrossRefGoogle Scholar
  32. 32.
    Lichtenstein P, Holm N, Verkasalo P, et al.: Environmental and heritable factors in the causation of cancer: analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 2000, 343:78–85.PubMedCrossRefGoogle Scholar
  33. 33.
    Gonzalgo M, Isaacs W: Molecular pathways to prostate cancer. J Urol 2003, 170:2444–2452.PubMedCrossRefGoogle Scholar
  34. 34.
    Balic I, Graham S, Troyer D, et al.: Androgen receptor length polymorphism associated with prostate cancer risk in Hispanic men. J Urol 2002, 168:2245–2248.PubMedCrossRefGoogle Scholar
  35. 35.
    Hsing A, Gao Y, Wu G, et al.: Polymorphic CAG and GGN repeat lengths in the androgen receptor gene and prostate cancer risk: a population-based case-control study in China. Cancer Res 2000, 60:5111–5116.PubMedGoogle Scholar
  36. 36.
    Nam R, Elhaji Y, Krahn M, et al.: Significance of the CAG repeat polymorphism of the androgen receptor gene in prostate cancer progression. J Urol 2000, 164:567–572.PubMedCrossRefGoogle Scholar
  37. 37.
    Giovannucci E, Stampfer M, Krithivas K, et al.: The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 1997, 94:3320–3323.PubMedCrossRefGoogle Scholar
  38. 38.
    Modugno F, Weissfeld J, Trump D, et al.: Allelic variants of aromatase and the androgen and estrogen receptors: toward a multigenic model of prostate cancer risk. Clin Cancer Res 2001, 7:3092–3096.PubMedGoogle Scholar
  39. 39.
    Hsing A, Chokkalingam A, Gao Y, et al.: Polymorphic CAG/ CAA repeat length in the AIB1/SRC-3 gene and prostate cancer risk: a population-based case-control study. Cancer Epidemiol Biomarkers Prev 2002, 11:337–341.PubMedGoogle Scholar
  40. 40.
    Ingles S, Ross R, Yu M, et al.: Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst 1997, 89:166–170.PubMedCrossRefGoogle Scholar
  41. 41.
    Dejager S, Bry-Gauillard H, Bruckert E, et al.: A comprehensive endocrine description of Kennedy’s disease revealing androgen insensitivity linked to CAG repeat length. J Clin Endocrinol Metab 2002, 87:3893–3901.PubMedCrossRefGoogle Scholar
  42. 42.
    Gsur A, Bernhofer G, Hinteregger S, et al.: A polymorphism in the CYP17 gene is associated with prostate cancer risk. Int J Cancer 2000, 87:434–437.PubMedCrossRefGoogle Scholar
  43. 43.
    Haiman C, Stampfer M, Giovannucci E, et al.: The relationship between a polymorphism in CYP17 with plasma hormone levels and prostate cancer. Cancer Epidemiol Biomarkers Prev 2001, 10:743–748.PubMedGoogle Scholar
  44. 44.
    Kittles R, Panguluri R, Chen W, et al.: Cypl7 promoter variant associated with prostate cancer aggressiveness in African Americans. Cancer Epidemiol Biomarkers Prev 2001, 10:943–947.PubMedGoogle Scholar
  45. 45.
    Lunn R, Bell D, Mohler J, Taylor J: Prostate cancer risk and polymorphism in 17 hydroxylase (CYP17) and steroid reductase (SRD5A2). Carcinogenesis 1999, 20:1727–1731.PubMedCrossRefGoogle Scholar
  46. 46.
    Yamada Y, Watanabe M, Murata M, et al.: Impact of genetic polymorphisms of 17-hydroxylase cytochrome P-450 (CYP17) and steroid 5 alpha-reductase type II (SRD5A2) genes on prostate-cancer risk among the Japanese population. Int J Cancer 2001, 92:683–686.PubMedCrossRefGoogle Scholar
  47. 47.
    Thompson IM, Goodman PJ, Tangen CM, et al.: The influence of finasteride on the development of prostate cancer. NEngl J Med 2003, 349:215–224. This is the only randomized clinical trial that has demonstrated the ability to prevent prostate cancer.CrossRefGoogle Scholar
  48. 48.
    Makridakis N, diSalle SE, Reichardt J: Biochemical and pharmacogenetic dissection of human steroid 5 alpha-reductase type II. Pharmacogenetics 2000, 10:407–413.PubMedCrossRefGoogle Scholar
  49. 49.
    Makridakis N, Ross R, Pike M, et al.: A prevalent missense substitution that modulates activity of prostatic steroid 5 alpha-reductase Cancer Res 1997, 57:1020–1022.PubMedGoogle Scholar
  50. 50.
    Nam R, Toi A, Vesprini D, et al.: V89L polymorphism of type-2, 5-alpha reductase enzyme gene predicts prostate cancer presence, and progression. Urology 2001, 57:199–204.PubMedCrossRefGoogle Scholar
  51. 51.
    Makridakis N, Ross R, Pike M, et al.: Association of mis-sense substitution in SRD5A2 gene with prostate cancer in African-American and Hispanic men in Los Angeles, USA. Lancet 1999, 354:975–978.PubMedCrossRefGoogle Scholar
  52. 52.
    Rebbeck T, Jaffe J, Walker A, et al.: Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 1998, 90:1225–1229.PubMedCrossRefGoogle Scholar
  53. 53.
    Walker A, Jaffe J, Gunasegaram S, et al.: Characterization of an allelic variant in the nifedipine-specific element of CYP3A4: ethnic distribution and implications for prostate cancer risk. Mutations in brief no. 191. Online. Hum Mutat 1998, 12:289.PubMedGoogle Scholar
  54. 54.
    Ingles S, Coetzee G, Ross R, et al.: Association of prostate cancer with vitamin D receptor haplotypes in African-Americans. Cancer Res 1998, 58:1620–1623.PubMedGoogle Scholar
  55. 55.
    Kibel A, Isaacs S, Isaacs W, Bova G: Vitamin D receptor polymorphisms and lethal prostate cancer. J Urol 1998, 160:1405–1409.PubMedCrossRefGoogle Scholar
  56. 56.
    BeerT, Evans A, Hough K, et al.: Polymorphisms of GSTP1 and related genes and prostate cancer risk. Prostate Cancer Prostatic Dis 2002, 5:22–27.CrossRefGoogle Scholar
  57. 57.
    Rubin M, Zhou M, Dhanasekaran S, et al.: alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA 2002, 287:1662–1670.PubMedCrossRefGoogle Scholar
  58. 58.
    Liang Z, Woda B: Diagnostic utility of alpha-methylacyl CoA racemase (P504S) on prostate needle biopsy [In Process Citation]. Adv Anat Pathol 2004, 11:316–321.CrossRefGoogle Scholar
  59. 59.
    Liang Z, Woda B, Wu C, Yang X: Discovery and clinical application of a novel prostate cancer marker: alpha-methylacyl CoA racemase (P504S). Am J Clin Pathol 2004, 122:275–289.CrossRefGoogle Scholar
  60. 60.
    Rogers C, Yan G, Zha S, et al.: Prostate cancer detection on urinalysis for alpha methylacyl coenzyme a racemase protein. J Urol 2004, 172:1501–1503.PubMedCrossRefGoogle Scholar
  61. 61.
    Ross I, Sheehan C, Dolen E, Kallakury B: Morphologic and molecular prognostic markers in prostate cancer. Adv Anat Pathol 2002, 9:115–128.PubMedCrossRefGoogle Scholar
  62. 62.
    PollackA, DeSilvio SM, Khor L, et al.: Ki-67 staining is a strong predictor of distant metastasis and mortality for men with prostate cancer treated with radiotherapy plus androgen deprivation: Radiation Therapy Oncology Group Trial 92-02. J Clin Oncol 2004, 22:2133–2140.CrossRefGoogle Scholar
  63. 63.
    Li R, Heydon K, Hammond M, et al.: Ki-67 staining index predicts distant metastasis and survival in locally advanced prostate cancer treated with radiotherapy: an analysis of patients in radiation therapy oncology group protocol 86-10. Clin Cancer Res 2004, 10:4118–4124.PubMedCrossRefGoogle Scholar
  64. 64.
    Pollack A, Grignon D, Heydon K, et al.: Prostate cancer DNA ploidy and response to salvage hormone therapy after radiotherapy with or without short-term total androgen blockade: an analysis of RTOG 8610. J Clin Oncol 2003, 21:1238–1248.PubMedCrossRefGoogle Scholar
  65. 65.
    Shariat S, Andrews B, Kattan M, et al.: Plasma levels of interleukin-6 and its soluble receptor are associated with prostate cancer progression and metastasis. Urology 2001, 58:1008–1015.PubMedCrossRefGoogle Scholar
  66. 66.
    Adler H, McCurdy M, Kattan M, et al.: Elevated levels of circulating interleukin-6 and transforming growth factor-beta 1 in patients with metastatic prostatic carcinoma. J Urol 1999, 161:182–187.PubMedCrossRefGoogle Scholar
  67. 67.
    Shariat S, Kattan M, Traxel E, et al.: Association of pre- and postoperative plasma levels of transforming growth factor beta(l) and interleukin 6 and its soluble receptor with prostate cancer progression. Clin Cancer Res 2004, 10:1992–1999.PubMedCrossRefGoogle Scholar
  68. 68.
    Amanatullah D, Reutens A, Zafonte B, et al.: Cell-cycle dysregulation and the molecular mechanisms of prostate cancer. Front Biosci 2000, 5:D372-D390.PubMedCrossRefGoogle Scholar
  69. 69.
    Ekici S, Cerwinka W, Duncan R, et al.: Comparison of the prognostic potential of hyaluronic acid, hyaluronidase (HYAL-1), CD44v6 and microvessel density for prostate cancer. Int J Cancer 2004, 112:121–129.PubMedCrossRefGoogle Scholar
  70. 70.
    Sedelaar I, van Leenders GJ, Hulsbergen-van de Kaa CA, et al.: Microvessel density: correlation between contrast ultrasonography and histology of prostate cancer. Eur Urol 2001, 40:285–293.PubMedCrossRefGoogle Scholar
  71. 71.
    Leach F: Microsatellite instability and prostate cancer: clinical and pathological implications. Curr Opin Urol 2002, 12:407–411.PubMedCrossRefGoogle Scholar
  72. 72.
    Mouraviev V, Li L, Tahir S, et al.: The role of caveolin-1 in androgen-insensitive prostate cancer. J Urol 2002, 168:1589–1596.PubMedCrossRefGoogle Scholar
  73. 73.
    Verma M, Wright G, Hanash S, et al.: Proteomic approaches within the NCI early detection research network for the discovery and identification of cancer biomarkers. Ann N YAcad Sci 2001, 945:103–115.CrossRefGoogle Scholar
  74. 74.
    Zheng Y, Xu Y, Ye B, et al.: Prostate carcinoma tissue proteomics for biomarker discovery. Cancer 2003, 98:2576–2582.PubMedCrossRefGoogle Scholar
  75. 75.
    Cazares L, Adam B, Ward M, et al.: Normal, benign, preneoplastic, and malignant prostate cells have distinct protein expression profiles resolved by surface enhanced laser desorption/ionization mass spectrometry. Clin Cancer Res 2002, 8:2541–2552.PubMedGoogle Scholar
  76. 76.
    Qu Y, Adam B, Yasui Y, et al.: Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem 2002, 48:1835–1843.PubMedGoogle Scholar
  77. 77.
    ZhukovT, Lohanson R, Cantor A, et al.: Discovery of distinct protein profiles specific for lung tumors and pre-malignant lung lesions by SELDI mass spectrometry. Lung Cancer 2003, 40:267–279.CrossRefGoogle Scholar
  78. 78.
    Li I, Zhang Z, Rosenzweig I, et al.: Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem 2002, 48:1296–1304.PubMedGoogle Scholar
  79. 79.
    Ardekani A, Liotta L, Petricoin E: Clinical potential of proteomics in the diagnosis of ovarian cancer. Expert Rev Mol Diagn 2002, 2:312–320.PubMedCrossRefGoogle Scholar
  80. 80.
    Ball G, Mian S, Holding F, et al.: An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers. Bioinformatics 2002, 18:395–404.PubMedCrossRefGoogle Scholar
  81. 81.
    Zhang Y, Wu D, Guan M, et al.: Tree analysis of mass spectral urine profiles discriminates transitional cell carcinoma of the bladder from noncancer patient [In Process Citation]. Clin Biochem 2004, 37:772–779.PubMedCrossRefGoogle Scholar
  82. 82.
    Grizzle W, Semmes O, Basier J, et al.: The early detection research network surface-enhanced laser desorption and ionization prostate cancer detection study: a study in biomarker validation in genitourinary oncology. Urol Oncol 2004, 22:337–343.PubMedCrossRefGoogle Scholar
  83. 83.
    Banez L, Prasanna P, Sun L, et al.: Diagnostic potential of serum proteomic patterns in prostate cancer. J Urol 2003, 170:442–446.PubMedCrossRefGoogle Scholar
  84. 84.
    de Koning H, Auvinen A, Berenguer SA, et al.: Large-scale randomized prostate cancer screening trials: program performances in the European Randomized Screening for Prostate Cancer trial and the Prostate, Lung, Colorectal and Ovary Cancer Trial. Int J Cancer 2002, 97:237–244.PubMedCrossRefGoogle Scholar
  85. 85.
    Jemal A, Murray T, Ward E, et al.: Cancer statistics, 2005. CA Cancer J Clin 2005, 55:10–30.PubMedCrossRefGoogle Scholar
  86. 86.
    Smith R, Cokkinides V, Eyre H: American cancer society guidelines for the early detection of cancer, 2005. CA Cancer J Clin 2005, 55:31–44.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2005

Authors and Affiliations

  • Javier Hernandez
    • 1
  • Edith Canby-Hagino
  • Ian M. Thompson
  1. 1.Department of UrologyUniversity of Texas Health Sciences CenterSan AntonioUSA

Personalised recommendations