Advertisement

Stem Cell Therapies for Treatment of Discogenic Low Back Pain: a Comprehensive Review

  • Ivan UritsEmail author
  • Alexander Capuco
  • Medha Sharma
  • Alan D. Kaye
  • Omar Viswanath
  • Elyse M. Cornett
  • Vwaire Orhurhu
Hot Topics in Pain and Headache (N Rosen, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Hot Topics in Pain and Headache

Abstract

Purpose of Review

Discogenic low back pain (DLBP) stems from pathology in one or more intervertebral discs identified as the root cause of the pain. It is the most common type of chronic low back pain (LBP), representing 26–42% of attributable cases.

Recent Findings

The clinical presentation of DLBP includes increased pain when sitting, coughing, or sneezing, and experiencing relief when standing or ambulating. Dermatomal radiation of pain to the lower extremity and neurological symptoms including numbness, motor weakness, and urinary or fecal incontinence are signs of advanced disease with disc prolapse, nerve root compression, or spinal stenosis. Degenerative disc disease is caused by both a decrease in disc nutrient supply causing decreased oxygen, lowered pH, and lessened ability of the intervertebral disc (IVD) to respond to increased load or injury; moreover, changes in the extracellular matrix composition cause weakening of the tissue and skewing the extracellular matrix’s (ECM) harmonious balance between catabolic and anabolic factors for cell turnover in favor of catabolism. Thus, the degeneration of the disc causes a shift from type II to type I collagen expression by NP cells and a decrease in aggrecan synthesis leads to dehydrated matrix cells ultimately with loss of swelling pressure needed for mechanical support. Cell-based therapies such as autologous nucleus pulposus cell re-implantation have in animal models and human trials shown improvements in LBP score, retention of hydration in IVD, and increased disc height. Percutaneously delivered multipotent mesenchymal stem cell (MSC) therapy has been proposed as a potential means to uniquely ameliorate discogenic LBP holistically through three mechanisms: mitigation of primary nociceptive disc pain, slow or reversal of the catabolic metabolism, and restoration of disc tissue. Embryonic stem cells (ESCs) can differentiate into cells of all three germ layers in vitro, but their use is hindered related to ethical concerns, potential for immune rejection after transplantation, disease, and teratoma formation. Another similar approach to treating back pain is transplantation of the nucleus pulposus, which, like stem cell therapy, seeks to address the underlying cause of intervertebral disc degeneration by aiming to reverse the destructive inflammatory process and regenerate the proteoglycans and collagen found in healthy disc tissue.

Summary

Preliminary animal models and clinical studies have shown mesenchymal stem cell implantation as a potential therapy for IVD regeneration and ECM restoration via a shift towards favorable anabolic balance and reduction of pain.

Keywords

Low back pain Mesenchymal stem cells Embryonic stem cells Degenerative disc disease Discogenic pain Nucleus pulposus transplantation 

Notes

Compliance with Ethical Standards

Conflict of Interest

Ivan Urits, Alexander Capuco, Medha Sharma, Omar Viswanath, Elyse M. Cornett, and Vwaire Orhurhu declare no conflict of interest. Alan D. Kaye discloses that he is on the Speakers Bureau for Depomed, Inc. and Merck.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Bernstein IA, Malik Q, Carville S, Ward S. Low back pain and sciatica: summary of NICE guidance. BMJ 2017;356:i6748.Google Scholar
  2. 2.
    Cassidy JD, Carroll LJ, Côté P. The Saskatchewan health and back pain survey. The prevalence of low back pain and related disability in Saskatchewan adults. Spine (Phila Pa 1976). 1998;23:1860–6; discussion 1867. CrossRefGoogle Scholar
  3. 3.
    Deyo RA, Tsui-Wu YJ. Descriptive epidemiology of low-back pain and its related medical care in the United States. Spine (Phila Pa 1976). 1987;12:264–8.CrossRefGoogle Scholar
  4. 4.
    Longo UG, Loppini M, Denaro L, Maffulli N, Denaro V. Rating scales for low back pain. Br Med Bull Oxford University Press; 2010;94:81–144.Google Scholar
  5. 5.
    Atlas SJ, Deyo RA. Evaluating and managing acute low back pain in the primary care setting. J Gen Intern Med Springer; 2001;16:120–31.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Petering RC, Webb C. Treatment options for low back pain in athletes. Sports Health. SAGE Publications; 2011;3:550–5.CrossRefGoogle Scholar
  7. 7.
    Deyo RA, Mirza SK, Martin BI. Back pain prevalence and visit rates. Spine (Phila Pa 1976). 2006;31:2724–7.CrossRefGoogle Scholar
  8. 8.
    Deyo RA, Weinstein JN. Low back pain. N Engl J Med. 2001;344:363–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Skovron ML, Szpalski M, Nordin M, Melot C, Cukier D. Sociocultural factors and back pain. A population-based study in Belgian adults. Spine (Phila Pa 1976). 1994;19:129–37.CrossRefGoogle Scholar
  10. 10.
    Katz JN. Lumbar disc disorders and low-back pain: socioeconomic factors and consequences. J Bone Joint Surg Am. 2006;88(Suppl 2):21–4.PubMedGoogle Scholar
  11. 11.
    Deyo RA, Loeser JD, Bigos SJ. Herniated lumbar intervertebral disk. Ann Intern Med. 1990;112:598–603.PubMedCrossRefGoogle Scholar
  12. 12.
    Croft PR, Papageorgiou AC, Ferry S, Thomas E, Jayson MI, Silman AJ. Psychologic distress and low back pain. Evidence from a prospective study in the general population. Spine (Phila Pa 1976). 1995;20:2731–7.CrossRefGoogle Scholar
  13. 13.
    Croft PR, Papageorgiou AC, Thomas E, Macfarlane GJ, Silman AJ. Short-term physical risk factors for new episodes of low back pain. Prospective evidence from the South Manchester Back Pain Study. Spine (Phila Pa 1976). 1999;24:1556–61.CrossRefGoogle Scholar
  14. 14.
    Macfarlane GJ, Thomas E, Papageorgiou AC, Croft PR, Jayson MI, Silman AJ. Employment and physical work activities as predictors of future low back pain. Spine (Phila Pa 1976). 1997;22:1143–9.CrossRefGoogle Scholar
  15. 15.
    Steffens D, Ferreira ML, Latimer J, Ferreira PH, Koes BW, Blyth F, et al. What triggers an episode of acute low back pain? A case-crossover study. Arthritis Care Res. 2015;67:403–10.CrossRefGoogle Scholar
  16. 16.
    • Chou R, Qaseem A, Snow V, Casey D, Cross JT, Shekelle P, et al. Diagnosis and treatment of low back pain: a joint clinical practice guideline from the American College of Physicians and the American Pain Society. Ann Intern Med American College of Physicians; 2007;147:478. Clinical recommendations by the American Pain Society and American College of Physicians for the diagnosis and treatment of low back pain PubMedCrossRefGoogle Scholar
  17. 17.•
    Chou R, Qaseem A, Owens DK, Shekelle P. Clinical Guidelines Committee of the American College of Physicians. Diagnostic imaging for low back pain: advice for high-value health care from the American College of Physicians. Ann Intern Med. 2011;154:181–9. Clinical recommendations by the American College of Physicians for the diagnosis of low back pain.PubMedCrossRefGoogle Scholar
  18. 18.
    Heuch I, Foss IS. Acute low back usually resolves quickly but persistent low back pain often persists. J Physiother. 2013;59:127.PubMedCrossRefGoogle Scholar
  19. 19.
    Parthan A, Evans CJ, Le K. Chronic low back pain: epidemiology, economic burden and patient-reported outcomes in the USA. Expert Rev Pharmacoecon Outcomes Res. 2006;6:359–69.CrossRefGoogle Scholar
  20. 20.
    Dowdell J, Erwin M, Choma T, Vaccaro A, Iatridis J, Cho SK. Intervertebral disk degeneration and repair. Neurosurgery. 2017;80:S46–54.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Zhang Y, Guo T, Guo X, Wu S. Clinical diagnosis for discogenic low back pain. Int J Biol Sci 2009;5:647–58.Google Scholar
  22. 22.
    Peng B-G. Pathophysiology, diagnosis, and treatment of discogenic low back pain. World J Orthop. 2013;4:42. Available from: http://www.wjgnet.com/2218-5836/full/v4/i2/42.htm-52. Accessed 1 Mar 2019.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kim KD. Stem cells and discogenic low back pain. Spine (Phila Pa 1976). 2016;41:S11–2.CrossRefGoogle Scholar
  24. 24.
    Tuakli-Wosornu YA, Terry A, Boachie-Adjei K, Harrison JR, Gribbin CK, LaSalle EE, et al. Lumbar intradiskal platelet-rich plasma (PRP) injections: a prospective, double-blind, randomized controlled study. PM&R. 2016;8:1–10.CrossRefGoogle Scholar
  25. 25.
    Laslett M, Oberg B, Aprill CN, McDonald B. Centralization as a predictor of provocation discography results in chronic low back pain, and the influence of disability and distress on diagnostic power. Spine J 2005;5(4):370–80.PubMedCrossRefGoogle Scholar
  26. 26.
    Yrjämä M, Vanharanta H. Bony vibration stimulation: a new, non-invasive method for examining intradiscal pain. Eur Spine J. 1994;3:233–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Choi Y-S. Pathophysiology of degenerative disc disease. Asian Spine J. 2009;3:39–44.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Richardson SM, Kalamegam G, Pushparaj PN, Matta C, Memic A, Khademhosseini A, et al. Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration. Methods. 2016;99:69–80.PubMedCrossRefGoogle Scholar
  29. 29.
    Zeckser J, Wolff M, Tucker J, Goodwin J. Multipotent mesenchymal stem cell treatment for discogenic low back pain and disc degeneration. Stem Cells Int Hindawi Publishing Corporation; 2016;2016:4–6.CrossRefGoogle Scholar
  30. 30.
    Carragee EJ, Lincoln T, Parmar VS, Alamin T. A gold standard evaluation of the “discogenic pain” diagnosis as determined by provocative discography. Spine (Phila Pa 1976). 2006;31:2115–23.CrossRefGoogle Scholar
  31. 31.
    Kluner C, Kivelitz D, Rogalla P, Putzier M, Hamm B, Enzweiler C. Percutaneous discography: comparison of low-dose CT, fluoroscopy and MRI in the diagnosis of lumbar disc disruption. Eur Spine J. 2006;15:620–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Yrjama M, Tervonen O, Vanharanta H. Ultrasonic imaging of lumbar discs combined with vibration pain provocation compared with discography in the diagnosis of internal anular fissures of the lumbar spine. Spine (Phila Pa 1976). 1996.Google Scholar
  33. 33.
    Rannou F, Ouanes W, Boutron I, Lovisi B, Fayad F, Macé Y, et al. High-sensitivity C-reactive protein in chronic low back pain with vertebral end-plate Modic signal changes. Arthritis Rheum. 2007;57:1311–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Omenn GS, States DJ, Adamski M, Blackwell TW, Menon R, Hermjakob H, et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics. 2005;5:3226–45.PubMedCrossRefGoogle Scholar
  35. 35.
    Hadjipavlou AG, Tzermiadianos MN, Bogduk N, Zindrick MR. The pathophysiology of disc degeneration: a critical review. J Bone Joint Surg (Br). 2008;90:1261–70.CrossRefGoogle Scholar
  36. 36.
    Peng B, Hao J, Hou S, Wu W, Jiang D, Fu X, et al. Possible pathogenesis of painful intervertebral disc degeneration. Spine (Phila Pa 1976). 2006;31:560–6.CrossRefGoogle Scholar
  37. 37.
    Nagano T, Yonenobu K, Miyamoto S, Tohyama M, Ono K. Distribution of the basic fibroblast growth factor and its receptor gene expression in normal and degenerated rat intervertebral discs. Spine (Phila Pa 1976). 1995;20:1972–8.CrossRefGoogle Scholar
  38. 38.
    • Liu X, Krishnamoorthy D, Lin L, Xue P, Zhang F, Chi L, et al. A method for characterising human intervertebral disc glycosaminoglycan disaccharides using liquid chromatography-mass spectrometry with multiple reaction monitoring. Eur Cell Mater. 2018;35:117–31.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Peng B, Chen J, Kuang Z, Li D, Pang X, Zhang X. Expression and role of connective tissue growth factor in painful disc fibrosis and degeneration. Spine (Phila Pa 1976). 2009;34:E178–82.CrossRefGoogle Scholar
  40. 40.
    Edgar MA. The nerve supply of the lumbar intervertebral disc. J Bone Jt Surg - Br Vol. 2007;89-B:1135–9.CrossRefGoogle Scholar
  41. 41.
    He L, Hu X, Tang Y, Li X, Zheng S, Ni J. Efficacy of coblation annuloplasty in discogenic low back pain: a prospective observational study. Medicine. 2015;94:e846.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Suseki K, Takahashi Y, Takahashi K, Chiba T, Yamagata M, Moriya H. Sensory nerve fibres from lumbar intervertebral discs pass through rami communicantes. a possible pathway for discogenic low back pain. J Bone Joint Surg (Br). 1998;80:737–42.CrossRefGoogle Scholar
  43. 43.
    Allegri M, Montella S, Salici F, Valente A, Marchesini M, Compagnone C, et al. Mechanisms of low back pain: a guide for diagnosis and therapy. F1000Research. 2016;5:1530 Available from: https://f1000research.com/articles/5-1530/v2. Accessed 1 Mar 2019.CrossRefGoogle Scholar
  44. 44.
    Manchikanti L, Singh V. Evaluation of the relative contributions of various structures in chronic low back pain. Pain Physician. 2001;Google Scholar
  45. 45.
    •• Kumar H, Ha D-H, Lee E-J, Park JH, Shim JH, Ahn T-K, et al. Safety and tolerability of intradiscal implantation of combined autologous adipose-derived mesenchymal stem cells and hyaluronic acid in patients with chronic discogenic low back pain: 1-year follow-up of a phase I study. Stem Cell Res Ther. 2017;8:262 Long-term follow-up of intradiscal implantation of mesenchymal stem cells for chronic low back pain.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mohammed S, Yu J. Platelet-rich plasma injections: an emerging therapy for chronic discogenic low back pain. J Spine Surg. 2018;4:115–22.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Cornejo MC, Cho SK, Giannarelli C, Iatridis JC, Purmessur D. Soluble factors from the notochordal-rich intervertebral disc inhibit endothelial cell invasion and vessel formation in the presence and absence of pro-inflammatory cytokines. Osteoarthr Cartil. 2015;23:487–96.PubMedCrossRefGoogle Scholar
  48. 48.
    Carragee EJ, Don AS, Hurwitz EL, Cuellar JM, Carrino J, Herzog R, et al. ISSLS prize winner: does discography cause accelerated progression of degeneration changes in the lumbar disc. Spine (Phila Pa 1976). 2009;34:2338–45.CrossRefGoogle Scholar
  49. 49.
    Nassr A, Lee JY, Bashir RS, Rihn JA, Eck JC, Kang JD, et al. Does incorrect level needle localization during anterior cervical discectomy and fusion lead to accelerated disc degeneration? Spine (Phila Pa 1976). 2009;34:189–92.CrossRefGoogle Scholar
  50. 50.
    Le Maitre CL, Freemont AJ, Hoyland JA. Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J Pathol. 2004;204:47–54.PubMedCrossRefGoogle Scholar
  51. 51.
    Hohaus C, Ganey TM, Minkus Y, Meisel HJ. Cell transplantation in lumbar spine disc degeneration disease. Eur Spine J Springer-Verlag; 2008;17:492–503.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Meisel HJ, Siodla V, Ganey T, Minkus Y, Hutton WC, Alasevic OJ. Clinical experience in cell-based therapeutics: disc chondrocyte transplantation: a treatment for degenerated or damaged intervertebral disc Biomol Eng Elsevier; 2007;24:5–21.PubMedCrossRefGoogle Scholar
  53. 53.
    Sakai D, Andersson GBJ. Stem cell therapy for intervertebral disc regeneration: obstacles and solutions. Nat Rev Rheumatol Nature Publishing Group; 2015;11:243–56.PubMedCrossRefGoogle Scholar
  54. 54.
    Sivakamasundari V, Lufkin T. Stemming the degeneration: IVD stem cells and stem cell regenerative therapy for degenerative disc disease. Adv stem cells. 2013;2013.Google Scholar
  55. 55.
    Caplan AI. All MSCs are pericytes? Cell Stem Cell. Elsevier; 2008;3:229–30.PubMedCrossRefGoogle Scholar
  56. 56.
    Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell Cell Press; 2011;9:11–5.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Wakao S, Kuroda Y, Ogura F, Shigemoto T, Dezawa M, Wakao S, et al. Regenerative effects of mesenchymal stem cells: contribution of muse cells, a novel pluripotent stem cell type that resides in mesenchymal cells. Cells Multidisciplinary Digital Publishing Institute; 2012;1:1045–60.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res NIH Public Access; 2007;100:1249–60.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Karin Wuertz KGCNJUJCI. Behavior of mesenchymal stem cells in the chemical microenvironment of the intervertebral disc. Spine (Phila Pa 1976). 2008;33:1843–9.CrossRefGoogle Scholar
  60. 60.
    Stoyanov JV, Gantenbein-Ritter B, Bertolo A, Aebli N, Baur M, Alini M, et al. Role of hypoxia and growth and differentiation factor-5 on differentiation of human mesenchymal stem cells towards intervertebral nucleus pulposus-like cells. Eur Cells Mater. 2011;21:533–47.CrossRefGoogle Scholar
  61. 61.
    Liang C, Li H, Tao Y, Zhou X, Li F, Chen G, et al. Responses of human adipose-derived mesenchymal stem cells to chemical microenvironment of the intervertebral disc. J Transl Med. BioMed Central; 2012;10:49.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Feng G, Zhao X, Liu H, Zhang H, Chen X, Shi R, et al. Transplantation of mesenchymal stem cells and nucleus pulposus cells in a degenerative disc model in rabbits: a comparison of 2 cell types as potential candidates for disc regeneration. J Neurosurg Spine. 2011;14:322–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Acosta FL, Metz L, Adkisson HD, Liu J, Carruthers-Liebenberg E, Milliman C, et al. Porcine intervertebral disc repair using allogeneic juvenile articular chondrocytes or mesenchymal stem cells. Tissue Eng Part A. 2011;17:3045–55.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Wu T, Song H, Dong Y, Li J. Cell-based therapies for lumbar discogenic low back pain. Spine (Phila Pa 1976). 2018;43:49–57.CrossRefGoogle Scholar
  65. 65.
    Henriksson HB, Hagman M, Horn M, Lindahl A, Brisby H. Investigation of different cell types and gel carriers for cell-based intervertebral disc therapy, in vitro and in vivo studies. J Tissue Eng Regen Med Wiley-Blackwell; 2012;6:738–47.PubMedCrossRefGoogle Scholar
  66. 66.
    Wang Z, Perez-Terzic CM, Smith J, Mauck WD, Shelerud RA, Maus TP, et al. Efficacy of intervertebral disc regeneration with stem cells — a systematic review and meta-analysis of animal controlled trials. Gene. 2015;564:1–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Gantenbein B, Illien-Jünger S, Chan S, Walser J, Haglund L, Ferguson S, et al. Organ culture bioreactors – platforms to study human intervertebral disc degeneration and regenerative therapy. Curr Stem Cell Res Ther. 2015;10:339–52.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Korecki CL, MacLean JJ, Iatridis JC. Characterization of an in vitro intervertebral disc organ culture system. Eur Spine J Springer-Verlag; 2007;16:1029–37.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Gawri R, Mwale F, Ouellet J, Roughley PJ, Steffen T, Antoniou J, et al. Development of an organ culture system for long-term survival of the intact human intervertebral disc. Spine (Phila Pa 1976). 2011;36:1835–42.CrossRefGoogle Scholar
  70. 70.
    •• Teixeira GQ, Pereira CL, Ferreira JR, Maia AF, Gomez-Lazaro M, Barbosa MA, et al. Immunomodulation of human mesenchymal stem/stromal cells in intervertebral disc degeneration. Spine (Phila Pa 1976). 2018;43:E673–82 An investigation of immunomodulation to improve the efficacy of stem cell implantation.CrossRefGoogle Scholar
  71. 71.
    Miguélez-Rivera L, Pérez-Castrillo S, González-Fernández ML, Prieto-Fernández JG, López-González ME, García-Cosamalón J, et al. Immunomodulation of mesenchymal stem cells in discogenic pain. Spine J. 2018;18:330–42.PubMedCrossRefGoogle Scholar
  72. 72.
    Wang W, Wang Y, Deng G, Ma J, Huang X, Yu J, et al. Transplantation of hypoxic-preconditioned bone mesenchymal stem cells retards intervertebral disc degeneration via enhancing implanted cell survival and migration in rats. Stem Cells Int Hindawi; 2018;2018:1–13.Google Scholar
  73. 73.
    Lehmann TP, Jakub G, Harasymczuk J, Jagodziński PP. Transforming growth factor β mediates communication of co-cultured human nucleus pulposus cells and mesenchymal stem cells. J Orthop Res. 2018;36:3023–32.PubMedCrossRefGoogle Scholar
  74. 74.
    Maidhof R, Rafiuddin A, Chowdhury F, Jacobsen T, Chahine NO. Timing of mesenchymal stem cell delivery impacts the fate and therapeutic potential in intervertebral disc repair. J Orthop Res. 2017;35:32–40.PubMedCrossRefGoogle Scholar
  75. 75.
    Hang D, Li F, Che W, Wu X, Wan Y, Wang J, et al. One-stage positron emission tomography and magnetic resonance imaging to assess mesenchymal stem cell survival in a canine model of intervertebral disc degeneration. Stem Cells Dev. 2017;26:1334–43.PubMedCrossRefGoogle Scholar
  76. 76.
    Steffen F, Smolders LA, Roentgen AM, Bertolo A, Stoyanov J. Bone marrow-derived mesenchymal stem cells as autologous therapy in dogs with naturally occurring intervertebral disc disease: feasibility, safety, and preliminary results. Tissue Eng Part C Methods. 2017;23:643–51.PubMedCrossRefGoogle Scholar
  77. 77.
    Yoshikawa T, Ueda Y, Miyazaki K, Koizumi M, Takafumi Yoshikawa MD, Yurito Ueda MD, et al. Disc regeneration therapy using marrow mesenchymal cell transplantation: a report of two case studies. Spine (Phila Pa 1976). 2010;35:E475–80.CrossRefGoogle Scholar
  78. 78.
    Orozco L, Soler R, Morera C, Alberca M, Sánchez A, García-Sancho J. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation. 2011;92:822–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Pettine KA, Murphy MB, Suzuki RK, Sand TT. Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells. 2015;33:146–56.PubMedCrossRefGoogle Scholar
  80. 80.
    Pettine K, Suzuki R, Sand T, Murphy M. Treatment of discogenic back pain with autologous bone marrow concentrate injection with minimum two year follow-up. Int Orthop. 2016;40:135–40.PubMedCrossRefGoogle Scholar
  81. 81.
    Pettine KA, Suzuki RK, Sand TT, Murphy MB. Autologous bone marrow concentrate intradiscal injection for the treatment of degenerative disc disease with three-year follow-up. Int Orthop. 2017;41:2097–103.PubMedCrossRefGoogle Scholar
  82. 82.
    Elabd C, Centeno CJ, Schultz JR, Lutz G, Ichim T, Silva FJ. Intra-discal injection of autologous, hypoxic cultured bone marrow-derived mesenchymal stem cells in five patients with chronic lower back pain: a long-term safety and feasibility study. J Transl Med BioMed Central; 2016;14:1–9.Google Scholar
  83. 83.
    Centeno C, Markle J, Dodson E, Stemper I, Williams CJ, Hyzy M, et al. Treatment of lumbar degenerative disc disease-associated radicular pain with culture-expanded autologous mesenchymal stem cells: a pilot study on safety and efficacy. J Transl Med BioMed Central; 2017;15:1–12.Google Scholar
  84. 84.
    Noriega DC, Ardura F, Hernández-Ramajo R, Martín-Ferrero MÁ, Sánchez-Lite I, Toribio B, et al. Intervertebral disc repair by allogeneic mesenchymal bone marrow cells: a randomized controlled trial. Transplantation. 2017;101:1945–51.PubMedCrossRefGoogle Scholar
  85. 85.
    •• Perez-Cruet M, Beeravolu N, McKee C, Brougham J, Khan I, Bakshi S, et al. Potential of human nucleus pulposus-like cells derived from umbilical cord to treat degenerative disc disease. Neurosurgery. 2018;0:1–12 An investigation of umbilical cord derived nucleus pulposus like cells for the treatmentof degenerative disc disease.Google Scholar
  86. 86.
    Nukaga T, Sakai D, Tanaka M, Hiyama A, Nakai T, Mochida J. Transplantation of activated nucleus pulposus cells after cryopreservation: efficacy study in a canine disc degeneration model. Eur Cells Mater. 2016;31:95–106.CrossRefGoogle Scholar
  87. 87.
    Mochida J, Sakai D, Nakamura Y, Watanabe T, Yamamoto Y, Kato S. Intervertebral disc repair with activated nucleus pulposus cell transplantation: a three-year, prospective clinical study of its safety. Eur Cells Mater. 2015;29:202–12.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ivan Urits
    • 1
    Email author
  • Alexander Capuco
    • 2
  • Medha Sharma
    • 3
  • Alan D. Kaye
    • 4
  • Omar Viswanath
    • 5
    • 6
    • 7
  • Elyse M. Cornett
    • 8
  • Vwaire Orhurhu
    • 1
  1. 1.Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain MedicineHarvard Medical SchoolBostonUSA
  2. 2.Georgetown University School of MedicineWashingtonUSA
  3. 3.University of Pennsylvania School of MedicinePhiladelphiaUSA
  4. 4.Department of AnesthesiologyLouisiana State University Health Sciences CenterNew OrleansUSA
  5. 5.Valley Anesthesiology and Pain ConsultantsPhoenixUSA
  6. 6.Department of AnesthesiologyUniversity of Arizona College of Medicine-PhoenixPhoenixUSA
  7. 7.Department of Anesthesiology, School of MedicineCreighton UniversityOmahaUSA
  8. 8.Department of AnesthesiologyLouisiana State University Health ShreveportShreveportUSA

Personalised recommendations