Membrane Stabilizer Medications in the Treatment of Chronic Neuropathic Pain: a Comprehensive Review

  • Omar ViswanathEmail author
  • Ivan Urits
  • Mark R. Jones
  • Jacqueline M. Peck
  • Justin Kochanski
  • Morgan Hasegawa
  • Best Anyama
  • Alan D. Kaye
Other Pain (A Kaye and N Vadivelu, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Other Pain


Purpose of Review

Neuropathic pain is often debilitating, severely limiting the daily lives of patients who are affected. Typically, neuropathic pain is difficult to manage and, as a result, leads to progression into a chronic condition that is, in many instances, refractory to medical management.

Recent Findings

Gabapentinoids, belonging to the calcium channel blocking class of drugs, have shown good efficacy in the management of chronic pain and are thus commonly utilized as first-line therapy. Various sodium channel blocking drugs, belonging to the categories of anticonvulsants and local anesthetics, have demonstrated varying degrees of efficacy in the in the treatment of neurogenic pain.


Though there is limited medical literature as to efficacy of any one drug, individualized multimodal therapy can provide significant analgesia to patients with chronic neuropathic pain.


Neuropathic pain Chronic pain Ion Channel blockers Anticonvulsants Membrane stabilizers 


Compliance with Ethical Standards

Conflict of Interest

Omar Viswanath, Ivan Urits, Mark R. Jones, Jacquelin M. Peck, Justin Kochanski, Morgan Hasegawa, and Best Anyama declare no conflict of interest. Dr. Kaye discloses that he is on the Speakers Bureau for Depomed, Inc. and Merck. and declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Bialer M. Why are antiepileptic drugs used for nonepileptic conditions? Epilepsia. 2012;53:26–33.PubMedCrossRefGoogle Scholar
  2. 2.
    Pirapakaran K, Aggarwal A. The use of low-dose sodium valproate in the management of neuropathic pain: illustrative case series. Intern Med J. 2016;46(7):849–52.PubMedCrossRefGoogle Scholar
  3. 3.
    Keppel Hesselink JM, Kopsky DJ. Phenytoin: 80 years young, from epilepsy to breast cancer, a remarkable molecule with multiple modes of action. J Neurol. 2017;264(8):1617–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Keppel Hesselink JM. Phenytoin: a step by step insight into its multiple mechanisms of action—80 years of mechanistic studies in neuropharmacology. J Neurol. 2017;264(9):2043–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Hao XY, Li HL, Su H, Cai H, Guo TK, Liu R, et al. Topical phenytoin for treating pressure ulcers. Cochrane Database Syst Rev. 2017;22(2):CD008251.
  6. 6.
    Patil MM, Sahoo J, Kamalanathan S, Pillai V. Phenytoin induced osteopathy—too common to be neglected. J Clin Diagn Res. 2015;9(11):OD11–2.Google Scholar
  7. 7.
    Kopsky DJ, Hesselink JMK. Topical phenytoin for the treatment of neuropathic pain. J Pain Res. 2017;10:469–73.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    •• Kopsky D, Keppel Hesselink J. Phenytoin cream for the treatment for neuropathic pain: case series. Pharmaceuticals. 2018;11(2):53 Case series highlighting the utilization of phenytoin cream to topically treat neuropathic pain. PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Dai H, Tilley DM, Mercedes G, Doherty C, Gulati A, Mehta N, et al. Opiate-free pain therapy using carbamazepine-loaded microparticles provides up to 2 weeks of pain relief in a neuropathic pain model. Pain Pract. 2018;18:1024–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Naseri K, Sabetkasaei M, Moini Zanjani T, Saghaei E. Carbamazepine potentiates morphine analgesia on postoperative pain in morphine-dependent rats. Eur J Pharmacol. 2012;674(2–3):332–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Mu A, Weinberg E, Moulin DE, Clarke H. Pharmacologic management of chronic neuropathic pain: review of the Canadian Pain Society consensus statement. Can Fam Physician. 2017;63(11):844–52.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Jensen TS, Madsen CS, Finnerup NB. Pharmacology and treatment of neuropathic pains. Curr Opin Neurol. 2009;22(5):467–74.PubMedCrossRefGoogle Scholar
  13. 13.
    Besi E, Boniface DR, Cregg R, Zakrzewska JM. Comparison of tolerability and adverse symptoms in oxcarbazepine and carbamazepine in the treatment of trigeminal neuralgia and neuralgiform headaches using the Liverpool Adverse Events Profile (AEP). J Headache Pain. 2015;16(1):1–7.CrossRefGoogle Scholar
  14. 14.
    Pratt V, McLeod H, Rubinstein W, Dean L, Kattman B, Malheiro A. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012–2015 [updated 2018 Aug 1].Google Scholar
  15. 15.
    Daughton JM, Padala PR, Gabel TL. Careful monitoring for agranulocytosis during carbamazepine treatment. Prim Care Companion J Clin Psychiatry. 2006;8(5):310–1.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Gilron I. Review article: the role of anticonvulsant drugs in postoperative pain management: a bench-to-bedside perspective. Can J Anaesth. 2006;53(6):562–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Wiffen PJ, Derry S, Moore RA, et al. Antiepileptic drugs for neuropathic pain and fibromyalgia—an overview of Cochrane reviews. Cochrane Database Syst Rev. 2013;11:CD010567.Google Scholar
  18. 18.
    Liu J, Wang LN, Mcnicol ED. Pharmacological treatment for pain in Guillain-Barré syndrome (review). Cochrane Database Syst Rev. 2015;1(4):10–2.Google Scholar
  19. 19.
    Patel R, Kucharczyk M, Montagut-Bordas C, Lockwood S, Dickenson AH. Neuropathy following spinal nerve injury shares features with the irritable nociceptor phenotype: a back-translational study of oxcarbazepine. Eur J Pain. 2019;23(1):183–197.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhou M, Chen N, He L, Yang M, Zhu C, Wu F. Oxcarbazepine for neuropathic pain. Cochrane Database Syst Rev. 2017;12:CD007963.Google Scholar
  21. 21.
    Krasowski MD, McMillin GA. Advances in anti-epileptic drug testing. Clin Chim Acta. 2014;436:224–36.PubMedCrossRefGoogle Scholar
  22. 22.
    Grant P, Ayuk J, Bouloux PM, Cohen M, Cranston I, Murray RD, et al. The diagnosis and management of inpatient hyponatraemia and SIADH. Eur J Clin Investig. 2015;45(8):888–94.CrossRefGoogle Scholar
  23. 23.
    Moore A, Wiffen PJ, Kalso E. Antiepileptic drugs for neuropathic pain and fibromyalgia. JAMA. 2014;312(2):182–3.PubMedCrossRefGoogle Scholar
  24. 24.
    Ximenes JCM, De Oliveira GD, Siqueira RMP, et al. Valproic acid: an anticonvulsant drug with potent antinociceptive and anti-inflammatory properties. Naunyn Schmiedeberg's Arch Pharmacol. 2013;386(7):575–87.CrossRefGoogle Scholar
  25. 25.
    Li Y, Zhang Q, Qi D, et al. Valproate ameliorates nitroglycerin-induced migraine in trigeminal nucleus caudalis in rats through inhibition of NF-кB. J Headache Pain. 2016;17:49.Google Scholar
  26. 26.
    Ghaderibarmi F, Tavakkoli N, Togha M. Intravenous valproate versus subcutaneous sumatriptan in acute migraine attack. Acta Med Iran. 2015;53(10):633–6.PubMedGoogle Scholar
  27. 27.
    Sarchielli P, Messina P, Cupini LM, Tedeschi G, di Piero V, Livrea P, et al. Sodium valproate in migraine without aura and medication overuse headache: a randomized controlled trial. Eur Neuropsychopharmacol. 2014;24:1289–97.PubMedCrossRefGoogle Scholar
  28. 28.
    Kochar DK, Garg P, Bumb RA, Kochar SK, Mehta RD, Beniwal R, et al. Divalproex sodium in the management of post-herpetic neuralgia: a randomized double-blind placebo-controlled study. QJM - Mon J Assoc Physicians. 2005;98(1):29–34.CrossRefGoogle Scholar
  29. 29.
    Kochar DK, Rawat N, Agrawal RP, Vyas A, Beniwal R, Kochar SK, et al. Sodium valproate for painful diabetic neuropathy: a randomized double-blind placebo-controlled study. QJM - Mon J Assoc Physicians. 2004;97(1):33–8.CrossRefGoogle Scholar
  30. 30.
    Hamada NM, Ashour RH, Shalaby AA, El-Beltagi HM. Calcitonin potentiates the anticonvulsant and antinociceptive effects of valproic acid and pregabalin in pentylenetetrazole-kindled mice. Eur J Pharmacol. 2018;818(November 2017):351–5.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Chopra A, Kolla BP, Mansukhani MP, Netzel P, Frye MA. Valproate-induced hyperammonemic encephalopathy: an update on risk factors, clinical correlates and management. Gen Hosp Psychiatry. 2012;34(3):290–8.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Lewis C, Deshpande A, Tesar GE, Dale R. Valproate-induced hyperammonemic encephalopathy: a brief review. Curr Med Res Opin. 2012;28(6):1039–42.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Wadzinski J, Franks R, Roane D, Bayard M. Valproate-associated Hyperammonemic encephalopathy. J Am Board Fam Med. 2007;20(5):499–502.PubMedCrossRefGoogle Scholar
  34. 34.
    Quan W, Shao Q, Zhang H, Liu FH, Zhang XH. Acute pancreatitis associated with valproate treatment. Chin Med J (Engl). 2018;131(15):1889–1890.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Estèbe JP, Gentili ME, Langlois G, Mouilleron P, Bernard F, Ecoffey C. Lidocaine priming reduces tourniquet pain during intravenous regional anesthesia: a preliminary study. Reg Anesth Pain Med. 2003;28(2):120–3.PubMedGoogle Scholar
  36. 36.
    Przeklasa-Muszyńska A, Kocot-Kępska M, Dobrogowski J, Wiatr M, Mika J. Intravenous lidocaine infusions in a multidirectional model of treatment of neuropathic pain patients. Pharmacol Rep. 2016;68(5):1069–75.PubMedCrossRefGoogle Scholar
  37. 37.
    Koppert W, Weigand M, Neumann F, et al. Perioperative intravenous lidocaine has preventive effects on postoperative pain and morphine consumption after major abdominal surgery. Anesth Analg. 2004;98(4):1050–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Meier T, Wasner G, Faust M, Kuntzer T, Ochsner F, Hueppe M, et al. Efficacy of lidocaine patch 5% in the treatment of focal peripheral neuropathic pain syndromes: a randomized, double-blind, placebo-controlled study. Pain. 2003;106(1–2):151–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Mörwald EE, Zubizarreta N, Cozowicz C, Poeran J, Memtsoudis SG. Incidence of local anesthetic systemic toxicity in orthopedic patients receiving peripheral nerve blocks. Reg Anesth Pain Med. 2017;42(4):442–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Sekimoto K, Tobe M, Saito S. Local anesthetic toxicity: acute and chronic management. Acute Med Surg. 2017;4(2):152–60.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Verlinde M, Hollmann MW, Stevens MF, Hermanns H, Werdehausen R, Lirk P. Local anesthetic-induced neurotoxicity. Int J Mol Sci. 2016;17(3):1–14.CrossRefGoogle Scholar
  42. 42.
    Weibel S, Jelting Y, Pace NL, Helf A, Eberhart LHJ, Hahnenkamp K, Hollmann MW, Poepping DM, Schnabel A, Kranke P. Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery in adults. Cochrane Database Syst Rev. 2018;6:CD009642.
  43. 43.
    •• E Silva LO, Scherber K, Cabrera D, et al. Safety and efficacy of intravenous lidocaine for pain management in the emergency department: a systematic review. Ann Emerg Med. 2018;72(2):135–144.e3 An excellent systematic review on the usage, safety, and efficacy of intravenous lidocaine for both acute and chronic pain mangement control in the ED. PubMedCrossRefGoogle Scholar
  44. 44.
    Rosen N, Marmura M, Abbas M, Silberstein S. Intravenous lidocaine in the treatment of refractory headache: a retrospective case series. Headache. 49(2):286–91.Google Scholar
  45. 45.
    Challapalli V, Tremont-Lukats IW, McNicol ED, Lau J, Carr DB. Systemic administration of local anesthetic agents to relieve neuropathic pain. Cochrane Database Syst Rev. 2005;(4):CD003345.Google Scholar
  46. 46.
    Isose S, Misawa S, Sakurai K, Kanai K, Shibuya K, Sekiguchi Y, et al. Mexiletine suppresses nodal persistent sodium currents in sensory axons of patients with neuropathic pain. Clin Neurophysiol. 2010;121(5):719–24.PubMedCrossRefGoogle Scholar
  47. 47.
    Waspe LE, Waxman HL, Buxton AE, Josephson ME. Mexiletine for control of drug-resistant ventricular tachycardia: clinical and electrophysiologic results in 44 patients. Am J Cardiol. 1983;51(7):1175–81.PubMedCrossRefGoogle Scholar
  48. 48.
    Awerbuch GI, Sandyk R. Mexiletine for thalamic pain syndrome. Int J Neurosci. 1990;55(2–4):129–33.PubMedCrossRefGoogle Scholar
  49. 49.
    Dejgard A, Petersen P, Kastrup J. Mexiletine for treatment of chronic painful diabetic neuropathy. Lancet. 1988;1(8575–6):9–11.PubMedCrossRefGoogle Scholar
  50. 50.
    Statland JM. Mexiletine for symptoms and signs of myotonia in nondystrophic myotonia. Jama. 2012;308(13):1357–65.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Cregg R, Cox JJ, Bennett DLH, Wood JN, Werdehausen R. Mexiletine as a treatment for primary erythromelalgia: normalization of biophysical properties of mutant L858F NaV1.7 sodium channels. Br J Pharmacol. 2014;171(19):4455–63.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Dworkin RH, O’Connor AB, Backonja M, Farrar JT, Finnerup NB, Jensen TS, et al. Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain. 2007;132(3):237–51.PubMedCrossRefGoogle Scholar
  53. 53.
    Attal N, Cruccu G, Baron R, Haanpää M, Hansson P, Jensen TS, et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol. 2010;17(9):1113–23.PubMedCrossRefGoogle Scholar
  54. 54.
    Wiffen PJ, Derry S, Moore RA. Lamotrigine for chronic neuropathic pain and fibromyalgia in adults. Cochrane Database Syst Rev. 2013;(12):CD006044.
  55. 55.
    Jensen TS. Anticonvulsants in neuropathic pain: rationale and clinical evidence. Eur J Pain. 2002;6 Suppl A:61–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Pappagallo M. Newer antiepileptic drugs: possible uses in the treatment of neuropathic pain and migraine. Clin Ther. 2003;25(10):2506–38.PubMedCrossRefGoogle Scholar
  57. 57.
    D’Andrea G, Granella F, Ghiotto N, Nappi G. Lamotrigine in the treatment of SUNCT syndrome. Neurology. 2001;57(9):1723–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Amante MF, Filippini AV, Cejas N, Lendoire J, Parisi C. 2009_AnnHepatol_DRESS and fulminant hepatic failure induced by lamotrigine.pdf. 2009:2008–2010.Google Scholar
  59. 59.
    Hussain N, Gosalakkal JA. Lamotrigine rash—a potentially life-threatening complication. Emerg Med J. 2007;24(6):448.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Rzany B, Correia O, Kelly JP, Naldi L, Auquier A, Stern R. Risk of Stevens-Johnson syndrome and toxic epider mal necrolysis during first weeks of antiepileptic therapy: a case-control study. Lancet. 1999;353(9171):2190–4.PubMedCrossRefGoogle Scholar
  61. 61.
    Thome-Souza S, Moreira B, Valente KD. Late adverse effects of the coadministration of valproate and lamotrigine. Pediatr Neurol. 2012;47(1):47–50.PubMedCrossRefGoogle Scholar
  62. 62.
    Zeng K, Wang X, Xi Z, Yan Y. Adverse effects of carbamazepine, phenytoin, valproate and lamotrigine monotherapy in epileptic adult Chinese patients. Clin Neurol Neurosurg. 2010;112(4):291–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Mu A, Frcpc M, Weinberg E, Moulin DE, Clarke H. Pharmacologic management of chronic neuropathic pain. Can Fam Physician. 2017;63(11):844–52.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Agarwal N, Joshi M. Effectiveness of amitriptyline and lamotrigine in traumatic spinal cord injury-induced neuropathic pain: a randomized longitudinal comparative study. Spinal Cord. 2017;55(2):126–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Almeida RL, Beraldo PS. Effectiveness of amitriptyline and lamotrigine in neuropathic pain after traumatic spinal cord injuries. Spinal Cord Ser Cases. 2017;3:16036.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Shaikh S, Yaacob HB, Abd Rahman RB. Lamotrigine for trigeminal neuralgia: efficacy and safety in comparison with carbamazepine. J Chin Med Assoc. 2011;74(6):243–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Costa A, Antonaci F, Ramusino M, Nappi G. The neuropharmacology of cluster headache and other trigeminal autonomic cephalalgias. Curr Neuropharmacol. 2015;13(3):304–23.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Solaro CM, Ferriero G. Refactory trigeminal neuralgia successfully treated by combination therapy (pregabalin plus lamotrigine). Mult Scler Relat Disord. 2018;25:165–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Gutierrez-Garcia JM. SUNCT Syndrome responsive to lamotrigine. Headache. 2002;42(8):823–5.CrossRefGoogle Scholar
  70. 70.
    Manville RW, Abbott GW. Gabapentin is a potent activator of KCNQ3 and KCNQ5 potassium channels. Mol Pharmacol. 2018;94(4):1155–63.PubMedCrossRefGoogle Scholar
  71. 71.
    Hamed SA. Sexual dysfunctions induced by pregabalin. Clin Neuropharmacol. 2018;41(4):116–22.PubMedCrossRefGoogle Scholar
  72. 72.
    Enke O, New HA, New CH, Mathieson S, McLachlan AJ, Latimer J, et al. Anticonvulsants in the treatment of low back pain and lumbar radicular pain: a systematic review and meta-analysis. CMAJ. 2018;190(26):E786–93.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Shmagel A, Ngo L, Ensrud K, Foley R. Prescription medication use among community-based U.S. adults with chronic low back pain: a cross-sectional population based study. J Pain. 2018;19(10):1104–12PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Deljou A, Hedrick SJ, Portner ER, Schroeder DR, Hooten WM, Sprung J, et al. Pattern of perioperative gabapentinoid use and risk for postoperative naloxone administration. Br J Anaesth. 2018;120(4):798–806.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Schmidt P, Rao S. Effects of gabapentin, pregabalin and gastroretentive gabapentin on simulated driving, daytime sedation and cognition. Pain Manag. 2018;8(4):297–306.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Tomić M, Pecikoza U, Micov A, Vučković S, Stepanović-Petrović R. Antiepileptic drugs as analgesics/adjuvants in inflammatory pain: current preclinical evidence. Pharmacol Ther. 2018;192:42–64.CrossRefGoogle Scholar
  77. 77.
    Qin C, Wu M, Xu S, Wang X, Shi W, Dong Y, et al. Design and optimization of gastro-floating sustained-release tablet of pregabalin: in vitro and in vivo evaluation. Int J Pharm. 2018;545(1–2):37–44.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Ortiz de Landaluce L, Carbonell P, Asensio C, Escoda N, López P, Laporte JR. Gabapentin and Pregabalin and Risk of Atrial Fibrillation in the Elderly: A Population-Based Cohort Study in an Electronic Prescription Database. Drug Saf. 2018;41(12):1325–31. PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Schaffler K, He W, Passier P, Tracy K, Fakhoury A, Paul J. A phase I, randomized, double-blind, laser-evoked potential study to evaluate the analgesic/antihyperalgesic effect of ASP9226, a state-dependent N-type voltage-gated calcium channel inhibitor, in healthy male subjects. Pain Med. 2018;19(11):2246–55.PubMedCrossRefGoogle Scholar
  80. 80.
    Ibrahim E, Sultan W, Helal S, Abo-Elwafa H, Abdelaziz A. Pregabalin and dexmedetomidine conscious sedation for flexible bronchoscopy: a randomized double blind controlled study. Minerva Anestesiol. 2018.
  81. 81.
    Hossain MM, Weig B, Reuhl K, Gearing M, Wu L-J, Richardson JR. The anti-parkinsonian drug zonisamide reduces neuroinflammation: role of microglial Nav 1.6. Exp Neurol. 2018;308:111–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Assarzadegan F, Tabesh H, Hosseini-Zijoud S-M, Beale AD, Shoghli A, Ghafoori Yazdi M, et al. Comparing zonisamide with sodium valproate in the management of migraine headaches: double-blind randomized clinical trial of efficacy and safety. Iran Red Crescent Med J. 2016;18(9):e23768.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Atli A, Dogra S. Zonisamide in the treatment of painful diabetic neuropathy: a randomized, double-blind, placebo-controlled pilot study. Pain Med. 2005;6(3):225–34.PubMedCrossRefGoogle Scholar
  84. 84.
    Moore RA, Wiffen PJ, Derry S, Lunn MP. Zonisamide for neuropathic pain in adults. Cochrane Database Syst Rev. 2015;1:CD011241.PubMedGoogle Scholar
  85. 85.
    Nair AS, Poornachand A, Kodisharapu PK. Ziconotide: indications, adverse effects, and limitations in managing refractory chronic pain. Indian J Palliat Care. 2018;24(1):118–9.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Herring EZ, Frizon LA, Hogue O, et al. Long-term outcomes using intrathecal drug delivery systems in complex regional pain syndrome. Pain Med. 2019;20(3):515–20.CrossRefGoogle Scholar
  87. 87.
    Deer TR, Pope JE, Hayek SM, Bux A, Buchser E, Eldabe S, et al. The Polyanalgesic Consensus Conference (PACC): recommendations on intrathecal drug infusion systems best practices and guidelines. Neuromodulation Technol Neural Interface. 2017;20(2):96–132.CrossRefGoogle Scholar
  88. 88.
    Shields D, Montenegro R, Aclan J. Chemical stability of an admixture combining ziconotide and bupivacaine during simulated intrathecal administration. Neuromodulation. 2007;10Suppl 1:1–5.CrossRefGoogle Scholar
  89. 89.
    Bäckryd E. Do the potential benefits outweigh the risks? An update on the use of ziconotide in clinical practice. Eur J Pain. 2018;22(7):1193–202.PubMedCrossRefGoogle Scholar
  90. 90.
    Do S-H. Magnesium: a versatile drug for anesthesiologists. Korean J Anesthesiol. 2013;65(1):4–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Farzanegan B, Zangi M, Saeedi K, et al. Effect of adding magnesium sulphate to epidural bupivacaine and morphine on post-thoracotomy pain management: a randomized, double-blind, clinical trial. Basic Clin Pharmacol Toxicol. 2018;123(5):602–6.CrossRefGoogle Scholar
  92. 92.
    Kizilcik N, Koner O. Magnesium sulfate reduced opioid consumption in obese patients undergoing sleeve gastrectomy: a prospective, randomized clinical trial. Obes Surg. 2018;28(9):2783–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Abdelaziz AA. Efficacy of pectoral nerve block using bupivacaine with or without magnesium sulfate. Anesth Essays Res. 2018;12(2):440–5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Omar Viswanath
    • 1
    • 2
    • 3
    Email author
  • Ivan Urits
    • 4
  • Mark R. Jones
    • 4
  • Jacqueline M. Peck
    • 5
  • Justin Kochanski
    • 6
  • Morgan Hasegawa
    • 6
  • Best Anyama
    • 7
  • Alan D. Kaye
    • 7
  1. 1.Valley Anesthesiology and Pain Consultants, Envision Physician ServicesPhoenixUSA
  2. 2.Department of AnesthesiologyUniversity of Arizona College of Medicine-PhoenixPhoenixUSA
  3. 3.Department of AnesthesiologyCreighton University School of MedicineOmahaUSA
  4. 4.Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain MedicineHarvard Medical SchoolBostonUSA
  5. 5.Department of AnesthesiologyMt. Sinai Medical Center of FloridaMiami BeachUSA
  6. 6.Creighton University School of Medicine – Phoenix Regional CampusPhoenixUSA
  7. 7.Department of AnesthesiologyLouisiana State University Health Science CenterNew OrleansUSA

Personalised recommendations