Advertisement

Painful Connections: Densification Versus Fibrosis of Fascia

  • Piero G. Pavan
  • Antonio Stecco
  • Robert Stern
  • Carla Stecco
Myofascial Pain (R Gerwin, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Myofascial Pain

Abstract

Deep fascia has long been considered a source of pain, secondary to nerve pain receptors becoming enmeshed within the pathological changes to which fascia are subject. Densification and fibrosis are among such changes. They can modify the mechanical properties of deep fasciae and damage the function of underlying muscles or organs. Distinguishing between these two different changes in fascia, and understanding the connective tissue matrix within fascia, together with the mechanical forces involved, will make it possible to assign more specific treatment modalities to relieve chronic pain syndromes. This review provides an overall description of deep fasciae and the mechanical properties in order to identify the various alterations that can lead to pain. Diet, exercise, and overuse syndromes are able to modify the viscosity of loose connective tissue within fascia, causing densification, an alteration that is easily reversible. Trauma, surgery, diabetes, and aging alter the fibrous layers of fasciae, leading to fascial fibrosis.

Keywords

Fascia Densification Fibrosis Connective tissue Hyaluronan Loose connective tissue Aging Overuse syndrome Mechanics Hysteresis Stress–strain curves Load Lines of forces 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Piero G. Pavan, Dr. Antonio Stecco, Dr. Robert Stern, and Dr. Carla Stecco each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.•
    Schilder A, Hoheisel U, Magerl W, Benrath J, Klein T, Treede RD. Sensory findings after stimulation of the thoracolumbar fascia with hypertonic saline suggest its contribution to low back pain. Pain. 2014;155:222–31. This article confirms the fundamental role of the fascia in the etiology of pain in comparison at the other tissues.PubMedCrossRefGoogle Scholar
  2. 2.
    Ercole B, Antonio S, Julie Ann D, Stecco C. How much time is required to modify a fascial fibrosis? J Bodyw Mov Ther. 2010;14:318–25.PubMedCrossRefGoogle Scholar
  3. 3.••
    Stecco A, Meneghini A, Stern R, Stecco C, Imamura M. Ultrasonography in myofascial neck pain: randomized clinical trial for diagnosis and follow-up. Surg Radiol Anat. 2014;36:243–53. This article is the first that show the modification of the fascia in patients before and after treatment.PubMedCrossRefGoogle Scholar
  4. 4.
    Saar JD, Grothaus PC. Dupuytren's disease: an overview. Plast Reconstr Surg. 2000;106:125–34.PubMedGoogle Scholar
  5. 5.
    Paudyal BP, Gyawalee M, Sigdel K. Eosinophilic fascitis: a rare fibrosing disorder. Kathmandu Univ Med J (KUMJ). 2012;10:73–5.Google Scholar
  6. 6.
    Stecco C, Pavan PG, Porzionato A, Macchi V, Lancerotto L, Carniel EL, et al. Mechanics of crural fascia: from anatomy to constitutive modelling. Surg Radiol Anat. 2009;31:523–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Benetazzo L, Bizzego A, De Caro R, Frigo G, Guidolin D, Stecco C. 3D reconstruction of the crural and thoracolumbar fasciae. Surg Radiol Anat. 2011;33:855–62.PubMedCrossRefGoogle Scholar
  8. 8.
    Tesarz J, Hoheisel U, Wiedenhöfer B, Mense S. Sensory innervation of the thoracolumbar fascia in rats and humans. Neuroscience. 2011;194:302–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Stecco C, Stern R, Porzionato A, Macchi V, Masiero S, Stecco A, et al. Hyaluronan within fascia in the etiology of myofascial pain. Surg Radiol Anat. 2011;33:891–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Huijing PA, Yaman A, Ozturk C, Yucesoy CA. Effects of knee joint angle on global and local strains within human triceps surae muscle: MRI analysis indicating in vivo myofascial force transmission between synergistic muscles. Surg Radiol Anat. 2011;33:869–79.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Yucesoy CA. Epimuscular myofascial force transmission implies novel principles for muscular mechanics. Exerc Sport Sci Rev. 2010;38:128–34.PubMedCrossRefGoogle Scholar
  12. 12.
    Stecco C, Gagey O, Macchi V, Porzionato A, De Caro R, Aldegheri R, et al. Tendinous muscular insertions onto the deep fascia of the upper limb. First part: anatomical study. Morphologie. 2007;91:29–37.PubMedCrossRefGoogle Scholar
  13. 13.
    van der Wal J. The architecture of the connective tissue in the musculoskeletal system-an often overlooked functional parameter as to proprioception in the locomotor apparatus. Int J Ther Massage Bodywork. 2009;2:9–23.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Pavan PG, Stecco C, Darwish S, Natali AN, De Caro R. Investigation of the mechanical properties of the plantar aponeurosis. Surg Radiol Anat. 2011;33:905–11.PubMedCrossRefGoogle Scholar
  15. 15.••
    Stecco C, Pavan P, Pachera P, De Caro R, Natali A. Investigation of the mechanical properties of the human crural fascia and their possible clinical implications. Surg Radiol Anat. 2014;36:25–32. This article assess the crural fascia from mechanical point of view, showing its clinical aspects.PubMedCrossRefGoogle Scholar
  16. 16.
    Pancheri FQ, Eng CM, Lieberman DE, Biewener AA, Dorfmann L. A constitutive description of the anisotropic response of the fascia lata. J Mech Behav Biomed Mater. 2014;30:306–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang HQ, Wei YY, Wu ZX, Luo ZJ. Impact of leg lengthening on viscoelastic properties of the deep fascia. BMC Musculoskelet Disord. 2009;10:105.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Trindade VL, Martins PA, Santos S, Parente MP, Natal Jorge RM, Santos A, et al. Experimental study of the influence of senescence in the biomechanical properties of the temporal tendon and deep temporal fascia based on uniaxial tension tests. J Biomech. 2012;45:199–201.PubMedCrossRefGoogle Scholar
  19. 19.
    Hurschler C, Vanderby Jr R, Martinez DA, Vailas AC, Turnipseed WD. Mechanical and biochemical analyses of tibial compartment fascia in chronic compartment syndrome. Ann Biomed Eng. 1994;22:272–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Wren TA, Carter DR. A microstructural model for the tensile constitutive and failure behavior of soft skeletal connective tissues. J Biomech Eng. 1998;120:55–61.PubMedCrossRefGoogle Scholar
  21. 21.
    Hurschler C, Provenzano PP, Vanderby Jr R. Application of a probabilistic microstructural model to determine reference length and toe-to-linear region transition in fibrous connective tissue. J Biomech Eng. 2003;125:415–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Verleisdonk EJ, Schmitz RF, van der Werken C. Long-term results of fasciotomy of the anterior compartment in patients with exercise-induced pain in the lower leg. Int J Sports Med. 2004;25:224–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Pavan G, Pachera P, Stecco C, Natali AN. Constitutive modeling of time dependent response of human plantar aponeurosis. Comput Math Methods Med. 2014:530242.Google Scholar
  24. 24.
    Wójcik B, Jabłoński M, Gębala E, Drelich M. A comparison of effectiveness of fascial relaxation and classic model of patients rehabilitation after hip joint endoprosthetics. Ortop Traumatol Rehabil. 2012;14:161–78.PubMedCrossRefGoogle Scholar
  25. 25.
    Yahia LH, Drouin G. Study of the hysteresis phenomenon in canine anterior cruciate ligaments. J Biomed Eng. 1990;12:57–62.PubMedCrossRefGoogle Scholar
  26. 26.
    Piehl-Aulin K, Laurent C, Engström-Laurent A, Hellström S, Henriksson J. Hyaluronan in human skeletal muscle of lower extremity: concentration, distribution, and effect of exercise. J Appl Physiol. 1985;71:2493–8.Google Scholar
  27. 27.
    McCombe D, Brown T, Slavin J, Morrison WA. The histochemical structure of the deep fascia and its structural response to surgery. J Hand Surg (Br). 2001;26:89–97.CrossRefGoogle Scholar
  28. 28.
    Goetz JE, Baer TE. Mechanical behavior of carpal tunnel subsynovial connective tissue under compression. Iowa Orthop J. 2011;31:127–32.PubMedCentralPubMedGoogle Scholar
  29. 29.•
    Langevin HM, Fox JR, Koptiuch C, Badger GJ, Greenan-Naumann AC, Bouffard NA, et al. Reduced thoracolumbar fascia shear strain in human chronic low back pain. BMC Musculoskelet Disord. 2011;12:203. This article proves the functional modification of the fascia related to nonspecific low back pain.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Knepper PA, Covici S, Fadel JR, Mayanil CS, Ritch R. Surface-tension properties of hyaluronic Acid. J Glaucoma. 1995;4:194–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Matteini P, Dei L, Carretti E, Volpi N, Goti A, Pini R. Structural behavior of highly concentrated hyaluronan. Biomacromolecules. 2009;10:1516–22.PubMedCrossRefGoogle Scholar
  32. 32.
    Tadmor R, Chen N, Israelachvili JN. Thin film rheology and lubricity of hyaluronic acid solutions at a normal physiological concentration. J Biomed Mater Res. 2002;61:514–23.PubMedCrossRefGoogle Scholar
  33. 33.
    Chin L, Calabro A, Walker E, Derwin KA. Mechanical properties of tyramine substituted-hyaluronan enriched fascia extracellular matrix. J Biomed Mater Res A. 2012;100:786–93.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Tømmeraas K, Melander C. Kinetics of hyaluronan hydrolysis in acidic solution at various pH values. Biomacromolecules. 2008;9:1535–40.PubMedCrossRefGoogle Scholar
  35. 35.
    Gatej I, Popa M, Rinaudo M. Role of the pH on hyaluronan behavior in aqueous solution. Biomacromolecules. 2005;6:61–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Juel C, Klarskov C, Nielsen JJ, Krustrup P, Mohr M, Bangsbo J. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am J Physiol Endocrinol Metab. 2004;286:E245–51.PubMedCrossRefGoogle Scholar
  37. 37.
    Juel C, Bangsbo J, Graham T, Saltin B. Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extensor exercise. Acta Physiol Scand. 1990;140:147–59.PubMedCrossRefGoogle Scholar
  38. 38.
    Nielsen JJ, Mohr M, Klarskov C, Kristensen M, Krustrup P, Juel C, et al. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. J Physiol. 2004;554:857–70.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Dintenfass L. Lubrication in synovial joints: a theoretical analysis. J Bone Joint Surg Am. 1963;45:1241–56.PubMedGoogle Scholar
  40. 40.
    Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol. 2004;36:1031–7.PubMedCrossRefGoogle Scholar
  41. 41.
    De la Torre J, Sholar A. Wound healing: chronic wounds. Emedicine.com. Accessed 20 Jan 2008.
  42. 42.
    Ruszczak Z. Effect of collagen matrices on dermal wound healing. Adv Drug Deliv Rev. 2003;55:1595–611.PubMedCrossRefGoogle Scholar
  43. 43.
    Watts GT. Wound shape and tissue tension in healing. Br J Surg. 1960;47:555–61.PubMedCrossRefGoogle Scholar
  44. 44.
    Miyamoto J, Nagasao T, Miyamoto S, Nakajima T. Biomechanical analysis of stresses occurring in vertical and transverse scars on the lower leg. Plast Reconstr Surg. 2009;124:1974–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Cohen MP. Nonenzymatic glycation: a central mechanism in diabetic microvasculopathy? J Diabet Complicat. 1988;2:214–17.CrossRefGoogle Scholar
  46. 46.
    Arkkila PE, Rönnemaa T, Koskinen PJ, Kantola IM, Seppänen E, Viikari JS. Biochemical markers of type III and I collagen: association with retinopathy and neuropathy in type 1 diabetic subjects. Diabet Med. 2001;18:816–21.PubMedCrossRefGoogle Scholar
  47. 47.
    Duffin AC, Lam A, Kidd R, Chan AK, Donaghue KC. Ultrasonography of plantar soft tissues thickness in young people with diabetes. Diabet Med. 2002;19:1009–13.PubMedCrossRefGoogle Scholar
  48. 48.
    Li Y, Fessel G, Georgiadis M, Snedeker JG. Advanced glycation end-products diminish tendon collagen fiber sliding. Matrix Biol. 2013;32:169–77.PubMedCrossRefGoogle Scholar
  49. 49.
    Lee H, Petrofsky JS, Daher N, Berk L, Laymon M. Differences in anterior cruciate ligament elasticity and force for knee flexion in women: oral contraceptive users versus non-oral contraceptive users. Eur J Appl Physiol. 2014;114:285–94.PubMedCrossRefGoogle Scholar
  50. 50.
    Wojtysiak D. Effect of age on structural properties of intramuscular connective tissue, muscle fibre, collagen content and meat tenderness in pig longissimus lumborum muscle. Folia Biol (Krakow). 2013;61:2216.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Piero G. Pavan
    • 1
    • 2
  • Antonio Stecco
    • 3
  • Robert Stern
    • 4
  • Carla Stecco
    • 2
    • 5
  1. 1.Department of Industrial EngineeringUniversity of PadovaPadovaItaly
  2. 2.Centre for Mechanics of Biological MaterialsUniversity of PadovaPadovaItaly
  3. 3.Internal Medicine DepartmentUniversity of PadovaPadovaItaly
  4. 4.Division of Basic Biomedical SciencesTouro College of Osteopathic MedicineNew YorkUSA
  5. 5.Molecular Medicine DepartmentUniversity of PadovaPadovaItaly

Personalised recommendations