Advertisement

Using Animal Models to Understand Cancer Pain in Humans

  • Gillian L. Currie
  • Emily S. Sena
  • Marie T. Fallon
  • Malcolm R. Macleod
  • Lesley A. Colvin
Cancer Pain (D Marcus, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Cancer Pain

Abstract

Cancer pain is not a single entity but a complex pain state involving different pain syndromes, with inflammatory, neuropathic, compressive, and ischaemic mechanisms. Current therapeutic regimens are based largely on opioids, although opioid treatment can lead to many side effects. Studies using animal models of cancer pain are aimed at understanding cancer pain and developing novel therapies. The most frequently reported models are of bone cancer pain, predominantly modelling pain associated with tumour growth within bone marrow. Here we summarise recent findings from studies using animal models of cancer pain and discuss the methodological quality of these studies.

Keywords

Cancer pain Animal models Neuropathic pain Inflammation Opioid treatment 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Gillian L. Currie, Dr. Emily S. Sena, Dr. Marie T. Fallon, Dr. Malcolm R. Macleod and Dr. Lesley A. Colvin each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Grond S, Zech D, Diefenbach C, Radbruch L, Lehmann KA. Assessment of cancer pain: a prospective evaluation in 2266 cancer patients referred to a pain service. Pain. 1996;64(1):107–14.PubMedCrossRefGoogle Scholar
  2. 2.•
    Currie GL, Delaney A, Bennett MI, Dickenson AH, Egan KJ, Vesterinen HM, et al. Animal models of bone cancer pain: systematic review and meta-analyses. Pain. 2013;154(6):917–26. doi: 10.1016/j.pain.2013.02.033. This systematic review and meta-analysis describing in vivo modelling of bone cancer pain showed for the first time that methodological quality has a significant impact on reported behavioural outcomes in in vivo studies of pain. Blinding and randomisation were associated with smaller observed differences in behavioural outcomes between tumour-bearing and control animals.PubMedCrossRefGoogle Scholar
  3. 3.
    Gui Q, Xu C, Zhuang L, Xia S, Chen Y, Peng P, et al. A new rat model of bone cancer pain produced by rat breast cancer cells implantation of the shaft of femur at the third trochanter level. Cancer Boil There. 2013;14(2):193–9. doi: 10.4161/cbt.23291.CrossRefGoogle Scholar
  4. 4.
    Laird BJ, Walley J, Murray GD, Clausen E, Colvin LA, Fallon MT. Characterization of cancer-induced bone pain: an exploratory study. Support Care Cancer. 2011;19(9):1393–401. doi: 10.1007/s00520-010-0961-3.PubMedCrossRefGoogle Scholar
  5. 5.
    Vierck CJ, Hansson PT, Yezierski RP. Clinical and pre-clinical pain assessment: are we measuring the same thing? Pain. 2008;135(1–2):7–10. doi: 10.1016/j.pain.2007.12.008.PubMedCrossRefGoogle Scholar
  6. 6.
    Buga S, Sarria JE. The management of pain in metastatic bone disease. Cancer Control. 2012;19(2):154–66.PubMedGoogle Scholar
  7. 7.•
    Sikandar S, Dickenson II AH. No need for translation when the same language is spoken. Br J Anaesth. 2013;111(1):3–6. doi: 10.1093/bja/aet210. This editorial explored the reasons for the apparent failure of results from studies using animal models of chronic pain to translate to effective therapies to the clinic.PubMedCrossRefGoogle Scholar
  8. 8.
    Muralidharan A, Wyse BD, Smith MT. Optimization and characterization of a rat model of prostate cancer-induced bone pain using behavioral, pharmacological, radiological, histological and immunohistochemical methods. Pharmacol Biochem Behav. 2013;106:33–46. doi: 10.1016/j.pbb.2013.02.020.PubMedCrossRefGoogle Scholar
  9. 9.
    Mao-Ying QL, Zhao J, Dong ZQ, Wang J, Yu J, Yan MF, et al. A rat model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells. Biochem Biophys Res Commun. 2006;345(4):1292–8. doi: 10.1016/j.bbrc.2006.04.186.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee BH, Seong J, Kim UJ, Won R, Kim J. Behavioral characteristics of a mouse model of cancer pain. Yonsei Med J. 2005;46(2):252–9.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Miao XR, Gao XF, Wu JX, Lu ZJ, Huang ZX, Li XQ, et al. Bilateral downregulation of Nav1.8 in dorsal root ganglia of rats with bone cancer pain induced by inoculation with Walker 256 breast tumor cells. BMC Cancer. 2010;10:216.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Schwei MJ, Honore P, Rogers SD, Salak-Johnson JL, Finke MP, Ramnaraine ML, et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci. 1999;19(24):10886–97.PubMedGoogle Scholar
  13. 13.
    Zhang RX, Liu B, Wang L, Ren K, Qiao JT, Berman BM, et al. Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia. Pain. 2005;118(1–2):125–36. doi: 10.1016/j.pain.2005.08.001.PubMedCrossRefGoogle Scholar
  14. 14.
    Hald A, Nedergaard S, Hansen RR, Ding M, Heegaard AM. Differential activation of spinal cord glial cells in murine models of neuropathic and cancer pain. Eur J Pain. 2009;13(2):138–45. doi: 10.1016/j.ejpain.2008.03.014.PubMedCrossRefGoogle Scholar
  15. 15.
    Liu S, Yang J, Wang L, Jiang M, Qiu Q, Ma Z, et al. Tibia tumor-induced cancer pain involves spinal p38 mitogen-activated protein kinase activation via TLR4-dependent mechanisms. Brain Res. 2010;1346:213–23. doi: 10.1016/j.brainres.2010.05.014.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang XW, Li TT, Zhao J, Mao-Ying QL, Zhang H, Hu S, et al. Extracellular signal-regulated kinase activation in spinal astrocytes and microglia contributes to cancer-induced bone pain in rats. Neuroscience. 2012;217:172–81. doi: 10.1016/j.neuroscience.2012.04.065.PubMedCrossRefGoogle Scholar
  17. 17.
    Hu JH, Yang JP, Liu L, Li CF, Wang LN, Ji FH, et al. Involvement of CX3CR1 in bone cancer pain through the activation of microglia p38 MAPK pathway in the spinal cord. Brain Res. 2012;1465:1–9. doi: 10.1016/j.brainres.2012.05.020.PubMedCrossRefGoogle Scholar
  18. 18.
    Hu S, Mao-Ying QL, Wang J, Wang ZF, Mi WL, Wang XW, et al. Lipoxins and aspirin-triggered lipoxin alleviate bone cancer pain in association with suppressing expression of spinal proinflammatory cytokines. J Neuroinflammation. 2012;9:278. doi: 10.1186/1742-2094-9-278.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Huang JL, Chen XL, Guo C, Wang YX. Contributions of spinal D-amino acid oxidase to bone cancer pain. Amino Acids. 2012;43(5):1905–18. doi: 10.1007/s00726-012-1390-z.PubMedCrossRefGoogle Scholar
  20. 20.
    Wu JX, Xu MY, Miao XR, Lu ZJ, Yuan XM, Li XQ, et al. Functional up-regulation of P2X3 receptors in dorsal root ganglion in a rat model of bone cancer pain. Eur J Pain. 2012;16(10):1378–88. doi: 10.1002/j.1532-2149.2012.00149.x.PubMedCrossRefGoogle Scholar
  21. 21.
    Hansen RR, Nasser A, Falk S, Baldvinsson SB, Ohlsson PH, Bahl JM, et al. Chronic administration of the selective P2X3, P2X2/3 receptor antagonist, A-317491, transiently attenuates cancer-induced bone pain in mice. Eur J Pharmacol. 2012;688(1–3):27–34. doi: 10.1016/j.ejphar.2012.05.008.PubMedCrossRefGoogle Scholar
  22. 22.
    Zheng Q, Fang D, Liu M, Cai J, Wan Y, Han JS, et al. Suppression of KCNQ/M (Kv7) potassium channels in dorsal root ganglion neurons contributes to the development of bone cancer pain in a rat model. Pain. 2013;154(3):434–48. doi: 10.1016/j.pain.2012.12.005.PubMedCrossRefGoogle Scholar
  23. 23.
    Jimenez-Andrade JM, Mantyh WG, Bloom AP, Ferng AS, Geffre CP, Mantyh PW. Bone cancer pain. Ann N Y Acad Sci. 2010;1198:173–81. doi: 10.1111/j.1749-6632.2009.05429.x.PubMedCrossRefGoogle Scholar
  24. 24.
    Pevida M, Gonzalez-Rodriguez S, Lastra A, Hidalgo A, Menendez L, Baamonde A. CCL2 released at tumoral level contributes to the hyperalgesia evoked by intratibial inoculation of NCTC 2472 but not B16-F10 cells in mice. Naunyn Schmiedebergs Arch Pharmacol. 2012;385(11):1053–61. doi: 10.1007/s00210-012-0787-2.PubMedCrossRefGoogle Scholar
  25. 25.
    Varani K, Vincenzi F, Targa M, Paradiso B, Parrilli A, Fini M, et al. The stimulation of A(3) adenosine receptors reduces bone-residing breast cancer in a rat preclinical model. Eur J Cancer. 2013;49(2):482–91. doi: 10.1016/j.ejca.2012.06.005.PubMedCrossRefGoogle Scholar
  26. 26.
    Dore-Savard L, Beaudet N, Tremblay L, Xiao Y, Lepage M, Sarret P. A micro-imaging study linking bone cancer pain with tumor growth and bone resorption in a rat model. Clin Exp Metastasis. 2013;30(2):225–36. doi: 10.1007/s10585-012-9530-0.PubMedCrossRefGoogle Scholar
  27. 27.
    Falk S, Uldall M, Appel C, Ding M, Heegaard AM. Influence of sex differences on the progression of cancer-induced bone pain. Anticancer Res. 2013;33(5):1963–9.PubMedGoogle Scholar
  28. 28.
    Lynch ME, Campbell F. Cannabinoids for treatment of chronic non-cancer pain; a systematic review of randomized trials. Br J Clin Pharmacol. 2011;72(5):735–44. doi: 10.1111/j.1365-2125.2011.03970.x.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Cui JH, Kim WM, Lee HG, Kim YO, Kim CM, Yoon MH. Antinociceptive effect of intrathecal cannabinoid receptor agonist WIN 55,212-2 in a rat bone tumor pain model. Neurosci Lett. 2011;493(3):67–71. doi: 10.1016/j.neulet.2010.12.052.PubMedCrossRefGoogle Scholar
  30. 30.
    Gu X, Mei F, Liu Y, Zhang R, Zhang J, Ma Z. Intrathecal administration of the cannabinoid 2 receptor agonist JWH015 can attenuate cancer pain and decrease mRNA expression of the 2B subunit of N-methyl-D-aspartic acid. Anesth Analg. 2011;113(2):405–11. doi: 10.1213/ANE.0b013e31821d1062.PubMedCrossRefGoogle Scholar
  31. 31.
    Vincenzi F, Targa M, Corciulo C, Tabrizi MA, Merighi S, Gessi S, et al. Antinociceptive effects of the selective CB2 agonist MT178 in inflammatory and chronic rodent pain models. Pain. 2013;154(6):864–73. doi: 10.1016/j.pain.2013.02.007.PubMedCrossRefGoogle Scholar
  32. 32.
    Lozano-Ondoua AN, Hanlon KE, Symons-Liguori AM, Largent-Milnes TM, Havelin JJ, Ferland 3rd HL, et al. Disease modification of breast cancer-induced bone remodeling by cannabinoid 2 receptor agonists. J Bone Miner Res. 2013;28(1):92–107. doi: 10.1002/jbmr.1732.PubMedCrossRefGoogle Scholar
  33. 33.
    Middlemiss T, Laird BJ, Fallon MT. Mechanisms of cancer-induced bone pain. Clin Oncol (R Coll Radiol). 2011;23(6):387–92. doi: 10.1016/j.clon.2011.03.003.PubMedCrossRefGoogle Scholar
  34. 34.
    Minami K, Hasegawa M, Ito H, Nakamura A, Tomii T, Matsumoto M, et al. Morphine, oxycodone, and fentanyl exhibit different analgesic profiles in mouse pain models. J Pharmacol Sci. 2009;111(1):60–72.PubMedCrossRefGoogle Scholar
  35. 35.
    Nakamura A, Hasegawa M, Minami K, Kanbara T, Tomii T, Nishiyori A, et al. Differential activation of the mu-opioid receptor by oxycodone and morphine in pain-related brain regions in a bone cancer pain model. Br J Pharmacol. 2013;168(2):375–88. doi: 10.1111/j.1476-5381.2012.02139.x.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Kolosov A, Goodchild CS, Williams ED, Cooke I. Flupirtine enhances the anti-hyperalgesic effects of morphine in a rat model of prostate bone metastasis. Pain Med. 2012;13(11):1444–56. doi: 10.1111/j.1526-4637.2012.01502.x.PubMedCrossRefGoogle Scholar
  37. 37.
    Pickert G, Myrczek T, Ruckert S, Weigert A, Haussler A, Ferreiros N, et al. Inhibition of GTP cyclohydrolase reduces cancer pain in mice and enhances analgesic effects of morphine. J Mol Med (Berl). 2012;90(12):1473–86. doi: 10.1007/s00109-012-0927-7.PubMedCrossRefGoogle Scholar
  38. 38.
    Tabata M, Murata E, Ueda K, Kato-Kogoe N, Kuroda Y, Hirose M. Effects of TrkA inhibitory peptide on cancer-induced pain in a mouse melanoma model. J Anesth. 2012;26(4):545–51. doi: 10.1007/s00540-012-1377-7.PubMedCrossRefGoogle Scholar
  39. 39.
    Adelstein DJ, Ridge JA, Gillison ML, Chaturvedi AK, D'Souza G, Gravitt PE, et al. Head and neck squamous cell cancer and the human papillomavirus: summary of a National Cancer Institute State of the Science Meeting, November 9–10, 2008, Washington, D.C. Head Neck. 2009;31(11):1393–422.PubMedCrossRefGoogle Scholar
  40. 40.
    Lam DK, Dang D, Zhang J, Dolan JC, Schmidt BL. Novel animal models of acute and chronic cancer pain: a pivotal role for PAR2. J Neurosci. 2012;32(41):14178–83. doi: 10.1523/jneurosci.2399-12.2012.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Suzuki M, Narita M, Hasegawa M, Furuta S, Kawamata T, Ashikawa M, et al. Sensation of abdominal pain induced by peritoneal carcinomatosis is accompanied by changes in the expression of substance P and mu-opioid receptors in the spinal cord of mice. Anesthesiology. 2012;117(4):847–56. doi: 10.1097/ALN.0b013e31826a4ac8.PubMedCrossRefGoogle Scholar
  42. 42.
    Macleod MR, O'Collins T, Horky LL, Howells DW, Donnan GA. Systematic review and metaanalysis of the efficacy of FK506 in experimental stroke. J Cereb Blood Flow Metab. 2005;25(6):713–21. doi: 10.1038/sj.jcbfm.9600064.PubMedCrossRefGoogle Scholar
  43. 43.
    Macleod MR, van der Worp HB, Sena ES, Howells DW, Dirnagl U, Donnan GA. Evidence for the efficacy of NXY-059 in experimental focal cerebral ischaemia is confounded by study quality. Stroke. 2008;39(10):2824–9. doi: 10.1161/strokeaha.108.515957.PubMedCrossRefGoogle Scholar
  44. 44.
    Rooke ED, Vesterinen HM, Sena ES, Egan KJ, Macleod MR. Dopamine agonists in animal models of Parkinson's disease: a systematic review and meta-analysis. Parkinsonism Relat Disord. 2011;17(5):313–20. doi: 10.1016/j.parkreldis.2011.02.010.PubMedCrossRefGoogle Scholar
  45. 45.
    Vesterinen HM, Sena ES, Ffrench-Constant C, Williams A, Chandran S, Macleod MR. Improving the translational hit of experimental treatments in multiple sclerosis. Mult Scler. 2010;16(9):1044–55. doi: 10.1177/1352458510379612.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Gillian L. Currie
    • 1
  • Emily S. Sena
    • 1
    • 4
  • Marie T. Fallon
    • 2
  • Malcolm R. Macleod
    • 1
  • Lesley A. Colvin
    • 3
  1. 1.Department of Clinical Neurosciences, Chancellor’s BuildingUniversity of EdinburghEdinburghUK
  2. 2.Edinburgh Cancer Research UK CentreUniversity of Edinburgh, Western General HospitalEdinburghUK
  3. 3.Department of Anaesthesia, Critical Care and Pain MedicineWestern General HospitalEdinburghUK
  4. 4.Stroke DivisionFlorey Institute of Neuroscience and Mental HealthMelbourneAustralia

Personalised recommendations