Skip to main content

Advertisement

Log in

Using Animal Models to Understand Cancer Pain in Humans

  • Cancer Pain (D Marcus, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Cancer pain is not a single entity but a complex pain state involving different pain syndromes, with inflammatory, neuropathic, compressive, and ischaemic mechanisms. Current therapeutic regimens are based largely on opioids, although opioid treatment can lead to many side effects. Studies using animal models of cancer pain are aimed at understanding cancer pain and developing novel therapies. The most frequently reported models are of bone cancer pain, predominantly modelling pain associated with tumour growth within bone marrow. Here we summarise recent findings from studies using animal models of cancer pain and discuss the methodological quality of these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Grond S, Zech D, Diefenbach C, Radbruch L, Lehmann KA. Assessment of cancer pain: a prospective evaluation in 2266 cancer patients referred to a pain service. Pain. 1996;64(1):107–14.

    Article  CAS  PubMed  Google Scholar 

  2. Currie GL, Delaney A, Bennett MI, Dickenson AH, Egan KJ, Vesterinen HM, et al. Animal models of bone cancer pain: systematic review and meta-analyses. Pain. 2013;154(6):917–26. doi:10.1016/j.pain.2013.02.033. This systematic review and meta-analysis describing in vivo modelling of bone cancer pain showed for the first time that methodological quality has a significant impact on reported behavioural outcomes in in vivo studies of pain. Blinding and randomisation were associated with smaller observed differences in behavioural outcomes between tumour-bearing and control animals.

    Article  PubMed  Google Scholar 

  3. Gui Q, Xu C, Zhuang L, Xia S, Chen Y, Peng P, et al. A new rat model of bone cancer pain produced by rat breast cancer cells implantation of the shaft of femur at the third trochanter level. Cancer Boil There. 2013;14(2):193–9. doi:10.4161/cbt.23291.

    Article  CAS  Google Scholar 

  4. Laird BJ, Walley J, Murray GD, Clausen E, Colvin LA, Fallon MT. Characterization of cancer-induced bone pain: an exploratory study. Support Care Cancer. 2011;19(9):1393–401. doi:10.1007/s00520-010-0961-3.

    Article  PubMed  Google Scholar 

  5. Vierck CJ, Hansson PT, Yezierski RP. Clinical and pre-clinical pain assessment: are we measuring the same thing? Pain. 2008;135(1–2):7–10. doi:10.1016/j.pain.2007.12.008.

    Article  CAS  PubMed  Google Scholar 

  6. Buga S, Sarria JE. The management of pain in metastatic bone disease. Cancer Control. 2012;19(2):154–66.

    CAS  PubMed  Google Scholar 

  7. Sikandar S, Dickenson II AH. No need for translation when the same language is spoken. Br J Anaesth. 2013;111(1):3–6. doi:10.1093/bja/aet210. This editorial explored the reasons for the apparent failure of results from studies using animal models of chronic pain to translate to effective therapies to the clinic.

    Article  CAS  PubMed  Google Scholar 

  8. Muralidharan A, Wyse BD, Smith MT. Optimization and characterization of a rat model of prostate cancer-induced bone pain using behavioral, pharmacological, radiological, histological and immunohistochemical methods. Pharmacol Biochem Behav. 2013;106:33–46. doi:10.1016/j.pbb.2013.02.020.

    Article  CAS  PubMed  Google Scholar 

  9. Mao-Ying QL, Zhao J, Dong ZQ, Wang J, Yu J, Yan MF, et al. A rat model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells. Biochem Biophys Res Commun. 2006;345(4):1292–8. doi:10.1016/j.bbrc.2006.04.186.

    Article  CAS  PubMed  Google Scholar 

  10. Lee BH, Seong J, Kim UJ, Won R, Kim J. Behavioral characteristics of a mouse model of cancer pain. Yonsei Med J. 2005;46(2):252–9.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Miao XR, Gao XF, Wu JX, Lu ZJ, Huang ZX, Li XQ, et al. Bilateral downregulation of Nav1.8 in dorsal root ganglia of rats with bone cancer pain induced by inoculation with Walker 256 breast tumor cells. BMC Cancer. 2010;10:216.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Schwei MJ, Honore P, Rogers SD, Salak-Johnson JL, Finke MP, Ramnaraine ML, et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci. 1999;19(24):10886–97.

    CAS  PubMed  Google Scholar 

  13. Zhang RX, Liu B, Wang L, Ren K, Qiao JT, Berman BM, et al. Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia. Pain. 2005;118(1–2):125–36. doi:10.1016/j.pain.2005.08.001.

    Article  CAS  PubMed  Google Scholar 

  14. Hald A, Nedergaard S, Hansen RR, Ding M, Heegaard AM. Differential activation of spinal cord glial cells in murine models of neuropathic and cancer pain. Eur J Pain. 2009;13(2):138–45. doi:10.1016/j.ejpain.2008.03.014.

    Article  CAS  PubMed  Google Scholar 

  15. Liu S, Yang J, Wang L, Jiang M, Qiu Q, Ma Z, et al. Tibia tumor-induced cancer pain involves spinal p38 mitogen-activated protein kinase activation via TLR4-dependent mechanisms. Brain Res. 2010;1346:213–23. doi:10.1016/j.brainres.2010.05.014.

    Article  CAS  PubMed  Google Scholar 

  16. Wang XW, Li TT, Zhao J, Mao-Ying QL, Zhang H, Hu S, et al. Extracellular signal-regulated kinase activation in spinal astrocytes and microglia contributes to cancer-induced bone pain in rats. Neuroscience. 2012;217:172–81. doi:10.1016/j.neuroscience.2012.04.065.

    Article  CAS  PubMed  Google Scholar 

  17. Hu JH, Yang JP, Liu L, Li CF, Wang LN, Ji FH, et al. Involvement of CX3CR1 in bone cancer pain through the activation of microglia p38 MAPK pathway in the spinal cord. Brain Res. 2012;1465:1–9. doi:10.1016/j.brainres.2012.05.020.

    Article  CAS  PubMed  Google Scholar 

  18. Hu S, Mao-Ying QL, Wang J, Wang ZF, Mi WL, Wang XW, et al. Lipoxins and aspirin-triggered lipoxin alleviate bone cancer pain in association with suppressing expression of spinal proinflammatory cytokines. J Neuroinflammation. 2012;9:278. doi:10.1186/1742-2094-9-278.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Huang JL, Chen XL, Guo C, Wang YX. Contributions of spinal D-amino acid oxidase to bone cancer pain. Amino Acids. 2012;43(5):1905–18. doi:10.1007/s00726-012-1390-z.

    Article  CAS  PubMed  Google Scholar 

  20. Wu JX, Xu MY, Miao XR, Lu ZJ, Yuan XM, Li XQ, et al. Functional up-regulation of P2X3 receptors in dorsal root ganglion in a rat model of bone cancer pain. Eur J Pain. 2012;16(10):1378–88. doi:10.1002/j.1532-2149.2012.00149.x.

    Article  CAS  PubMed  Google Scholar 

  21. Hansen RR, Nasser A, Falk S, Baldvinsson SB, Ohlsson PH, Bahl JM, et al. Chronic administration of the selective P2X3, P2X2/3 receptor antagonist, A-317491, transiently attenuates cancer-induced bone pain in mice. Eur J Pharmacol. 2012;688(1–3):27–34. doi:10.1016/j.ejphar.2012.05.008.

    Article  CAS  PubMed  Google Scholar 

  22. Zheng Q, Fang D, Liu M, Cai J, Wan Y, Han JS, et al. Suppression of KCNQ/M (Kv7) potassium channels in dorsal root ganglion neurons contributes to the development of bone cancer pain in a rat model. Pain. 2013;154(3):434–48. doi:10.1016/j.pain.2012.12.005.

    Article  CAS  PubMed  Google Scholar 

  23. Jimenez-Andrade JM, Mantyh WG, Bloom AP, Ferng AS, Geffre CP, Mantyh PW. Bone cancer pain. Ann N Y Acad Sci. 2010;1198:173–81. doi:10.1111/j.1749-6632.2009.05429.x.

    Article  PubMed  Google Scholar 

  24. Pevida M, Gonzalez-Rodriguez S, Lastra A, Hidalgo A, Menendez L, Baamonde A. CCL2 released at tumoral level contributes to the hyperalgesia evoked by intratibial inoculation of NCTC 2472 but not B16-F10 cells in mice. Naunyn Schmiedebergs Arch Pharmacol. 2012;385(11):1053–61. doi:10.1007/s00210-012-0787-2.

    Article  CAS  PubMed  Google Scholar 

  25. Varani K, Vincenzi F, Targa M, Paradiso B, Parrilli A, Fini M, et al. The stimulation of A(3) adenosine receptors reduces bone-residing breast cancer in a rat preclinical model. Eur J Cancer. 2013;49(2):482–91. doi:10.1016/j.ejca.2012.06.005.

    Article  CAS  PubMed  Google Scholar 

  26. Dore-Savard L, Beaudet N, Tremblay L, Xiao Y, Lepage M, Sarret P. A micro-imaging study linking bone cancer pain with tumor growth and bone resorption in a rat model. Clin Exp Metastasis. 2013;30(2):225–36. doi:10.1007/s10585-012-9530-0.

    Article  CAS  PubMed  Google Scholar 

  27. Falk S, Uldall M, Appel C, Ding M, Heegaard AM. Influence of sex differences on the progression of cancer-induced bone pain. Anticancer Res. 2013;33(5):1963–9.

    CAS  PubMed  Google Scholar 

  28. Lynch ME, Campbell F. Cannabinoids for treatment of chronic non-cancer pain; a systematic review of randomized trials. Br J Clin Pharmacol. 2011;72(5):735–44. doi:10.1111/j.1365-2125.2011.03970.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Cui JH, Kim WM, Lee HG, Kim YO, Kim CM, Yoon MH. Antinociceptive effect of intrathecal cannabinoid receptor agonist WIN 55,212-2 in a rat bone tumor pain model. Neurosci Lett. 2011;493(3):67–71. doi:10.1016/j.neulet.2010.12.052.

    Article  CAS  PubMed  Google Scholar 

  30. Gu X, Mei F, Liu Y, Zhang R, Zhang J, Ma Z. Intrathecal administration of the cannabinoid 2 receptor agonist JWH015 can attenuate cancer pain and decrease mRNA expression of the 2B subunit of N-methyl-D-aspartic acid. Anesth Analg. 2011;113(2):405–11. doi:10.1213/ANE.0b013e31821d1062.

    Article  CAS  PubMed  Google Scholar 

  31. Vincenzi F, Targa M, Corciulo C, Tabrizi MA, Merighi S, Gessi S, et al. Antinociceptive effects of the selective CB2 agonist MT178 in inflammatory and chronic rodent pain models. Pain. 2013;154(6):864–73. doi:10.1016/j.pain.2013.02.007.

    Article  CAS  PubMed  Google Scholar 

  32. Lozano-Ondoua AN, Hanlon KE, Symons-Liguori AM, Largent-Milnes TM, Havelin JJ, Ferland 3rd HL, et al. Disease modification of breast cancer-induced bone remodeling by cannabinoid 2 receptor agonists. J Bone Miner Res. 2013;28(1):92–107. doi:10.1002/jbmr.1732.

    Article  CAS  PubMed  Google Scholar 

  33. Middlemiss T, Laird BJ, Fallon MT. Mechanisms of cancer-induced bone pain. Clin Oncol (R Coll Radiol). 2011;23(6):387–92. doi:10.1016/j.clon.2011.03.003.

    Article  CAS  PubMed  Google Scholar 

  34. Minami K, Hasegawa M, Ito H, Nakamura A, Tomii T, Matsumoto M, et al. Morphine, oxycodone, and fentanyl exhibit different analgesic profiles in mouse pain models. J Pharmacol Sci. 2009;111(1):60–72.

    Article  CAS  PubMed  Google Scholar 

  35. Nakamura A, Hasegawa M, Minami K, Kanbara T, Tomii T, Nishiyori A, et al. Differential activation of the mu-opioid receptor by oxycodone and morphine in pain-related brain regions in a bone cancer pain model. Br J Pharmacol. 2013;168(2):375–88. doi:10.1111/j.1476-5381.2012.02139.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kolosov A, Goodchild CS, Williams ED, Cooke I. Flupirtine enhances the anti-hyperalgesic effects of morphine in a rat model of prostate bone metastasis. Pain Med. 2012;13(11):1444–56. doi:10.1111/j.1526-4637.2012.01502.x.

    Article  PubMed  Google Scholar 

  37. Pickert G, Myrczek T, Ruckert S, Weigert A, Haussler A, Ferreiros N, et al. Inhibition of GTP cyclohydrolase reduces cancer pain in mice and enhances analgesic effects of morphine. J Mol Med (Berl). 2012;90(12):1473–86. doi:10.1007/s00109-012-0927-7.

    Article  CAS  PubMed  Google Scholar 

  38. Tabata M, Murata E, Ueda K, Kato-Kogoe N, Kuroda Y, Hirose M. Effects of TrkA inhibitory peptide on cancer-induced pain in a mouse melanoma model. J Anesth. 2012;26(4):545–51. doi:10.1007/s00540-012-1377-7.

    Article  PubMed  Google Scholar 

  39. Adelstein DJ, Ridge JA, Gillison ML, Chaturvedi AK, D'Souza G, Gravitt PE, et al. Head and neck squamous cell cancer and the human papillomavirus: summary of a National Cancer Institute State of the Science Meeting, November 9–10, 2008, Washington, D.C. Head Neck. 2009;31(11):1393–422.

    Article  PubMed  Google Scholar 

  40. Lam DK, Dang D, Zhang J, Dolan JC, Schmidt BL. Novel animal models of acute and chronic cancer pain: a pivotal role for PAR2. J Neurosci. 2012;32(41):14178–83. doi:10.1523/jneurosci.2399-12.2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Suzuki M, Narita M, Hasegawa M, Furuta S, Kawamata T, Ashikawa M, et al. Sensation of abdominal pain induced by peritoneal carcinomatosis is accompanied by changes in the expression of substance P and mu-opioid receptors in the spinal cord of mice. Anesthesiology. 2012;117(4):847–56. doi:10.1097/ALN.0b013e31826a4ac8.

    Article  CAS  PubMed  Google Scholar 

  42. Macleod MR, O'Collins T, Horky LL, Howells DW, Donnan GA. Systematic review and metaanalysis of the efficacy of FK506 in experimental stroke. J Cereb Blood Flow Metab. 2005;25(6):713–21. doi:10.1038/sj.jcbfm.9600064.

    Article  CAS  PubMed  Google Scholar 

  43. Macleod MR, van der Worp HB, Sena ES, Howells DW, Dirnagl U, Donnan GA. Evidence for the efficacy of NXY-059 in experimental focal cerebral ischaemia is confounded by study quality. Stroke. 2008;39(10):2824–9. doi:10.1161/strokeaha.108.515957.

    Article  PubMed  Google Scholar 

  44. Rooke ED, Vesterinen HM, Sena ES, Egan KJ, Macleod MR. Dopamine agonists in animal models of Parkinson's disease: a systematic review and meta-analysis. Parkinsonism Relat Disord. 2011;17(5):313–20. doi:10.1016/j.parkreldis.2011.02.010.

    Article  PubMed  Google Scholar 

  45. Vesterinen HM, Sena ES, Ffrench-Constant C, Williams A, Chandran S, Macleod MR. Improving the translational hit of experimental treatments in multiple sclerosis. Mult Scler. 2010;16(9):1044–55. doi:10.1177/1352458510379612.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Gillian L. Currie, Dr. Emily S. Sena, Dr. Marie T. Fallon, Dr. Malcolm R. Macleod and Dr. Lesley A. Colvin each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm R. Macleod.

Additional information

This article is part of the Topical Collection on Cancer Pain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Currie, G.L., Sena, E.S., Fallon, M.T. et al. Using Animal Models to Understand Cancer Pain in Humans. Curr Pain Headache Rep 18, 423 (2014). https://doi.org/10.1007/s11916-014-0423-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11916-014-0423-6

Keywords

Navigation