Current Pain and Headache Reports

, Volume 13, Issue 3, pp 237–240 | Cite as

Migraine pain, meningeal inflammation, and mast cells

  • Dan Levy


Migraine pain has been attributed to an episode of local sterile meningeal inflammation and the subsequent activation of trigeminal primary afferent nociceptive neurons that supply the intracranial meninges and their related large blood vessels. However, the origin of this inflammatory insult and the endogenous factors that contribute to the activation of meningeal nociceptors remain largely speculative. A particular class of inflammatory cells residing within the intracranial milieu, known as meningeal mast cells, was suggested to play a role in migraine pathophysiology more than five decades ago, but until recently the exact nature of their involvement remained largely unexplored. This review examines the evidence linking meningeal mast cells to migraine and highlights current experimental data implicating these immune cells as potent modulators of meningeal nociceptors’ activity and the genesis of migraine pain.


Migraine Mast Cell Migraine Attack Interstitial Cystitis Pituitary Adenylate Cyclase Activate Polypeptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Lipton RB, Bigal ME, Diamond M, et al.: Migraine prevalence, disease burden, and the need for preventive therapy. Neurology 2007, 68:343–349.PubMedCrossRefGoogle Scholar
  2. 2.
    Burstein R: Deconstructing migraine headache into peripheral and central sensitization. Pain 2001, 89:107–110.PubMedCrossRefGoogle Scholar
  3. 3.
    Pietrobon D, Striessnig J: Neurobiology of migraine. Nat Rev Neurosci 2003, 4:386–398.PubMedCrossRefGoogle Scholar
  4. 4.
    Waeber C, Moskowitz MA: Migraine as an inflammatory disorder. Neurology 2005, 64(Suppl 2):S9–S15.PubMedGoogle Scholar
  5. 5.
    Goadsby PJ, Edvinsson L: The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 1993, 33:48–56.PubMedCrossRefGoogle Scholar
  6. 6.
    Sarchielli P, Alberti A, Baldi A, et al.: Proinflammatory cytokines, adhesion molecules, and lymphocyte integrin expression in the internal jugular blood of migraine patients without aura assessed ictally. Headache 2006, 46:200–207.PubMedCrossRefGoogle Scholar
  7. 7.
    Wenzel RG, Sarvis CA, Krause ML: Over-the-counter drugs for acute migraine attacks: literature review and recommendations. Pharmacotherapy 2003, 23:494–505.PubMedCrossRefGoogle Scholar
  8. 8.
    Moskowitz MA: Pathophysiology of headache: past and present. Headache 2007, 47(Suppl 1):S58–S63.PubMedCrossRefGoogle Scholar
  9. 9.
    Lauritzen M: Cortical spreading depression in migraine. Cephalalgia 2001, 21:757–760.PubMedCrossRefGoogle Scholar
  10. 10.
    Bolay H, Reuter U, Dunn AK, et al.: Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 2002, 8:136–142.PubMedCrossRefGoogle Scholar
  11. 11.
    Colonna DM, Meng W, Deal DD, Busija DW: Calcitonin gene-related peptide promotes cerebrovascular dilation during cortical spreading depression in rabbits. Am J Physiol 1994, 266(3 Pt 2):H1095–H1102.PubMedGoogle Scholar
  12. 12.
    Strassman AM, Raymond SA, Burstein R: Sensitization of meningeal sensory neurons and the origin of headaches. Nature 1996, 384:560–564.PubMedCrossRefGoogle Scholar
  13. 13.
    Theoharides TC, Kalogeromitros D: The critical role of mast cells in allergy and inflammation. Ann N Y Acad Sci 2006, 1088:78–99.PubMedCrossRefGoogle Scholar
  14. 14.
    Mekori YA, Metcalfe DD: Mast cells in innate immunity. Immunol Rev 2000, 173:131–140.PubMedCrossRefGoogle Scholar
  15. 15.
    Dimlich RV, Keller JT, Strauss TA, Fritts MJ: Linear arrays of homogeneous mast cells in the dura mater of the rat. J Neurocytol 1991, 20:485–503.PubMedCrossRefGoogle Scholar
  16. 16.
    Strassman AM, Weissner W, Williams M, et al.: Axon diameters and intradural trajectories of the dural innervation in the rat. J Comp Neurol 2004, 473:364–376.PubMedCrossRefGoogle Scholar
  17. 17.
    Rozniecki JJ, Dimitriadou V, Lambracht-Hall M, et al.: Morphological and functional demonstration of rat dura mater mast cell-neuron interactions in vitro and in vivo. Brain Res 1999, 849:1–15.PubMedCrossRefGoogle Scholar
  18. 18.
    Sicuteri F: Mast cell and their active substances: their role in the pathogenesis of migraine. Headache 1963, 3:86.PubMedCrossRefGoogle Scholar
  19. 19.
    Monro J, Carini C, Brostoff J: Migraine is a food-allergic disease. Lancet 1984, 2:719–721.PubMedCrossRefGoogle Scholar
  20. 20.
    Heatley RV, Denburg JA, Bayer N, Bienenstock J: Increased plasma histamine levels in migraine patients. Clin Allergy 1982, 12:145–149.PubMedCrossRefGoogle Scholar
  21. 21.
    Lassen LH, Thomsen LL, Olesen J: Histamine induces migraine via the H1-receptor. Support for the NO hypothesis of migraine. Neuroreport 1995, 6:1475–1479.PubMedCrossRefGoogle Scholar
  22. 22.
    Rossi P, Fiermonte G, Pierelli F: Cinnarizine in migraine prophylaxis: efficacy, tolerability and predictive factors for therapeutic responsiveness. An open-label pilot trial. Funct Neurol 2003, 18:155–159.PubMedGoogle Scholar
  23. 23.
    Lewis DW, Diamond S, Scott D, Jones V: Prophylactic treatment of pediatric migraine. Headache 2004, 44:230–237.PubMedCrossRefGoogle Scholar
  24. 24.
    Togha M, Ashrafian H, Tajik P: Open-label trial of cinnarizine in migraine prophylaxis. Headache 2006, 46:498–502.PubMedCrossRefGoogle Scholar
  25. 25.
    Sheftell F, Rapoport A, Weeks R, et al.: Montelukast in the prophylaxis of migraine: a potential role for leukotriene modifiers. Headache 2000, 40:158–163.PubMedCrossRefGoogle Scholar
  26. 26.
    Hasselblatt M, Kohler J, Volles E, Ehrenreich H: Simultaneous monitoring of endothelin-1 and vasopressin plasma levels in migraine. Neuroreport 1999, 10:423–425.PubMedCrossRefGoogle Scholar
  27. 27.
    Low NC, Merikangas KR: The comorbidity of migraine. CNS Spectr 2003, 8:433–434, 437–444.PubMedGoogle Scholar
  28. 28.
    Ottosson A, Edvinsson L: Release of histamine from dural mast cells by substance P and calcitonin gene-related peptide. Cephalalgia 1997, 17:166–174.PubMedCrossRefGoogle Scholar
  29. 29.
    Seebeck J, Kruse ML, Schmidt-Choudhury A, Schmidt WE: Pituitary adenylate cyclase activating polypeptide induces degranulation of rat peritoneal mast cells via high-affinity PACAP receptor-independent activation of G proteins. Ann N Y Acad Sci 1998, 865:141–146.PubMedCrossRefGoogle Scholar
  30. 30.
    Schwenger N, Dux M, de Col R, et al.: Interaction of calcitonin gene-related peptide, nitric oxide and histamine release in neurogenic blood flow and afferent activation in the rat cranial dura mater. Cephalalgia 2007, 27:481–491.PubMedCrossRefGoogle Scholar
  31. 31.
    Lassen LH, Haderslev PA, Jacobsen VB, et al.: CGRP may play a causative role in migraine. Cephalalgia 2002, 22:54–61.PubMedCrossRefGoogle Scholar
  32. 32.
    Schytz HW, Birk S, Wienecke T, et al.: PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain 2009, 132(Pt 1):16–25.PubMedGoogle Scholar
  33. 33.
    Lennerz JK, Ruhle V, Ceppa EP, et al.: Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution. J Comp Neurol 2008, 507:1277–1299.PubMedCrossRefGoogle Scholar
  34. 34.
    Levy D, Burstein R, Strassman AM: Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors: implications for the pathophysiology of migraine. Ann Neurol 2005, 58:698–705.PubMedCrossRefGoogle Scholar
  35. 35.
    Theoharides TC, Spanos C, Pang X, et al.: Stress-induced intracranial mast cell degranulation: a corticotropin-releasing hormone-mediated effect. Endocrinology 1995, 136:5745–5750.PubMedCrossRefGoogle Scholar
  36. 36.
    Reuter U, Bolay H, Jansen-Olesen I, et al.: Delayed inflammation in rat meninges: implications for migraine pathophysiology. Brain 2001, 124 (Pt 12):2490–2502.CrossRefGoogle Scholar
  37. 37.
    Burstein R, Jakubowski M: Unitary hypothesis for multiple triggers of the pain and strain of migraine. J Comp Neurol 2005, 493:9–14.PubMedCrossRefGoogle Scholar
  38. 38.
    Delepine L, Aubineau P: Plasma protein extravasation induced in the rat dura mater by stimulation of the parasympathetic sphenopalatine ganglion. Exp Neurol 1997, 147:389–400.PubMedCrossRefGoogle Scholar
  39. 39.
    Yu S, Kollarik M, Ouyang A, et al.: Mast cell-mediated long-lasting increases in excitability of vagal c-fibers in guinea pig esophagus. Am J Physiol Gastrointest Liver Physiol 2007, 293:G850–G856.PubMedCrossRefGoogle Scholar
  40. 40.
    Coldwell JR, Phillis BD, Sutherland K, et al.: Increased responsiveness of rat colonic splanchnic afferents to 5-HT after inflammation and recovery. J Physiol 2007, 579(Pt 1):203–213.PubMedCrossRefGoogle Scholar
  41. 41.
    Barbara G, Wang B, Stanghellini V, et al.: Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 2007, 132:26–37.PubMedCrossRefGoogle Scholar
  42. 42.
    Levy D, Burstein R, Kainz V, et al.: Mast cell degranulation activates a pain pathway underlying migraine headache. Pain 2007, 130:166–176.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang X, Strassman AM, Burstein R, Levy D: Sensitization and activation of intracranial meningeal nociceptors by mast cell mediators. J Pharmacol Exp Ther 2007, 322:806–812.PubMedCrossRefGoogle Scholar
  44. 44.
    Zhang XC, Levy D: Modulation of meningeal nociceptors mechanosensitivity by peripheral proteinase-activated receptor-2: the role of mast cells. Cephalalgia 2008, 28:276–284.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group, LLC 2009

Authors and Affiliations

  1. 1.Headache Research Laboratory, Department of Anesthesia, Critical Care and Pain MedicineBeth Israel Deaconess Medical CenterBostonUSA

Personalised recommendations