Current Pain and Headache Reports

, Volume 12, Issue 3, pp 175–181 | Cite as

Status of immune mediators in fibromyalgia



Fibromyalgia (FM) is a form of nonarticular rheumatism characterized by long-term (> 3 months) and widespread musculoskeletal pain. However, the biophysiology of FM has remained elusive, and the treatment remains mainly empirical. There are numerous hypotheses about the pathophysiology of chronic widespread pain and FM; one includes a possible role of cytokines. Cytokines play a role in diverse clinical processes and phenomena such as fatigue, fever, sleep, pain, stress, and aching. Cytokines related to acute or repetitive tissue injuries may be responsible for long-term activation of spinal cord glia and dorsal horn neurons, thus resulting in central sensitization. Pain, stiffness, and depression in FM could be associated with some signs of inflammatory response system activation. Illumination of the pathophysiologic secrets of FM will result in more effective treatment regimens. We review the role of immune mediators in the pathophysiology of FM.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    West D, Maes M: Neuroendocrine and immune aspects of fibromyalgia. Biodrugs 2001, 15:521–531.PubMedCrossRefGoogle Scholar
  2. 2.
    Gur A: Physical therapy modalities in management of fibromyalgia. Curr Pharm Des 2006, 12:29–35.PubMedCrossRefGoogle Scholar
  3. 3.
    Gur A, Çevik R, Saraç AJ, et al.: Hypothalamic-pituitary-gonadal axis and cortisol in young females with fibromyalgia: the potential roles of depression, fatigue and sleep disturbance in the occurrence of hypocortisolism. Ann Rheum Dis 2004, 63:1504–1506.PubMedCrossRefGoogle Scholar
  4. 4.
    Gur A, Cevik R, Nas K, et al.: Cortisol and hypothalamic-pituitary-gonadal axis hormones in follicular phase women with fibromyalgia and chronic fatigue syndrome and effect of depression on these hormones. Arthritis Res Ther 2004, 6:232–238.CrossRefGoogle Scholar
  5. 5.
    Gur A, Cevik R, Nas K, et al.: Depression and quality of life in young fibromyalgia patients. APLAR J Rheumatol 2006, 9:70–78.CrossRefGoogle Scholar
  6. 6.
    Wallace DJ, Linker-Israeli M, Hallegua D, et al.: Cytokines play an etiopathogenetic role in fibromyalgia: a hypothesis and pilot study. Rheumatology 2001, 40:743–749.PubMedCrossRefGoogle Scholar
  7. 7.
    Gur A, Karakoc M, Nas K, et al.: Cytokines and depression in cases with fibromyalgia. J Rheumatol 2002, 29:358–361.PubMedGoogle Scholar
  8. 8.
    Gur A, Karakoc M, Erdogan S, et al.: Regional cerebral blood flow and cytokines in young females with fibromyalgia. Clin Exp Rheumatol 2002, 20:753–760.PubMedGoogle Scholar
  9. 9.
    Strouse TB: The relationship between cytokines and pain/depression: a review and current status. Curr Pain Headache Rep 2007, 11:98–103.PubMedCrossRefGoogle Scholar
  10. 10.
    Vanderhaeghe L: Stress, aging and cortisol. Total Health 2001, 23:34–35.Google Scholar
  11. 11.
    Chrousos GP, Tera-Wadleigh SD, Karl M: Syndromes of glucocorticoid resistance. Ann Intern Med 1993, 119:1113–1124.PubMedGoogle Scholar
  12. 12.
    Jacobs JW, Geenen R, Evers AW, et al.: Short term effects of corticosteroid pulse treatment on disease activity and the wellbeing of patients with active rheumatoid arthritis. Ann Rheum Dis 2001, 60:61–64.PubMedCrossRefGoogle Scholar
  13. 13.
    Torpy DJ, Papanicolaou DA, Lotsikas AJ, et al.: Responses of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis to interleukin-6—a pilot study in fibromyalgia. Arthritis Rheum 2000, 43:872–880.PubMedCrossRefGoogle Scholar
  14. 14.
    Wallace D: Is there a role for cytokine based therapies in fibromyalgia? Curr Pharm Des 2006, 12:17–22.PubMedCrossRefGoogle Scholar
  15. 15.
    Wallace DJ, Margolin K, Waller P: Fibromyalgia and interleukin-2 therapy for malignancy [letter]. Ann Intern Med 1988, 108:909.PubMedGoogle Scholar
  16. 16.
    Üçeyler N, Valenza R, Stock M, et al.: Reduced levels of antiinflammatory cytokines in patients with chronic widespread pain. Arthritis Rheum 2006, 54:2656–2664.PubMedCrossRefGoogle Scholar
  17. 17.
    Arnanson BGW: Autonomic regulation of immune function. In Clinical Autonomic Disorders, edn 2. Edited by Low PA. Philadelphia, PA: Lippincott-Raven; 1997:147–159.Google Scholar
  18. 18.
    Cunha FQ, Lorenzetti BB, Poole S, Ferreira SH: Interleukin-8 is a mediator of sympathetic pain. Br J Pharmacol 1991, 104:765–767.PubMedGoogle Scholar
  19. 19.
    Schwarz YA, Amin RS, Stark JM, et al.: Interleukin-1 receptor antagonist inhibits interleukin-8 expression in A549 respiratory epithelial cells infected in vitro with a replication-deficient recombinant adenovirus vector. Am J Respir Cell Mol Biol 1999, 21:388–394.PubMedGoogle Scholar
  20. 20.
    Yabuchi K, Maruta E, Yamamoto J, et al.: Intracerebroven-tricular injection of isoproterenol produces its analgesic effect through interleukin-1 beta production. Eur J Pharmacol 1997, 334:133–140.CrossRefGoogle Scholar
  21. 21.
    Malcangio M, Bowery NG, Flower RJ, Perretti M: Effect of interleukin-1 beta on the release of substance P from rat isolated spinal cord. Eur J Pharmacol 1996, 299:113–118.PubMedCrossRefGoogle Scholar
  22. 22.
    Papanicolaou DA, Wilder RL, Manolagas SC, Chrousos GP: The pathophysiology roles of interleukin-6 in human disease. Ann Intern Med 1998, 128:127–137.PubMedGoogle Scholar
  23. 23.
    Watkins LR, Wiertelak EP, Goehler LE, et al.: Characterization of cytokine-induced hyperalgesia. Brain Res 1994, 654:15–26.PubMedCrossRefGoogle Scholar
  24. 24.
    Buchs N, Silvestri T, di Giovine FS, et al.: IL-4 VNTR gene polymorphism in chronic polyarthritis. The rare allele is associated with protection against destruction. Rheumatology 2000, 39:1126–1131.PubMedCrossRefGoogle Scholar
  25. 25.
    Okada H, Banchereau J, Lotze MT: Interleukin 4. In The Cytokine Handbook, vol 1, edn 4. Edited by Thomson AW, Lotze MT. London: Academic Press; 2003:227–262.Google Scholar
  26. 26.
    Vale ML, Marques JB, Moreira CA, et al.: Antinociceptive effects of interleukin-4,-10, and-13 on the writhing response in mice and zymosan-induced knee joint incapacitation in rats. J Pharmacol Exp Ther 2003, 304:102–108.PubMedCrossRefGoogle Scholar
  27. 27.
    Hao S, Mata M, Glorioso JC, Fink DJ: HSV-mediated expression of interleukin-4 in dorsal root ganglion neurons reduces neuropathic pain. Mol Pain 2006, 2:6.PubMedCrossRefGoogle Scholar
  28. 28.
    Borner C, Woltje M, Hollt V, Kraus J: STAT6 transcription factor binding sites with mismatches within the canonical 5-TTC. GAA-3 motif involved in regulation of and opioid receptors. J Neurochem 2004, 91:1493–1500.PubMedCrossRefGoogle Scholar
  29. 29.
    Harley JB, Gallagher G: Lupus and interleukin 10. J Rheumatol 1998, 24:2273–2275.Google Scholar
  30. 30.
    Born J, Lange T, Hansen K, et al.: Effects of sleep and circadian rhythm on human circulating immune cells. J Immunol 1997, 158:4454–4464.PubMedGoogle Scholar
  31. 31.
    Dinges DF, Douglas SD, Zaugg L, et al.: Leukocytosis and natural killer cell function parallel neurobehavioral fatigue induced by 64 hours of sleep deprivation. J Clin Invest 1994, 93:1930–1939.PubMedCrossRefGoogle Scholar
  32. 32.
    Shearer WT, Reuben JM, Mullington JM, et al.: Soluble tumor necrosis factor-alpha receptor I and interleukin-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight. J Allergy Clin Immunol 2001, 107:165–170.PubMedCrossRefGoogle Scholar
  33. 33.
    Mullington JM, Hinze-Selch D, Pollmacher T: Mediators of inflammation and their interaction with sleep. Ann N Y Acad Sci 2001, 933:201–210.PubMedCrossRefGoogle Scholar
  34. 34.
    Takahashi S, Kapas L, Fang J, Krueger JM: Somnogenic relationships between tumor necrosis factor and interleukin-1. Am J Physiol 1999, 276:R1132–R1140.PubMedGoogle Scholar
  35. 35.
    Fang J, Wang Y, Krueger JM: Mice lacking the TNF 55 kDa receptor fail to sleep more after TNF-alpha treatment. J Neurosci 1997, 17:5949–5955.PubMedGoogle Scholar
  36. 36.
    Lancel M, Crönlein J, Müller-Preuss P, Holsboer F: Lipopolysaccharide increases EEG delta activity within non-REM sleep and disrupts sleep continuity in rats. Am J Physiol 1995, 268:R1310–R1318.PubMedGoogle Scholar
  37. 37.
    Maes M, Libbrecht I, Van Hunsel F, et al.: Lower serum activity of prolyl endopeptidase in fibromyalgia is related to severity of depressive symptoms and pressure hyperalgesia. Psychol Med 1998, 28:957–965.PubMedCrossRefGoogle Scholar
  38. 38.
    Abbadie C, Lindia JA, Cumiskey AM, et al.: Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc Natl Acad Sci U S A 2003, 100:7947–7952.PubMedCrossRefGoogle Scholar
  39. 39.
    Kelley KW, Bluthe RM, Dantzer R, et al.: Cytokine-induced sickness behavior. Brain Behav Immun 2003, 17:S112–S118.PubMedCrossRefGoogle Scholar
  40. 40.
    Hayley S, Merali Z, Anisman H: Stress and cytokine-elicited neuroendocrine and neurotransmitter sensitization: implications for depressive illness. Stress 2003, 6:19–32.PubMedGoogle Scholar
  41. 41.
    Staud R: Fibromyalgia pain: do we know the source? Curr Opin Rheumatol 2004, 16:157–163.PubMedCrossRefGoogle Scholar
  42. 42.
    Russell IJ, Orr MD, Littman B, et al.: Elevated cerebrospinal fluid levels of substance P in patients with the fibromyalgia syndrome. Arthritis Rheum 1994, 37:1593–1601.PubMedCrossRefGoogle Scholar
  43. 43.
    Vaeroy H, Hele R, Forre O, et al.: Elevated CSF levels of substance P and high incidence of Raynaud phenomenon in patients with fibromyalgia: new features for diagnosis. Pain 1998, 32:21–26.CrossRefGoogle Scholar
  44. 44.
    Russell IJ: Neurochemical pathogenesis of fibromyalgia. Z Rheumatol 1998, 57(Suppl 2):63–66.PubMedCrossRefGoogle Scholar
  45. 45.
    Omoigui S: The biochemical origin of pain: the origin of all pain is inflammation and the inflammatory response. Part 2 of 3—inflammatory profile of pain syndromes. Med Hypotheses 2007, 69:1169–1178.PubMedCrossRefGoogle Scholar
  46. 46.
    Caro XJ: Is there an immunologic component to the fibrositis syndrome? Rheum Dis Clin North Am 1989, 15:169–186.PubMedGoogle Scholar
  47. 47.
    Littlejohn GO, Weinstein C, Helme RD: Increased neurogenic inflammation in fibrositis syndrome. J Rheumatol 1987, 14:1022–1025.PubMedGoogle Scholar
  48. 48.
    Eneström S, Bengtsson A, Frödin T: Dermal IgG deposits and increase of mast cells in patients with fibromyalgia—relevant findings or epiphenomena? Scand J Rheumatol 1997, 26:308–313.PubMedCrossRefGoogle Scholar
  49. 49.
    Maes M, Libbrecht I, Hunsel F, et al.: The immune-inflammatory pathophysiology of fibromyalgia: increased serum soluble gp130, the common signal transducer protein of various neurotrophic cytokines. Psychoneuroendocrinology 1999, 24:371–383.PubMedCrossRefGoogle Scholar
  50. 50.
    Bonaccorso S, Lin Ai-hua, Verkerk R, et al.: Immune markers in fibromyalgia: comparison with major depressed patients and normal volunteers. J Affect Disord 1998, 48:75–82.PubMedCrossRefGoogle Scholar
  51. 51.
    Maes M, Scharpé S, Meltzer HY, et al.: Increased neopterin and interferon-gamma secretion and lower availability of L-tryptophan in major depression: further evidence for an immune response. Psychiatry Res 1994, 54:143–160.PubMedCrossRefGoogle Scholar
  52. 52.
    Nichol CA, Smith GK, Duch DS: Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin. Annu Rev Biochem 1985, 54:729–764.PubMedCrossRefGoogle Scholar
  53. 53.
    Watkins LR, Milligan ED, Maier SF: Glial proinflammatory cytokines mediate exaggerated pain states: implications for chronic pain. Adv Exp Med Biol 2003, 521:1–21.PubMedGoogle Scholar
  54. 54.
    Smart PA, Waylonis GW, Hackshaw KV: Immunologic profile of patients with fibromyalgia. Am J Phys Med Rehabil 1997, 76:231–234.PubMedCrossRefGoogle Scholar
  55. 55.
    Klein R, Bansch M, Berg PA: Clinical relevance of antibodies against serotonin and gangliosides in patients with primary fibromyalgia syndrome. Psychoneuroendocrinology 1992, 17:593–598.PubMedCrossRefGoogle Scholar
  56. 56.
    Hader N, Rimon D, Kinarty A, Lahat N: Altered interleukin-2 secretion in patients with primary fibromyalgia syndrome. Arthritis Rheum 1991, 34:866–872.PubMedCrossRefGoogle Scholar
  57. 57.
    Kashipaz MRA, Swinden D, Todd I, Powell RJ: Normal production of inflammatory cytokines in chronic fatigue and fibromyalgia syndromes determined by intracellular cytokine staining in short-term cultured blood mononuclear cells. Clin Exp Immunol 2003, 132:360–365.CrossRefGoogle Scholar
  58. 58.
    Macedo JA, Hesse J, Turner JD, et al.: Adhesion molecules and cytokine expression in fibromyalgia patients: increased L-selectin on monocytes and neutrophils. J Neuroimmunol 2007, 188:159–166.PubMedCrossRefGoogle Scholar
  59. 59.
    Li J, Simone DA, Larson AA: Wind up leads to characteristics of central sensitization. Pain 1999, 79:75–82.PubMedCrossRefGoogle Scholar
  60. 60.
    Staud R, Vierck CJ Jr, Cannon RC, et al.: Abnormal sensitization and temporal summation of second pain (wind-up) in patients with fibromyalgia syndrome. Pain 2001, 91:165–175.PubMedCrossRefGoogle Scholar
  61. 61.
    Schaible HG, Ebersberger A, von Banchet GS: Mechanisms of pain in arthritis. Ann N Y Acad Sci 2001, 966:343–354.CrossRefGoogle Scholar
  62. 62.
    Altindag O, Gur A, Calgan N, et al.: Paraoxonase and arylesterase activities in fibromyalgia. Redox Rep 2007, 12:134–138.PubMedGoogle Scholar
  63. 63.
    Ozgocmen S, Ozyurt H, Sogut S, et al.: Antioxidant status, lipid peroxidation and nitric oxide in fibromyalgia: etiologic and therapeutic concerns. Rheumatol Int 2006, 26:598–603.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2008

Authors and Affiliations

  1. 1.Department of Physical Medicine and Rehabilitation, Medical FacultyDicle UniversityDiyarbakirTurkey

Personalised recommendations