Current Pain and Headache Reports

, Volume 7, Issue 5, pp 377–383 | Cite as

Convergence of cervical and trigeminal sensory afferents

  • Elcio J. Piovesan
  • Pedro A. Kowacs
  • Michael L. Oshinsky


Cranial nociceptive perception shows a distinct topographic distribution, with the trigeminal nerve receiving sensory information from the anterior portions of the head, the greater occipital nerve, and branches of the upper cervical roots in the posterior regions. However, this distribution is not respected during headache attacks, even if the etiology of the headache is specific for only one nerve. Nociceptive information from the trigeminal and cervical territories activates the neurons in the trigeminal nucleus caudalis that extend to the C2 spinal segment and lateral cervical nucleus in the dorsolateral cervical area. These neurons are classified as multimodal because they receive sensory information from more than one afferent type. Clinically, trigeminal activation produces symptoms in the trigeminal and cervical territory and cervical activation produces symptoms in the cervical and trigeminal territory. The overlap between the trigeminal nerve and cervical is known as a convergence mechanism. For some time, convergence mechanisms were thought to be secondary to clinical observations. However, animal studies and clinical evidence have expanded our knowledge of convergence mechanisms. In this paper, the role of convergence mechanisms in nociceptive physiology, physiopathology of the headaches, clinical diagnosis, and therapeutic conduct are reviewed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Goadsby PJ, Lipton RB, Ferrari MD: Migraine: current understanding and treatment. N Engl J Med 2002, 346:257–270.PubMedCrossRefGoogle Scholar
  2. 2.
    Anthony M: Headache and the greater occipital nerve. Clin Neurol Neurosurg 1992, 94:297–301.PubMedCrossRefGoogle Scholar
  3. 3.
    Kerr FW: A mechanism to account for frontal headache in cases of posterior fosse tumors. J Neurosurg 1961, 18:605–609.PubMedCrossRefGoogle Scholar
  4. 4.
    Piovesan EJ, Werneck LC, Teive HA, et al.: Neurophysiology of pain in tentorial irritation: description of a case secondary to medulloblastoma. Arq Neuropsiquiatr 1998, 56:677–682.PubMedGoogle Scholar
  5. 5.
    Piovesan EJ, Kowacs PA, Tatsui CE, et al.: Referred pain after painful stimulation of the greater occipital nerve in humans: evidence of convergence of cervical afferences on trigeminal nuclei. Cephalalgia 2001, 21:107–109. A clinical study demonstrating connections between the descending root of the fifth cranial nerve and the occipital nerve. The study supports additional information regarding convergent mechanisms, such as time to induce, distribution, associated symptoms, and resolution of the convergent symptoms.PubMedCrossRefGoogle Scholar
  6. 6.
    Messlinger K, Hanesch U, Baumgartel M, et al.: Innervation of the dura mater encephali of cat and rat: ultrastructure and calcitonin gene-related peptide-like and substance P-like immunoreactivity. Anat Embryol (Berl) 1993, 188:219–237.Google Scholar
  7. 7.
    Nozaki K, Uemura Y, Okamoto S, et al.: Origins and distribution of cerebrovascular nerve fibers showing calcitonin gene-related peptide-like immunoreactivity in the major cerebral artery of the dog. J Comp Neurol 1990, 297:219–226.PubMedCrossRefGoogle Scholar
  8. 8.
    Burstein R, Yamamura H, Malick A, Strassman AM: Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol 1998, 79:964–982.PubMedGoogle Scholar
  9. 9.
    Schepelmann K, Ebersberger A, Pawlak M, et al.: Response properties of trigeminal brain stem neurons with input from dura mater encephali in the rat. Neuroscience 1999, 90:543–554.PubMedCrossRefGoogle Scholar
  10. 10.
    Kaube H, Keay K, Hoskin KL, et al.: Expression of c-Fos-like immunoreactivity in the caudal medulla and upper cervical spinal cord following stimulation of the superior sagittal sinus in the cat. Brain Res 1993, 629:95–102.PubMedCrossRefGoogle Scholar
  11. 11.
    Strassman AM, Mineta Y, Vos BP: Distribution of fos-like immunoreactivity in the medullary and upper cervical dorsal horn produced by stimulation of dural blood vessels in the rat. J Neurosci 1994, 14:3725–3735.PubMedGoogle Scholar
  12. 12.
    Lambert GA, Zagami AS, Bogduk N, Lance JW: Cervical spinal cord neurons receiving sensory input from the cranial vasculature. Cephalalgia 1991, 11:75–85.PubMedCrossRefGoogle Scholar
  13. 13.
    Angus-Leppan H, Olausson B, Boers P, Lambert GA: Convergence of afferents from superior sagitttal sinus and tooth pulp on cells in the upper cervical spinal cord of the cat. Neurosci Lett 1994, 182:275–278.PubMedCrossRefGoogle Scholar
  14. 14.
    Schaible HG, Ebersberger A, Peppel P, et al.: Release of immunoreactive substance P in the trigeminal brain stem nuclear complex evoked by chemical stimulation of the nasal mucosa and the dura mater encephali: a study with antibody microphobes. Neuroscience 1997, 76:273–284.PubMedCrossRefGoogle Scholar
  15. 15.
    Pfaller K, Arvidsson J: Central distribution of trigeminal and upper cervical primary afferents in the rat studied by anterograde transport of horseradish peroxidase conjugated to wheat germ agglutinin. J Comp Neurol 1988, 268:91–108.PubMedCrossRefGoogle Scholar
  16. 16.
    Scheurer S, Gottschall J, Groh V: Afferent projections of the rat major occipital nerve studied by transganglionic transport of HRP. Anat Embryol (Berl) 1983, 167:425–438.CrossRefGoogle Scholar
  17. 17.
    Angus-Leppan H, Lambert GA, Michalicek J: Convergence of occipital nerve and superior sagittal sinus input in the cervical spinal cord of the cat. Cephalalgia 1997, 17:625–630.PubMedCrossRefGoogle Scholar
  18. 18.
    Kajander KC, Giesler GJ Jr: Responses of neurons in the lateral cervical nucleus of the cat to noxious cutaneous stimulation. J Neurophysiol 1987, 57:1686–1704.PubMedGoogle Scholar
  19. 19.
    Piovesan EJ, Young BW, Werneck LC, et al.: Recurrent extratrigeminal stabbing and burning sensation with allodynia in a migraine patient. Cephalalgia 2003, 23:231–234.PubMedCrossRefGoogle Scholar
  20. 20.
    Chandler MJ, Zhang J, Foreman RD: Vagal, sympathetic and somatic sensory inputs to upper cervical (C1-C3) spinothalamic tract neurons in monkeys. J Neurophysiol 1996, 76:2555–2567.PubMedGoogle Scholar
  21. 21.
    Chandler MJ, Zhang J, Qin C, et al.: Intrapericardiac injections of algogenic chemicals excite primate C1-C2 spinothalamic tract neurons. Am J Physiol Regul Integr Comp Physiol 2000, 279:560–568.Google Scholar
  22. 22.
    Bereiter DA, Bereiter DF, Hirata H, Hu JW: c-Fos expression in trigeminal spinal nucleus after electrical stimulation of the hypoglossal nerve in the rat. Somatosens Mot Res 2000, 17:229–237.PubMedCrossRefGoogle Scholar
  23. 23.
    Goadsby PJ, Hoskin KL: The distribution of trigeminovascular afferents in the nonhuman primate brain Macaca nemestrina: a c-fos immunocytochemical study. J Anat 1997, 190:367–375.PubMedCrossRefGoogle Scholar
  24. 24.
    Strassman AM, Mineta Y, Vos BP: Distribution of fos-like immunoreactivity in the medullary and upper cervical dorsal horn produced by stimulation of dural blood vessels in the rat. J Neurosci 1994, 14:3725–3735.PubMedGoogle Scholar
  25. 25.
    Hoskin KL, Kaube H, Goadsby PJ: Central activation of the trigeminovascular pathway in the cat is inhibited by dihydroergotamine: a c-fos and electrophysiology study. Brain 1996, 119:249–256.PubMedCrossRefGoogle Scholar
  26. 26.
    Nozaki K, Boccalini P, Moskowitz MA: Expression of c-fos-like immunoreactivity in brain stem after meningeal irritation by blood in the subarachnoid space. Neuroscience 1992, 49:669–680.PubMedCrossRefGoogle Scholar
  27. 27.
    Hoskin KL, Zagami AS, Goadsby PJ: Stimulation of the middle meningeal artery leads to Fos expression in the trigeminocervical nucleus: a comparative study of monkey and cat. J Anat 1999, 194:579–588.PubMedCrossRefGoogle Scholar
  28. 28.
    Goadsby PJ, Zagami AS: Stimulation of the superior sagittal sinus increases metabolic activity and blood flow in certain regions of the brain stem and upper cervical spinal cord of the cat. Brain 1991, 114:1001–1011.PubMedCrossRefGoogle Scholar
  29. 29.
    Goadsby PJ, Knight YE, Hoskin KL: Stimulation of the greater occipital nerve increases metabolic activity in the trigeminal nucleus caudalis and cervical dorsal horn of the cat. Pain 1997, 73:23–28.PubMedCrossRefGoogle Scholar
  30. 30.
    Li JL, Wang D, Kaneko T, et al.: The relationship between neurokinin-1 receptor and substance P in the medullary dorsal horn: a light and electron microscopic immunohistochemical study in the rat. Neurosci Res 2000, 36:327–334.PubMedCrossRefGoogle Scholar
  31. 31.
    Sabino MAC, Honore P, Rogers SD, et al.: Tooth extractioninduced internalization of the substance P receptor in trigeminal nucleus and spinal cord neurons: imaging the neurochemistry of dental pain. Pain 2002, 95:175–186.PubMedCrossRefGoogle Scholar
  32. 32.
    Sartucci F, Rossi A, Rossi B: Trigemino-cervical reflex in man. Electromyogr Clin Neurophysiol 1986, 26:123–129.PubMedGoogle Scholar
  33. 33.
    Milanov I, Bogdanova D: Trigemino-cervical reflex in patients with headache. Cephalalgia 2003, 23:35–38.PubMedCrossRefGoogle Scholar
  34. 34.
    Sandkuhler J, Benrath J, Brechtel C, et al.: Synaptic mechanisms of hyperalgesia. Prog Brain Res 2000, 129:81–100.PubMedCrossRefGoogle Scholar
  35. 35.
    Bartsch T, Goadsby PJ: Stimulation of greater occipital nerve induces increased central excitability of dural afferent input. Brain 2002, 125:1496–1509. This article supports the view of a functional continuum between the caudal trigeminal nucleus and upper cervical segments involved in cranial nociception. This research showed that the facilitatory effect of GON stimulation on dural stimulation suggests a central sensitization mechanism.PubMedCrossRefGoogle Scholar
  36. 36.
    Ellrich J, Andersen OK, Messlinger K, Arendt-Nielsen L: Convergence of meningeal and facial afferents onto trigeminal brain stem neurons: an electrophysiological study in rat and man. Pain 1999, 82:229–237.PubMedCrossRefGoogle Scholar
  37. 37.
    Cook AJ, Woolf CJ, Wall PD, McMahon SB: Dynamic receptive field plasticity in rat spinal cord dorsal horn following Cprimary afferent input. Nature 1987, 325:151–153.PubMedCrossRefGoogle Scholar
  38. 38.
    Hutchinson PJ, Pickard JD, Higgins JN: Vertebral artery dissection presenting as cerebellar infarction. J Neurol Neurosurg Psychiatry 2000, 68:98–99.PubMedCrossRefGoogle Scholar
  39. 39.
    Kowacs PA, Piovesan EJ, Werneck LC, et al.: Influence of intense light stimulation on trigeminal and cervical pain perception thresholds. Cephalalgia 2001, 21:184–188.PubMedCrossRefGoogle Scholar
  40. 40.
    Antonaci F, Fredriksen TA, Sjaastad O: Cervicogenic headache: clinical presentation, diagnostic criteria, and differential diagnosis. Curr Pain Headache Rep 2001, 5:387–392.PubMedCrossRefGoogle Scholar
  41. 41.
    Hoskin KL, Kaube H, Goadsby PJ: Sumatriptan can inhibit trigeminal afferents by an exclusively neural mechanism. Brain 1996, 119:1419–1428.PubMedCrossRefGoogle Scholar
  42. 42.
    Shepheard SL, Williamson DJ, Williams J, et al.: Comparison of the effects of sumatriptan and the NK1 antagonist CP-99,994 on plasma extravasation in the dura mater and c-fos mRNA expression in the trigeminal nucleus caudalis of rats. Neuropharmacology 1995, 34:255–261.PubMedCrossRefGoogle Scholar
  43. 43.
    Goadsby PJ, Akerman S, Storer RJ: Evidence for post junctional serotonin (5-HT1) receptors in the trigeminocervical complex. Ann Neurol 2001, 50:804–807.PubMedCrossRefGoogle Scholar
  44. 44.
    Goadsby PJ: The pharmacology of headache. Prog Neurobiol 2000, 62:509–525.PubMedCrossRefGoogle Scholar
  45. 45.
    Storer RJ, Akerman S, Goadsby PJ: Characterization of opioid receptors that modulate nociceptive neurotransmission in the trigeminocervical complex. Br J Pharmacol 2003, 138:317–324.PubMedCrossRefGoogle Scholar
  46. 46.
    Cutrer FM, Limmroth V, Ayata G, Moskowitz MA: Attenuation by valproate of c-fos immunoreactivity in trigeminal nucleus caudalis induced by intracisternal capsaicin. Br J Pharmacol 1995, 116:3199–3204.PubMedGoogle Scholar
  47. 47.
    Storer RJ, Akerman S, Goadsby PJ: GABA receptors modulate trigeminovascular nociceptive neurotransmission in the trigeminocervical complex. Br J Pharmacol 2001, 134:896–904.PubMedCrossRefGoogle Scholar
  48. 48.
    Anthony M: The role of the occipital nerve in unilateral headache. In Current Problems in Neurology, edn 4: Advances in Headache Research. Edited by Rose FC. London: John Libbey; 1987:257–262.Google Scholar
  49. 49.
    Peres MF, Stiles MA, Siow HC, et al.: Greater occipital nerve blockade for cluster headache. Cephalalgia 2002, 22:520–522.PubMedCrossRefGoogle Scholar
  50. 50.
    Bigo A, Delrieu F, Bousser MG: Treatment of vascular pain of the face by methylprednisolone injection into the area of the greater occipital nerve: 16 cases. Rev Neurol (Paris) 1989, 145:160–162.Google Scholar
  51. 51.
    Antonaci F, Pareja JA, Caminero AB, Sjaastad O: Chronic paroxysmal hemicrania continua: anaesthetic blockades of pericranial nerves. Funct Neurol 1997, 12:11–15.PubMedGoogle Scholar
  52. 52.
    Caputi CA, Firetto V, Luzi FM: Il blocco anestetico del nervo grande occipitale nelle cefalee primarie: considerazioni a proposito di quattro casi di coomplessa interpretazione. Confinia Cephalalgica 1994, 1:27–33.Google Scholar
  53. 53.
    Matharu MS, Bartsch T, Ward N, et al.: Central neuromodulation in chronic migraine with implanted suboccipital stimulators. Neurology 2003, 60(suppl 1):A404-A405.Google Scholar
  54. 54.
    Piovesan EJ, Werneck LC, Kowacs PA, et al.: Anesthetic blockade of the greater occipital nerve in migraine prophylaxis. Arq Neuropsiquiatr 2001, 59:545–551.PubMedGoogle Scholar
  55. 55.
    Terzi T, Karakurum B, Ucler S, et al.: Greater occipital nerve blockade in migraine, tension-type headache and cervicogenic headache. J Headache Pain 2002, 3:137–141.CrossRefGoogle Scholar
  56. 56.
    Caputi CA, Firetto V: Therapeutic blockade of greater occipital and supraorbital nerves in migraine patients. Headache 1997, 37:174–179.PubMedCrossRefGoogle Scholar
  57. 57.
    Piovesan EJ, Kowacs PA, Lange MC, et al.: Can the biologic pattern of cervicogenic headache change after overuse or withdrawal of ergotamine derivatives? Arq Neuropsiquiatr 2000, 58:336–341.PubMedGoogle Scholar
  58. 58.
    Bossut DF, Whitsel EA, Maixner W: A parametric analysis of the effects of cardiopulmonary vagal electrostimulation on the digastric reflex in cats. Brain Res 1992, 579:253–260.PubMedCrossRefGoogle Scholar
  59. 59.
    Nishikawa Y, Koyama N, Yoshida Y, Yokota T: Activation of ascending antinociceptive system by vagal afferent input as revealed in the nucleus ventralis posteromedialis. Brain Res 1999, 833:108–111.PubMedCrossRefGoogle Scholar
  60. 60.
    Ren K, Zhuo M, Randich A, Gebhart GF: Vagal afferent stimulationproduced effects on nociception in capsaicin-treated rats. J Neurophysiol 1993, 69:1530–1540.PubMedGoogle Scholar
  61. 61.
    Bossut DF, Maixner W: Effects of cardiac vagal afferent electrostimulation on the responses of trigeminal and trigeminothalamic neurons to noxious orofacial stimulation. Pain 1996, 65:101–109.PubMedCrossRefGoogle Scholar
  62. 62.
    Ren K, Randich A, Gebhart GF: Vagal afferent modulation of a nociceptive reflex in rats: involvement of spinal opioid and monoamine receptors. Brain Res 1988, 446:285–294.PubMedCrossRefGoogle Scholar
  63. 63.
    Aicher SA, Lewis SJ, Randich A: Antinociception produced by electrical stimulation of vagal afferents: independence of cervical and subdiaphagmatic branches. Brain Res 1991, 542:63–70.PubMedCrossRefGoogle Scholar
  64. 64.
    Bohotin C, Scholsem M, Multon S, et al.: Vagus nerve stimulation in awake rats reduces formalin-induced nociceptive behaviour and fos-immunoreactivity in trigeminal nucleus caudalis. Pain 2003, 101:3–12.PubMedCrossRefGoogle Scholar
  65. 65.
    Takeda M, Tanimoto T, Ojima K, Matsumoto S: Suppressive effect of vagal afferents on the activity of the trigeminal spinal neurons related to the jaw-opening reflex in rats: involvement of the endogenous opioid system. Brain Res Bull 1998, 47:49–56.PubMedCrossRefGoogle Scholar
  66. 66.
    Sherman SE, Luo L, Dostrovsky JO: Spinal strychnine alters response properties of nociceptive-specific neurons in rat medial thalamus. J Neurophysiol 1997, 78:628–637.PubMedGoogle Scholar
  67. 67.
    Malick A, Strassman RM, Burstein R: Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat. J Neurophysiol 2000, 84:2078–2112.PubMedGoogle Scholar

Copyright information

© Current Science Inc 2003

Authors and Affiliations

  • Elcio J. Piovesan
    • 1
  • Pedro A. Kowacs
  • Michael L. Oshinsky
  1. 1.Jorge Manços do Nascimento Teixeira 868São José dos PinhaisBrazil

Personalised recommendations