Current Review of Pain

, Volume 4, Issue 6, pp 467–477 | Cite as

Exploring the pain “neuromatrix”

  • Stuart W. G. Derbyshire
Article

Abstract

A considerable number of functional imaging studies have demonstrated the involvement of multiple central regions during the experience of pain. These regions process information in circuits that can broadly be assumed to process the affective, sensory, cognitive, motor, inhibitory, and autonomic responses stimulated by a noxious event. The concept of a “neuromatrix” for pain processing is, therefore, well supported. There is, however, scant evidence for any particular regional or circuit dysfunction during clinical pain. To be clinically useful, functional imaging may have to step beyond the generalities of the neuromatrix.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Melzack R: Phantom limbs, the self and the brain: the D.O. Hebb memorial lecture. Can Psychol 1989, 30:1–16.CrossRefGoogle Scholar
  2. 2.
    Becerra LR, Breiter HC, Stojanovic M, et al.: Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magn Reson Med 1999, 41:1044–1057.CrossRefPubMedGoogle Scholar
  3. 3.
    Tolle TR, Kaufmann T, Siessmeier T, et al.: Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann Neurol 1999, 45:40–47.CrossRefPubMedGoogle Scholar
  4. 4.
    Derbyshire SWG, Jones AKP: Cerebral responses to a continual tonic pain stimulus measured using positron emission tomography. Pain 1998, 76:127–135.CrossRefPubMedGoogle Scholar
  5. 5.
    Svensson P, Johannsen P, Jensen TS, et al.: Cerebral blood-flow changes evoked by two levels of painful heat stimulation: a positron emission tomography study in humans. Eur J Pain 1998, 2:95–107.CrossRefPubMedGoogle Scholar
  6. 6.
    Adler LJ, Gyulai FE, Diehl DJ, et al.: Regional brain activity associated with fentanyl analgesia elucidated by positron emission tomography. Anesth Analg 1997, 84:120–126.PubMedGoogle Scholar
  7. 7.
    Rainville P, Duncan GH, Price DD, et al.: Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 1997, 277:968–971.CrossRefPubMedGoogle Scholar
  8. 8.
    Craig AD, Reiman EM, Evans A, Bushnell MC: Functional imaging of an illusion of pain. Nature 1996, 384:258–260.CrossRefPubMedGoogle Scholar
  9. 9.
    Kwan CL, Crawley AP, Mikulis DJ, Davis KD: An fMRI study of the anterior cingulate cortex and surrounding medial wall activations evoked by noxious cutaneous heat and cold stimuli. Pain 2000, 85:359–374.CrossRefPubMedGoogle Scholar
  10. 10.
    Petrovic P, Petersson KM, Ghatan PH, et al.: Pain-related cerebral activation is altered by a distracting cognitive task. Pain 2000, 85:19–30.CrossRefPubMedGoogle Scholar
  11. 11.
    Davis KD, Kwan CL, Crawley AP, Mikulis DJ: Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold and tactile stimuli. J Neurophysiol 1998, 80:1533–1546.PubMedGoogle Scholar
  12. 12.
    Casey KL, Minoshima S, Morrow TJ, Koeppe RA: Comparison of human cerebral activation patterns during cutaneous warmth, heat pain, and deep cold pain. J Neurophysiol 1996, 76:571–581.PubMedGoogle Scholar
  13. 13.
    Ladabaum U, Minoshima S, Hasler WL, et al.: Localization of human cortical and subcortical responses to gastric distension using positron emission tomography. Gastroenterology 2000, in press.Google Scholar
  14. 14.
    Mertz H, Morgan V, Tanner G, et al.: Regional cerebral activation in irritable bowel syndrome and control subjects with painful and nonpainful rectal distension. Gastroenterology 2000, 118:842–848.CrossRefPubMedGoogle Scholar
  15. 15.
    Naliboff BD, Derbyshire SWG, Munakata J, et al.: Cerebral activation in irritable bowel syndrome patients and control subjects during rectosigmoid stimulation. Psychosom Med 2000, in press.Google Scholar
  16. 16.
    Binkofski F, Schnitzler A, Enck P, et al.: Somatic and limbic cortex activation in esophageal distension: a functional magnetic resonance imaging study. Ann Neurol 1998, 44:811–815.CrossRefPubMedGoogle Scholar
  17. 17.
    Aziz Q, Andersson JLR, Valind S, et al.: Identification of human brain loci processing esophageal sensation using positron emission tomography. Gastroenterology 1997, 113:50–59.CrossRefPubMedGoogle Scholar
  18. 18.
    Silverman DHS, Munakata JA, Ennes H, et al.: Regional cerebral activity in normal and pathological perception of visceral pain. Gastroenterology 1997, 112:64–72.CrossRefPubMedGoogle Scholar
  19. 19.
    Iadorola MJ, Berman KF, Zeffiro TA, et al.: Neural activation during capsaicin-evoked pain and allodynia assessed with PET. Brain 1998, 121:931–947.CrossRefGoogle Scholar
  20. 20.
    May A, Kaube H, Buchel C, et al.: Experimental cranial pain elicited by capsaicin: a PET study. Pain 1998, 74:61–66.CrossRefPubMedGoogle Scholar
  21. 21.
    Porro CA, Cettolo V, Francescato MP, Baraldi P: Temporal and intensity coding of pain in human cortex. J Neurophysiol 1998, 80:3312–3320.PubMedGoogle Scholar
  22. 22.
    Andersson JLR, Lilja A, Hartvig P, et al.: Somatotopic organization along the central sulcus, for pain localization in humans, as revealed by positron emission tomography. Experimental Brain Res 1997, 117:192–199.CrossRefGoogle Scholar
  23. 23.
    Friston KJ, Frackowiak RSJ: Imaging functional anatomy. In Brain Work and Mental Activity (Alfred Benzon Symposium 31). Edited by Lassen NA et al. Copenhagen: Munksgaard; 1991:267–277.Google Scholar
  24. 24.
    Jones APK, Brown WD, Friston KJ, et al.: Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc R Soc Lond B Biol Sci 1991, 244:39–44.CrossRefGoogle Scholar
  25. 25.
    Talbot JD, Marret S, Evans AC, et al.: Multiple representations of pain in human cerebral cortex. Science 1991, 251:1355–1358.CrossRefPubMedGoogle Scholar
  26. 26.
    Tracey I, Becerra L, Chang I, et al.: Noxious heat and noxious cold stimulation produce common patterns of brain activation: an fMRI study. Neurosci Lett 2000, in press.Google Scholar
  27. 27.
    Coghill RC, Sang CN, Maisog JMA, Iadorola MJ: Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 1999, 82:1934–1943.PubMedGoogle Scholar
  28. 28.
    Peyron R, Garcia-Larrea L, Groegoire MC, et al.: Hemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 1999, 122:1765–1779.CrossRefPubMedGoogle Scholar
  29. 29.
    Ploghaus A, Tracey I, Gati JS, et al.: Dissociating pain from its anticipation in the human brain. Science 1999, 284:1979–1981.CrossRefPubMedGoogle Scholar
  30. 30.
    Paulson PM, Minoshima S, Morrow TJ, Casey KL: Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain 1998, 76:223–229.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Derbyshire SWG, Jones AKP, Gyulai F, et al.: Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain 1997, 73:431–445.CrossRefPubMedGoogle Scholar
  32. 32.
    Svennson P, Minsohima S, Beydoun A, et al.: Cerebral processing of acute skin and muscle pain in humans. J Neurophysiol 1997, 78:450–460.Google Scholar
  33. 33.
    Xu X, Fukuyama H, Yazawa S, et al.: Functional localization of pain perception in the human brain studied by PET. Neuroreport 1997, 8:555–559.CrossRefPubMedGoogle Scholar
  34. 34.
    Vogt BA, Derbyshire SWG, Jones AKP: Pain processing in four regions of human cingulate cortex localized with coregistered PET and MR imaging. Eur J Neurosci 1996, 8:1461–1473.CrossRefPubMedGoogle Scholar
  35. 35.
    Coghill RC, Talbot JD, Evans AC, et al.: Distributed processing of pain and vibration by the human brain. J Neurosci 1994, 14:4095–4108.PubMedGoogle Scholar
  36. 36.
    Derbyshire SWG, Jones AKP, Devani P, et al.: Cerebral responses to pain in patients with atypical facial pain measured by positron emission tomography. J Neurol Neurosurg Psychiatry 1994, 57:1166–1173.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Davis KD, Taylor SJ, Crawley AP, et al.: Functional MRI of pain- and attention-related activations in the human cingulate cortex. J Neurophysiol 1997, 77:3370–3380.PubMedGoogle Scholar
  38. 38.
    Derbyshire SWG, Jones AKP, Collins M, et al.: Cerebral responses to pain in patients suffering acute post dental extraction pain measured by positron emission tomography (PET). Eur J Pain 1999, 3:103–113.CrossRefPubMedGoogle Scholar
  39. 39.
    Jones AKP, Derbyshire SWG: Reduced cortical responses to noxious heat in patients with rheumatoid arthritis (RA). Ann Rheum Dis 1997, 56:601–607.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Rosen SD, Paulesu E, Frith CD, et al.: Central nervous pathways mediating angina pectoris. Lancet 1994, 344:147–150.CrossRefPubMedGoogle Scholar
  41. 41.
    Petrovic P, Ingvar M, Stone-Elander S, et al.: A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain 1999, 83:459–470.CrossRefPubMedGoogle Scholar
  42. 42.
    Peyron R, Garcia-Larrea L, Gregoire MC, et al.: Parietal and cingulate processes in central pain. A combined positron emission tomograhpy (PET) and functional magnetic resonance imaging (fMRI) study of an unusual case. Pain 2000, 84:77–87.CrossRefPubMedGoogle Scholar
  43. 43.
    Peyron R, Garcia-Larrea L, Gregoire MC, et al.: Allodynia after lateral-medullary (Wallenberg) infarct: a PET study. Brain 1998, 121:345–356.CrossRefPubMedGoogle Scholar
  44. 44.
    Hsieh JC, Belfrage M, Stone-Elander S, et al.: Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain 1995, 63:225–236.CrossRefPubMedGoogle Scholar
  45. 45.
    Sakiyama Y, Sato A, Senda M, et al.: Positron emission tomography reveals changes in global and regional cerebral blood flow during noxious stimulation of normal and inflamed elbow joints in anesthetized cats. Exp Brain Res 1998, 118:439–446.CrossRefPubMedGoogle Scholar
  46. 46.
    May A, Bahra A, Buchel C, et al.: Hypothalamic activation in cluster headache attacks. Lancet 1998, 352:275–278.CrossRefPubMedGoogle Scholar
  47. 47.
    Hsieh JC, Hannerz J, Ingvar M: Right-lateralised central processing for pain of nitroglycerin-induced cluster headache. Pain 1996, 67:59–68.CrossRefPubMedGoogle Scholar
  48. 48.
    Weiller C, May A, Limmroth V, et al.: Brain stem activation in spontaneous human migraine attacks. Nat Med 1995, 7:658–660.CrossRefGoogle Scholar
  49. 49.
    Di Piero V, Jones AKP, Iannotti F, et al.: Chronic pain: a PET study of the central effects of percutaneous high cervical cordotomy. Pain 1991, 46:9–12.CrossRefPubMedGoogle Scholar
  50. 50.
    Vogt BA: Structural organization of cingulate cortex: areas, neurons, and somatodendritic transmitter receptors. In Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Treatise. Edited by Vogt BA, Gabriel M. Boston: Birkhauser; 1993:19–70.CrossRefGoogle Scholar
  51. 51.
    Vogt BA, Sikes RW, Vogt LJ: Anterior cingulate cortex and the medial pain system. In Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Treatise. Edited by Vogt BA, Gabriel M. Boston: Birkhauser; 1993:313–344.CrossRefGoogle Scholar
  52. 52.
    Vogt BA, Nimchinsky EA, Vogt LJ, Hof PR: Human cingulate cortex: surface features, flat maps, and cytoarchitecture. J Comp Neurol 1995, 359:490–506. Excellent work examining variation in the structure of the ACC.CrossRefPubMedGoogle Scholar
  53. 53.
    Vogt BA, Finch DM, Olson CR: Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb Cortex 1992, 2:435–443.PubMedGoogle Scholar
  54. 54.
    Krettek JE, Price JL: The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 1977, 84:157–192.CrossRefGoogle Scholar
  55. 55.
    Sripanidkulchai K, Sripanidkulchai B, Wyass JM: The cortical projections of the basolateral amygdaloid nucleus in the rat: a retrograde fluorescent dye study. J Comp Neurol 1984, 229:419–431.CrossRefPubMedGoogle Scholar
  56. 56.
    Gabriel M: Functions of anterior and posterior cingulate cortex during avoidance learning in rabbits. In Progress in Brain Research. Edited by Uylings H et al. New York: Academic Press; 1990:467–483.Google Scholar
  57. 57.
    Gabriel M, Foster K, Orona E: Interaction of laminae of the cingulate cortex with the anteroventral thalamus during behavioural learning. Science 1980, 208:1050–1052.CrossRefPubMedGoogle Scholar
  58. 58.
    Gabriel M, Foster K, Orona E, et al.: Neuronal activity of cingulate cortex, anteroventral thalamus, and hippocampal formation in discriminative conditioning. Prog Psychobiol Physiol Psychol 1980, 9:125–231.Google Scholar
  59. 59.
    Bancaud J, Talairach J: Clinical semiology of frontal lobe seizures. In Frontal Lobe Seizures and Epilepsies. Edited by Chauvel P et al. New York: Raven Press; 1992:3–58.Google Scholar
  60. 60.
    George MS, Ketter TA, Parekh PI, et al.: Brain activity during transient sadness and happiness in healthy women. Am J Psychiatry 1995, 152:341–351.CrossRefPubMedGoogle Scholar
  61. 61.
    Van Hoesen GW, Morecraft RJ, Vogt BA: Connections of the monkey cingulate cortex. In Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Treatise. Edited by Vogt BA, Gabriel M. Boston: Birkhauser; 1993:249–284.CrossRefGoogle Scholar
  62. 62.
    Vogt BA, Watanabe H, Grootoonk S, Jones AKP: Topography of diprenorphine binding in human cingulate gyrus and adjacent cortex derived from coregistered PET and MR images. Hum Brain Mapping 1995, 3:1–12.CrossRefGoogle Scholar
  63. 63.
    Melzack R, Wall PD: Pain mechanisms: a new theory. Science 1965, 150:971–979.CrossRefPubMedGoogle Scholar
  64. 64.
    Fields HL, Heinricher MM, Mason P: Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 1991, 14:219–245.CrossRefPubMedGoogle Scholar
  65. 65.
    Helmstetter FJ, Bellgowan P, Tershner SA: Inhibition of the tail flick reflex following microinjection of morphine into the amygdala. Neuroreport 1993, 4:471–474.CrossRefPubMedGoogle Scholar
  66. 66.
    Burkey AR, Carstens E, Wenniger JJ, et al.: An opioidergic cortical antinociception triggering site in the agranular insular cortex of the rat that contributes to morphine antinociception. J Neurosci 1996, 16:6612–6623.PubMedGoogle Scholar
  67. 67.
    Kiefel JM, Rossi GC, Bodnar RJ: Medullary mu and delta opioid receptors modulate mesencephalic morphine analgesia in rats. Brain Res 1993, 624:151–161.CrossRefPubMedGoogle Scholar
  68. 68.
    Miron D, Duncan GH, Bushnell MC: Effects of attention on the intensity and unpleasantness of thermal pain. Pain 1989, 39:345–352.CrossRefPubMedGoogle Scholar
  69. 69.
    Bushnell MC, Duncan GH, Dubner R, et al.: Attentional influences on noxious and innocuous cutaneous heat detection in humans and monkeys. J Neurosci 1985, 5:1103–1110.PubMedGoogle Scholar
  70. 70.
    Jones AKP, Cunningham VJ, Ha-Kawa S, et al.: Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumatoid arthritis. Br J Rheumatol 1995, 33:909–916.CrossRefGoogle Scholar
  71. 71.
    Derbyshire SWG: Meta-analysis of thirty-four independent samples studied using positron emission tomography (PET) reveals a significantly attenuated central response to noxious stimulation in clinical pain patients. Curr Rev Pain 1999, 3:265–280.CrossRefPubMedGoogle Scholar
  72. 72.
    Ness TJ, Gebhart GF: Visceral pain: a review of experimental studies. Pain 1990, 41:167–234.CrossRefPubMedGoogle Scholar
  73. 73.
    Munakata J, Silverman DHS, Naliboff B, et al.: Altered cortical and subcortical brain activation associated with autonomic responses to visceral pain in irritable bowel syndrome [abstract]. Gastroenterology 1998, 114:1167.CrossRefGoogle Scholar
  74. 74.
    Smith WK: The functional significance of the rostral cingular cortex as revealed by its responses to electrical excitation. J Neurophysiol 1945, 8:241–255.Google Scholar
  75. 75.
    Ward AA: The cingulate gyrus: area 24. J Neurophysiol 1948, 11:13–23.PubMedGoogle Scholar
  76. 76.
    Buchanan SL, Valentine JD, Powell DA: Autonomic responses are elicited from medial but not lateral frontal cortex in rabbits. Behav Brain Res 1985, 18:51–62.CrossRefPubMedGoogle Scholar
  77. 77.
    Hurley-Guis KM, Neafsey EJ: The medial frontal cortex and gastric motility: microstimulation results and their possible significance for the overall pattern of organization of rat frontal and parietal cortex. Brain Res 1986, 365:241–248.CrossRefGoogle Scholar
  78. 78.
    Burns SM, Wyss JM: The involvement of the anterior cingulate cortex in blood pressure control. Brain Res 1985, 340:71–77.CrossRefPubMedGoogle Scholar
  79. 79.
    Buchanan SL, Powell DA: Cingulate damage attenuates conditioned bradycardia. Neurosci Lett 1982, 29:261–268.CrossRefPubMedGoogle Scholar
  80. 80.
    Buchanan SL, Powell DA: Cingulate cortex: its role in Pavlovian conditioning. J Comp Physiol Psychol 1982, 96:755–774.CrossRefPubMedGoogle Scholar
  81. 81.
    Neafsey EJ, Terreberry RR, Hurley KM, et al.: Anterior cingulate cortex in rodents: connections, visceral control functions, and implications for emotion. In Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Treatise. Edited by Vogt BA, Gabriel M. Boston: Birkhauser; 1993:206–223.CrossRefGoogle Scholar
  82. 82.
    Wall PD, Davis GD: Three cerebral cortical systems affecting autonomic function. J Neurophysiol 1951, 14:507–517.PubMedGoogle Scholar
  83. 83.
    Hoffman BL, Rasmussen T: Stimulation studies of insular cortex of Macaca mulatta. J Neurophysiol 1953, 16:343.PubMedGoogle Scholar
  84. 84.
    Penfield W, Faulk ME: The insula. Further observations on its function. Brain 1955, 78:445–470.CrossRefPubMedGoogle Scholar
  85. 85.
    Von Euler US, Folkow B: The effect of stimulation of autonomic areas in the cerebral cortex upon the adrenaline and noradrenaline secretion from the adrenal gland in the cat. Acta Physiol Scand 1958, 42:313–320.CrossRefGoogle Scholar
  86. 86.
    Delgado JM: Circulatory effects of cortical stimulation. Physiol Rev 1960, 40:146–178.Google Scholar
  87. 87.
    Hall RE, Livingston RB, Bloor CM: Orbital cortical influences on cardiovascular dynamics and myocardial structure in conscious monkeys. J Neurosurg 1977, 46:638–647.CrossRefGoogle Scholar
  88. 88.
    Ruggiero DA, Mraovitch S, Granata AR, et al.: Role of insular cortex in cardiovascular function. J Comp Neurol 1987, 257:189–207.CrossRefPubMedGoogle Scholar
  89. 89.
    Saper CB: Convergence of autonomic and limbic connections in the insular cortex of the rat. J Comp Neurol 1982, 210:163–173.CrossRefPubMedGoogle Scholar
  90. 90.
    Kenshalo DR, Isensee O: Responses of primate S1 cortical neurons to noxious stimuli. J Neurophysiol 1983, 50:1479–1496.PubMedGoogle Scholar
  91. 91.
    Bushnell MC, Duncan GH, Hofbauer RK, et al.: Pain perception: is there a role for primary somatosensory cortex? Proc Natl Acad Sci U S A 1999, 96:7705–7709. A very helpful overview of S1 responses during pain processing with some interesting new data.CrossRefPubMedCentralPubMedGoogle Scholar
  92. 92.
    Price DD: Psychological and neural mechanisms of the affective dimension of pain. Science 2000, 288:1769–1772. A useful overview of recent work in the field and related theoretic developments.CrossRefPubMedGoogle Scholar
  93. 93.
    Gybels JM, Sweet WH: Neurosurgical Treatment of Persistent Pain. Basel, Switzerland: Karger; 1989.Google Scholar
  94. 94.
    Santo JL, Arias LM, Barolat G, et al.: Bilateral cingulotomy in the treatment of reflex sympathetic dystrophy. Pain 1990, 41:55–59.CrossRefPubMedGoogle Scholar
  95. 95.
    Gabriel M, Vogt BA, Kubota Y, et al.: Training stage related neuronal plasticity in limbic thalamus and cingulate cortex during learning: a possible key to mnemonic retrieval. Behav Brain Res 1991, 46:175–185.CrossRefPubMedGoogle Scholar
  96. 96.
    Duncan GH, Bushnell MC, Bates R, Dubner R: Task related responses of monkey medullary dorsal horn neurons. J Neurophysiol 1987, 57:289–310.PubMedGoogle Scholar
  97. 97.
    Posner MI, Rothbart MK: Attentional mechanisms and conscious experience. In The Neuropsychology of Consciousness. Edited by Milner AD, Rugg MD. London: Academic Press; 1991:91–111.Google Scholar
  98. 98.
    Derbyshire SW, Vogt BA, Jones AK: Pain and Stroop interference tasks activate separate processing modules in anterior cingulate cortex. Exp Brain Res 1998, 118:52–60.CrossRefPubMedGoogle Scholar
  99. 99.
    Badgaiyan RD, Posner MI: Mapping the cingulate cortex in response selection and monitoring. Neuroimage 1998, 7:255–260.CrossRefPubMedGoogle Scholar
  100. 100.
    Shallice T: From Neuropsychology to Mental Structure. Cambridge: Cambridge University Press; 1988.CrossRefGoogle Scholar
  101. 101.
    Golebatch JG, Deiber MP, Passingham RE, et al.: Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol 1991, 65:1392–1401.Google Scholar
  102. 102.
    Alexander GE: Selective neuronal discharge in monkey putamen reflects intended direction of planned movements. Exp Brain Res 1987, 67:623–634.CrossRefPubMedGoogle Scholar

Copyright information

© Current Science Inc 2000

Authors and Affiliations

  • Stuart W. G. Derbyshire
    • 1
  1. 1.PET Facility, B-938 PUHUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations