Advertisement

Current Osteoporosis Reports

, Volume 16, Issue 4, pp 512–518 | Cite as

Surgical Approach to Bone Metastases

  • Geoffrey W. Siegel
  • J. Sybil Biermann
  • Anda-Alexandra Calinescu
  • Daniel E. Spratt
  • Nicholas J. Szerlip
Cancer-induced Musculoskeletal Diseases (J Sterling and E Keller, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Cancer-induced Musculoskeletal Diseases

Abstract

Purpose of Review

The purpose of this review was to examine the recent changes in the surgical treatment of bone metastases and how the treatment paradigm has shifted with the improvement of adjuvant therapies. How surgery fits into the local and systemic treatment was reviewed for bone metastases in different areas.

Recent Findings

The more common use of targeted chemotherapies and focused high-dose radiation have altered the treatment paradigm of bone metastases.

Summary

Overall changes in the surgical treatment of bone metastases have been driven by an increased multidisciplinary approach to metastatic cancer and the awareness that one type of surgery does not work for all patients. The individual patient treatment goals dictate the surgical procedures used to achieve these goals. Advancements in adjuvant therapy-like radiation and more targeted chemotherapies have allowed for less invasive surgical approaches and therefore faster recoveries and reduced surgical morbidity for patients.

Keywords

Bone metastases Spinal metastases Pain Surgery Cancer 

Notes

Compliance with Ethical Standards

Conflict of Interest

Geoffrey Siegel, J. Sybil Biermann, Anda-Alexandra Calinescu, Daniel Spratt, and Nicholas Szerlip declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Financial Support and Industry Affiliations Pertinent to This Manuscript

No disclosures or financial support to report for any authors that is pertinent to this manuscript.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. 1.
    Boriani S, Gasbarrini A, Bandiera S, Ghermandi R, Lador R. En bloc resections in the spine - the experience of 220 cases over 25 years. World Neurosurg. 2016;98:217–29.  https://doi.org/10.1016/j.wneu.2016.10.086. CrossRefPubMedGoogle Scholar
  2. 2.
    Sakaura H, Hosono N, Mukai Y, Ishii T, Yonenobu K, Yoshikawa H. Outcome of total en bloc spondylectomy for solitary metastasis of the thoracolumbar spine. Clin Spine Surg. 2004;17(4):297–300.Google Scholar
  3. 3.
    Tomita K, Kawahara N, Baba H, Tsuchiya H, Nagata S, Toribatake Y. Total en bloc spondylectomy for solitary spinal metastases. Int Orthop. 1994;18(5):291–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Maranzano E, Bellavita R, Rossi R, De Angelis V, Frattegiani A, Bagnoli R, et al. Short-course versus split-course radiotherapy in metastatic spinal cord compression: results of a phase III, randomized, multicenter trial. J Clin Oncol. 2005;23(15):3358–65.  https://doi.org/10.1200/JCO.2005.08.193.CrossRefPubMedGoogle Scholar
  5. 5.
    Sohn S, Chung CK, Sohn MJ, Kim SH, Kim J, Park E. Radiosurgery compared with external radiation therapy as a primary treatment in spine metastasis from hepatocellular carcinoma : a multicenter, matched-pair study. J Korean Neurosurg Soc. 2016;59(1):37–43.  https://doi.org/10.3340/jkns.2016.59.1.37. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Greco C, Pares O, Pimentel N, Moser E, Louro V, Morales X, et al. Spinal metastases: from conventional fractionated radiotherapy to single-dose SBRT. Rep Pract Oncol Radiother. 2015;20(6):454–63.  https://doi.org/10.1016/j.rpor.2015.03.004.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    •• Spratt DE, Beeler WH, de Moraes FY, Rhines LD, Gemmete JJ, Chaudhary N, et al. An integrated multidisciplinary algorithm for the management of spinal metastases: an international spine oncology consortium report. Lancet Oncol. 2017;18(12):e720–e30.  https://doi.org/10.1016/S1470-2045(17)30612-5. Important contribution to the treatment of spine metastases as it presents a clear algorithm for treatment that takes into account multiple variables from other disciplines. CrossRefPubMedGoogle Scholar
  8. 8.
    •• Patchell RA, Tibbs PA, Regine WF, Payne R, Saris S, Kryscio RJ, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet. 2005;366(9486):643–8.  https://doi.org/10.1016/S0140-6736(05)66954-1. Very important, this was the first randomized control trial showing surgical 360 degree decompression of spine metastases led to significant improvement in quality of life. CrossRefPubMedGoogle Scholar
  9. 9.
    Bilsky MH, Boland P, Lis E, Raizer JJ, Healey JH. Single-stage posterolateral transpedicle approach for spondylectomy, epidural decompression, and circumferential fusion of spinal metastases. Spine (Phila Pa 1976). 2000;25(17):2240–9. discussion 250CrossRefGoogle Scholar
  10. 10.
    Wang JC, Boland P, Mitra N, Yamada Y, Lis E, Stubblefield M, et al. Single-stage posterolateral transpedicular approach for resection of epidural metastatic spine tumors involving the vertebral body with circumferential reconstruction: results in 140 patients. Invited submission from the joint section meeting on disorders of the spine and peripheral nerves, march 2004. J Neurosurg Spine. 2004;1(3):287–98.  https://doi.org/10.3171/spi.2004.1.3.0287. CrossRefPubMedGoogle Scholar
  11. 11.
    Chou D, Lu DC. Mini-open transpedicular corpectomies with expandable cage reconstruction. Technical note. J Neurosurg Spine. 2011;14(1):71–7.  https://doi.org/10.3171/2010.10.SPINE091009.CrossRefPubMedGoogle Scholar
  12. 12.
    Moussazadeh N, Rubin DG, McLaughlin L, Lis E, Bilsky MH, Laufer I. Short-segment percutaneous pedicle screw fixation with cement augmentation for tumor-induced spinal instability. Spine J. 2015;15(7):1609–17.  https://doi.org/10.1016/j.spinee.2015.03.037.CrossRefPubMedGoogle Scholar
  13. 13.
    • Versteeg AL, van der Velden JM, Verkooijen HM, van Vulpen M, Oner FC, Fisher CG, et al. The effect of introducing the spinal instability neoplastic score in routine clinical practice for patients with spinal metastases. Oncologist. 2016;21(1):95–101.  https://doi.org/10.1634/theoncologist.2015-0266. led to widespread institution of a scoring system that allows practitioners from different specialties to communicate about mechanical instability. CrossRefPubMedGoogle Scholar
  14. 14.
    Mikami Y, Numaguchi Y, Kobayashi N, Fuwa S, Hoshikawa Y, Saida Y. Therapeutic effects of percutaneous vertebroplasty for vertebral metastases. Jpn J Radiol. 2011;29(3):202–6.  https://doi.org/10.1007/s11604-010-0542-x.CrossRefPubMedGoogle Scholar
  15. 15.
    Anselmetti GC, Manca A, Tutton S, Chiara G, Kelekis A, Facchini FR, et al. Percutaneous vertebral augmentation assisted by PEEK implant in painful osteolytic vertebral metastasis involving the vertebral wall: experience on 40 patients. Pain Phys. 2013;16(4):E397–404.Google Scholar
  16. 16.
    Anselmetti GC, Marcia S, Saba L, Muto M, Bonaldi G, Carpeggiani P, et al. Percutaneous vertebroplasty: multi-centric results from EVEREST experience in large cohort of patients. Eur J Radiol. 2012;81(12):4083–6.  https://doi.org/10.1016/j.ejrad.2012.07.005.CrossRefPubMedGoogle Scholar
  17. 17.
    Korovessis P, Vardakastanis K, Vitsas V, Syrimpeis V. Is Kiva implant advantageous to balloon kyphoplasty in treating osteolytic metastasis to the spine? Comparison of 2 percutaneous minimal invasive spine techniques: a prospective randomized controlled short-term study. Spine (Phila Pa 1976). 2014;39(4):E231–9.  https://doi.org/10.1097/BRS.0000000000000112. CrossRefGoogle Scholar
  18. 18.
    Beall DP, Olan WJ, Kakad P, Li Q, Hornberger J. Economic analysis of Kiva VCF treatment system compared to balloon kyphoplasty using randomized Kiva safety and effectiveness trial (KAST) data. Pain Phys. 2015;18(3):E299–306.Google Scholar
  19. 19.
    Berenson J, Pflugmacher R, Jarzem P, Zonder J, Schechtman K, Tillman JB, et al. Balloon kyphoplasty versus non-surgical fracture management for treatment of painful vertebral body compression fractures in patients with cancer: a multicentre, randomised controlled trial. Lancet Oncol. 2011;12(3):225–35.  https://doi.org/10.1016/S1470-2045(11)70008-0.CrossRefPubMedGoogle Scholar
  20. 20.
    Berjano P, Damilano M, Pejrona M, Consonni O, Langella F, Lamartina C. KIVA VCF system in the treatment of T12 osteoporotic vertebral compression fracture. Eur Spine J. 2014;23(6):1379–80.  https://doi.org/10.1007/s00586-014-3366-z.CrossRefPubMedGoogle Scholar
  21. 21.
    Buchbinder R, Osborne RH, Ebeling PR, Wark JD, Mitchell P, Wriedt C, et al. A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N Engl J Med. 2009;361(6):557–68.  https://doi.org/10.1056/NEJMoa0900429.CrossRefPubMedGoogle Scholar
  22. 22.
    Dohm M, Black CM, Dacre A, Tillman JB, Fueredi G, investigators K. A randomized trial comparing balloon kyphoplasty and vertebroplasty for vertebral compression fractures due to osteoporosis. AJNR Am J Neuroradiol. 2014;35(12):2227–36.  https://doi.org/10.3174/ajnr.A4127.CrossRefPubMedGoogle Scholar
  23. 23.
    El-Fiki M. Vertebroplasty, kyphoplasty, lordoplasty, expandable devices, and current treatment of painful osteoporotic vertebral fractures. World Neurosurg. 2016;91:628–32.  https://doi.org/10.1016/j.wneu.2016.04.016.CrossRefPubMedGoogle Scholar
  24. 24.
    Klazen CA, Lohle PN, de Vries J, Jansen FH, Tielbeek AV, Blonk MC, et al. Vertebroplasty versus conservative treatment in acute osteoporotic vertebral compression fractures (Vertos II): an open-label randomised trial. Lancet. 2010;376(9746):1085–92.  https://doi.org/10.1016/S0140-6736(10)60954-3.CrossRefPubMedGoogle Scholar
  25. 25.
    Liu JT, Liao WJ, Tan WC, Lee JK, Liu CH, Chen YH, et al. Balloon kyphoplasty versus vertebroplasty for treatment of osteoporotic vertebral compression fracture: a prospective, comparative, and randomized clinical study. Osteoporos Int. 2010;21(2):359–64.  https://doi.org/10.1007/s00198-009-0952-8.CrossRefPubMedGoogle Scholar
  26. 26.
    Vogl TJ, Pflugmacher R, Hierholzer J, Stender G, Gounis M, Wakhloo A, et al. Cement directed kyphoplasty reduces cement leakage as compared with vertebroplasty: results of a controlled, randomized trial. Spine (Phila Pa 1976). 2013;38(20):1730–6.  https://doi.org/10.1097/BRS.0b013e3182a14d15. CrossRefGoogle Scholar
  27. 27.
    •• Wardlaw D, Cummings SR, Van Meirhaeghe J, Bastian L, Tillman JB, Ranstam J, et al. Efficacy and safety of balloon kyphoplasty compared with non-surgical care for vertebral compression fracture (FREE): a randomised controlled trials. Lancet. 2009;373(9668):1016–24.  https://doi.org/10.1016/S0140-6736(09)60010-6. Great study showing the benfit of cement for pain control in pathologic compression fractures. CrossRefPubMedGoogle Scholar
  28. 28.
    Weill A, Chiras J, Simon JM, Rose M, Sola-Martinez T, Enkaoua E. Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology. 1996;199(1):241–7.  https://doi.org/10.1148/radiology.199.1.8633152.CrossRefPubMedGoogle Scholar
  29. 29.
    Tutton SM, Pflugmacher R, Davidian M, Beall DP, Facchini FR, Garfin SR. KAST Study: the Kiva system as a vertebral augmentation treatment-a safety and effectiveness trial: a randomized, noninferiority trial comparing the Kiva system with balloon kyphoplasty in treatment of osteoporotic vertebral compression fractures. Spine (Phila Pa 1976). 2015;40(12):865–75.  https://doi.org/10.1097/BRS.0000000000000906. CrossRefGoogle Scholar
  30. 30.
    Aubry S, Dubut J, Nueffer JP, Chaigneau L, Vidal C, Kastler B. Prospective 1-year follow-up pilot study of CT-guided microwave ablation in the treatment of bone and soft-tissue malignant tumours. Eur Radiol. 2016;27:1477–85.  https://doi.org/10.1007/s00330-016-4528-7.CrossRefPubMedGoogle Scholar
  31. 31.
    Wallace AN, Greenwood TJ, Jennings JW. Use of imaging in the management of metastatic spine disease with percutaneous ablation and vertebral augmentation. AJR Am J Roentgenol. 2015;205(2):434–41.  https://doi.org/10.2214/AJR.14.14199.CrossRefPubMedGoogle Scholar
  32. 32.
    Wallace AN, Robinson CG, Meyer J, Tran ND, Gangi A, Callstrom MR, et al. The metastatic spine disease multidisciplinary working group algorithms. Oncologist. 2015;20(10):1205–15.  https://doi.org/10.1634/theoncologist.2015-0085.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Clara-Altamirano MA, Garcia-Ortega DY, Martinez-Said H, Caro-Sanchez CHS, Herrera-Gomez A, Cuellar-Hubbe M. Surgical treatment in bone metastases in the appendicular skeleton. Rev Esp Cir Ortop Traumatol. 2018;62:185–9.  https://doi.org/10.1016/j.recot.2017.12.001.PubMedGoogle Scholar
  34. 34.
    Shimoyama T, Katagiri H, Harada H, Murata H, Wasa J, Hosaka S, et al. Fracture after radiation therapy for femoral metastasis: incidence, timing and clinical features. J Radiat Res. 2017;58(5):661–8.  https://doi.org/10.1093/jrr/rrx038.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    •• Mirels H. Metastatic disease in long bones. A proposed scoring system for diagnosing impending pathologic fractures. Clin Orthop Relat Res 1989(249):256-64. Presents a well utilized scoring system that is broadly used by different specialties. Google Scholar
  36. 36.
    Gainor BJ, Buchert P. Fracture healing in metastatic bone disease. Clin Orthop Relat Res 1983(178):297-302.Google Scholar
  37. 37.
    Andronis L, Goranitis I, Bayliss S, Duarte R. Cost-effectiveness of treatments for the management of bone metastases: a systematic literature review. PharmacoEconomics. 2018;36(3):301–22.  https://doi.org/10.1007/s40273-017-0595-0.CrossRefPubMedGoogle Scholar
  38. 38.
    Berenson JR, Rosen LS, Howell A, Porter L, Coleman RE, Morley W, et al. Zoledronic acid reduces skeletal-related events in patients with osteolytic metastases. Cancer. 2001;91(7):1191–200.CrossRefPubMedGoogle Scholar
  39. 39.
    Benevenia J, Kirchner R, Patterson F, Beebe K, Wirtz DC, Rivero S, et al. Outcomes of a modular intercalary endoprosthesis as treatment for segmental defects of the femur, tibia, and humerus. Clin Orthop Relat Res. 2016;474(2):539–48.  https://doi.org/10.1007/s11999-015-4588-z.CrossRefPubMedGoogle Scholar
  40. 40.
    Piccioli A, Rossi B, Scaramuzzo L, Spinelli MS, Yang Z, Maccauro G. Intramedullary nailing for treatment of pathologic femoral fractures due to metastases. Injury. 2014;45(2):412–7.  https://doi.org/10.1016/j.injury.2013.09.025.CrossRefPubMedGoogle Scholar
  41. 41.
    Tanaka T, Imanishi J, Charoenlap C, Choong PF. Intramedullary nailing has sufficient durability for metastatic femoral fractures. World J Surg Oncol. 2016;14:80.  https://doi.org/10.1186/s12957-016-0836-2.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Harvey N, Ahlmann ER, Allison DC, Wang L, Menendez LR. Endoprostheses last longer than intramedullary devices in proximal femur metastases. Clin Orthop Relat Res. 2012;470(3):684–91.  https://doi.org/10.1007/s11999-011-2038-0.CrossRefPubMedGoogle Scholar
  43. 43.
    Steensma M, Boland PJ, Morris CD, Athanasian E, Healey JH. Endoprosthetic treatment is more durable for pathologic proximal femur fractures. Clin Orthop Relat Res. 2012;470(3):920–6.  https://doi.org/10.1007/s11999-011-2047-z.CrossRefPubMedGoogle Scholar
  44. 44.
    Nooh A, Goulding K, Isler MH, Mottard S, Arteau A, Dion N, et al. Early improvement in pain and functional outcome but not quality of life after surgery for metastatic long bone disease. Clin Orthop Relat Res. 2018;476(3):535–45.  https://doi.org/10.1007/s11999.0000000000000065.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Geoffrey W. Siegel
    • 1
    • 2
  • J. Sybil Biermann
    • 1
  • Anda-Alexandra Calinescu
    • 3
  • Daniel E. Spratt
    • 4
  • Nicholas J. Szerlip
    • 2
    • 3
  1. 1.Department of Orthopaedic SurgeryUniversity of MichiganAnn ArborUSA
  2. 2.Veterans Affairs Medical CenterAnn ArborUSA
  3. 3.Department of NeurosurgeryUniversity of MichiganAnn ArborUSA
  4. 4.Department of Radiation OncologyUniversity of MichiganAnn ArborUSA

Personalised recommendations