Advertisement

Current Osteoporosis Reports

, Volume 16, Issue 4, pp 369–379 | Cite as

Part II: Temporomandibular Joint (TMJ)—Regeneration, Degeneration, and Adaptation

  • W. Eugene Roberts
  • David L. Stocum
Craniofacial Skeleton (WE Roberts, Section Editor)
  • 184 Downloads
Part of the following topical collections:
  1. Topical Collection on Craniofacial Skeleton

Abstract

Purpose of Review

Elucidate temporomandibular joint (TMJ) development and pathophysiology relative to regeneration, degeneration, and adaption.

Recent Findings

The pharyngeal arch produces a highly conserved stomatognathic system that supports airway and masticatory function. An induced subperiosteal layer of fibrocartilage cushions TMJ functional and parafunctional loads. If the fibrocartilage disc is present, a fractured mandibular condyle (MC) regenerates near the eminence of the fossa via a blastema emanating from the medial periosteal surface of the ramus. TMJ degenerative joint disease (DJD) is a relatively painless osteoarthrosis, resulting in extensive sclerosis, disc destruction, and lytic lesions. Facial form and symmetry may be affected, but the residual bone is vital because distraction continues to lengthen the MC with anabolic bone modeling. Extensive TMJ adaptive, healing, and regenerative potential maintains optimal, life support functions over a lifetime.

Summary

Unique aspects of TMJ development, function, and pathophysiology may be useful for innovative management of other joints.

Keywords

Fibrocartilage TMJ regeneration Airway Deciduous first molars Condylar hyperplasia Osteoarthrosis TMD Adaptation Conserved traits Propagation Condylar distraction 

Notes

Compliance with Ethical Standards

Conflict of Interest

David Stocum declares no conflict of interest. W.E. Roberts is a section editor of the Craniofacial Section of Current Osteoporosis Reports, but this paper was reviewed by editor in chief David Burr.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Martek ML, Bronner ME. Regulatory logic underlying diversification of the neural crest. Trends Genet. 2017;33:715–27.CrossRefGoogle Scholar
  2. 2.
    Lopez-Barneo J, Marcias D, Platero-Luengo A, Ortega-Saenz P, Pardal R. Carotid body oxygen sensing and adaptation to hypoxia. Pflugers Arch. 2016;468(1):59–70.CrossRefPubMedGoogle Scholar
  3. 3.
    Hockman D, Burns AJ, Schlosser G, Gates KP, Jevans B, Mongera A, et al. Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes. eLife. 2017;6:e21231.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Selvi R, Mukunda PA. Role of SOX9 in the etiology of Pierre-Robin syndrome. Iran J Basic Sci. 2013;16(5):700–4.Google Scholar
  5. 5.
    Li C, Lan Y, Jiang R. Molecular and cellular mechanisms of palate development. J Dent Res. 2017;96(11):1184–91.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Steinberg JP, Brady CM, Waters BR, Soldanska M, Burstein FD, Thomas JE, et al. Mid-term dental and nerve-related complications of infant distraction for Robin syndrome. Plast Reconstr Surg. 2016;138(1):82e–90e.CrossRefPubMedGoogle Scholar
  7. 7.
    Bragagnolo S, Colovati MES, Souza MZ, Dantas AG, F de Soares MF, Melaragno MI, et al. Clinical and cytogenomic findings in OAV spectrum. Am J Med Genet A. 2018;176:638–48.CrossRefPubMedGoogle Scholar
  8. 8.
    Khetani MA, Collett BR, Speltz ML, Werler MM. Health-related quality of life in children with hemifacial microsomia: parent and child perspectives. J Dev Behav Pediatr. 2013;34(9):661–8.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Shuhaimi NF, Jalaludin J. Biomarker as a research tool in linking exposure to air particles and respiratory health. Biomed Res Int. 2015;Article ID 962853, Hindawi Publishing Company;2015:1–10.  https://doi.org/10.1155/2015/962853.CrossRefGoogle Scholar
  10. 10.
    Zheng M, Wang X, Zhang L. Association between allergic and nonallergic rhinitis and obstructive sleep apnea. Curr Opin Allergy Clin Immunol. 2018;18(1):16–25.PubMedGoogle Scholar
  11. 11.
    Hu JM, Lin CS, Chen SJ, Chen CY, Lin CL, Kao CH. Association between obstructive sleep apnea and atopic dermatitis in children: a nationwide, population-based cohort study. Pediatr Allergy Immunol. 2018.  https://doi.org/10.1111/pai.12853.
  12. 12.
    Ekström S, Hallberg J, Kull I, Protudjer LP, Per T, Bottai M, et al. Body mass index status and peripheral airway obstruction in school-age children: a population-based cohort study. Thorax. 2018;0:1–8.  https://doi.org/10.1136/thoraxjnl-2017-210716.CrossRefGoogle Scholar
  13. 13.
    Luyster FS, Strollo PJ Jr, Thunstrom PY. Long-term use of continuous positive airway pressure therapy in coronary artery disease patients with nonsleepy obstructive sleep apnea. Wiley Clin Cardiol. 2017.  https://doi.org/10.1002/clc.22827.
  14. 14.
    Ngo R, Pullano E, Peacock ZS, Lahey ET, August M. Does the medical comorbidity profile of obstructive sleep apnea patients treated with maxillomandibular advancement differ from that of obstructive sleep apnea patients managed nonsurgically. J Oral Maxillofac Surg. 2018.  https://doi.org/10.1016/j.joms.2018.01.011.
  15. 15.
    Huang T, Lin BM, Markt SC, Stampfer MJ, Laden F, Hu FB, et al. Sex differences in the associations of obstructive sleep apnoea with epidemiologic factors. Eur Respir J. 2018.  https://doi.org/10.1183/13993003.02421-2017.
  16. 16.
    Osman AM, Carter SG, Carberry JC, Eckert DJ. Obstructive sleep apnea: current perspectives, a review. Nat Sci Sleep. 2018;10:21–34.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Certal VF, Zaghi S, Riaz M, Vieira AS, Pinheiro CT, Kushida C, et al. Hypoglossal nerve stimulation in the treatment of obstructive sleep apnea: a systematic review and meta-analysis. Laryngoscope. 2015;125(5):1254–64.CrossRefPubMedGoogle Scholar
  18. 18.
    Sharples LD, Clutterbuck-James AL, Glover MJ, Bennett MS, Chadwick R, Pittman MA, et al. Meta-analysis of randomised controlled trials of oral mandibular advancement devices and continuous positive airway pressure for obstructive sleep apnoea-hypopnoea. Sleep Med Rev. 2016;27:108–24.CrossRefPubMedGoogle Scholar
  19. 19.
    Näpänkangas R, Raunio A, Sipilä K, Raustia A. Effect of mandibular advancement device therapy on the signs and symptoms of temporomandibular disorders. J Oral Maxillofac Res. 2012;3(4):e5.CrossRefGoogle Scholar
  20. 20.
    Stocum DL, Roberts WE. Part I: development and physiology of the temporormandibular joint. Curr Rep Osteoporos. 2018 (In Press).Google Scholar
  21. 21.
    Lee SK, Kim YS, Lim CY, Chi JG. Prenatal growth pattern of the human maxilla. Acta Anat (Basel). 1992;145(1):1–10.CrossRefGoogle Scholar
  22. 22.
    Smartt JM Jr, Low DW, Bartlett SP. The pediatric mandible: a primer on growth and development. Plast Reconstr Surg. 2005;116(1):14e–23e.CrossRefPubMedGoogle Scholar
  23. 23.
    Hylander WL, Ravosa MJ, Ross CF, Wall CE, Johnson KR. Symphyseal fusion and jaw-adductor muscle force: an EMG study. Am J Phys Anthropol. 2000;112(4):469–92.CrossRefPubMedGoogle Scholar
  24. 24.
    Utreja A, Bain C, Turek B, Holland R, Al-Rasheed R, Roberts WE. Maxillary expansion in an animal model with light, continuous force. Angle Orthod. 2018.  https://doi.org/10.2319/070717-451.1.
  25. 25.
    Zhang S, Zhai G, Wang J, Shi W, Zhang R, Chen C. IGF-II expression and methylation in small for gestational age infants. J Pediatr Endocrinol Metab. 2015;28(5–6):613–8.PubMedGoogle Scholar
  26. 26.
    Zhang Y, Blackwell EL, McKnight MT, Knutson GR, Vu WT, Ruest B. Specific inactivation of Twist1 in the mandibular arch neural crest cells affects the development of the ramus and reveals interactions with Hand2. Dev Dyn. 2012;241(5):924–40.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dhindsa A, Garg S, Damle SG, Opal S, Singh T. Fused primary first macromolar with a unique relation to its permanent successors: a rare tooth anomaly. Eur J Dent. 2013;7(2):289–42.CrossRefGoogle Scholar
  28. 28.
    Nickel JC, McLachlan KR, Smith DM. Eminence development of the postnatal temporomandibular joint. J Dent Res. 1988;67(6):896–902.CrossRefPubMedGoogle Scholar
  29. 29.
    Katsavrias EG. Changes in articular eminence inclination during the craniofacial growth period. Angle Orthod. 2002;72(3):258–64.PubMedGoogle Scholar
  30. 30.
    Rakhshan V. Congenitally missing teeth (hypodontia): a review of the literature concerning the etiology, prevalence, risk factors, patterns and treatment. Dent Res J (Isfahan). 2015;12(1):1–13.CrossRefGoogle Scholar
  31. 31.
    Shashikiran ND, Karthik V, Subbareddy VV. Multiple congenitally missing primary teeth: report of a case. Pediatr Dent. 2002;24(2):149–52.PubMedGoogle Scholar
  32. 32.
    Griffiths AJF, Miller JH, Suzuki DT. An introduction to genetic analysis. 7th ed. San Francisco: WH Freeman & Company; 2000.Google Scholar
  33. 33.
    Nikopensius T, Annilo T, Jagomägi T, Gilissen C, Kals M, Krjutškov K, et al. Non-syndromic tooth agenesis associated with a nonsense mutation in ectodysplasin-A (EDA). J Dent Res. 2013;92(6):507–11.CrossRefPubMedGoogle Scholar
  34. 34.
    Nikopensius T, Saag M, Jagomägi T, Annilo T, Kals M, Kivistik PA, et al. A missense mutation in DUSP6 is associated with Class III malocclusion. J Dent Res. 2013;92(10):893–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Goss RJ, Stagg MW. Regeneration of lower jaws in adult newts. J Morphol. 1958a;102:289–310.CrossRefGoogle Scholar
  36. 36.
    Goss RJ, Stagg MW. Regeneration in lower jaws of newts after removal of the intermandibular regions. J Exp Zool. 1958b;137(1):12.CrossRefGoogle Scholar
  37. 37.
    •• Ghosh S, Thorogood P, Ferretti P. Regenerative capacity of upper and lower jaws in urodele amphibians. Int J Dev Biol. 1994;38:479–90. This paper describes the spontaneous regeneration of maxilla and mandible in the urodele, Notophthalmus viridescens , which is of interest because it may give insights into how this might be accomplished in mammals. PubMedGoogle Scholar
  38. 38.
    Kurosaka H, Takano-Yamamoth T, Yamashiro Y, Agata K. Comparison of molecular and cellular events during lower jaw regeneration of newt (Cynops pyrrhogaster) and West African clawed frog (Xenopus laevis). Dev Dyn. 2008;237:354–65.CrossRefPubMedGoogle Scholar
  39. 39.
    Graver H. The polarity of the dental lamina in the regenerating salamander jaw. J Embryol Exp Morpholog. 1972;30:635–46.Google Scholar
  40. 40.
    Robinson P. Articular cartilage of the temporomandibular joint: can it regenerate? Ann R Coll Surg Engl. 1993;75:231–6.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Kisner WH. Spontaneous posttraumatic mandibular regeneration. Plast Reconstr Surg. 1980;66:442–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Nwoku AL. Unusually rapid bone regeneration following mandibular resection. J Maxillofac Surg. 1980;8:309–15.CrossRefPubMedGoogle Scholar
  43. 43.
    Boyne PJ. The restoration of resected mandible in children without use of bone graft. Head Neck. 1983;8:309–15.Google Scholar
  44. 44.
    Nagase M, Ueda K, Suzuki I, Nakajima T. Spontaneous regeneration of the condyle following hemimandibulectomy by disarticulation. J Maxillofac Surg. 1985;43:218–20.CrossRefGoogle Scholar
  45. 45.
    Devilla GH, Chen CT, Chen YR. Spontaneous bone regeneration of the mandible in elderly patient: a case report and review of the literature. Chang Gung Med J. 2003;26:369–90.Google Scholar
  46. 46.
    Coen PD. Spontaneous bone regeneration after mandible resection in a case of ameloblastoma—a case report. Ann Scad Med Singapore. 2004;33(Suppl):59S–62S.Google Scholar
  47. 47.
    Fujita T, Hayashi H, Shirakura M, Tsuka Y, Fujii E, Kawata T, et al. Regeneration of a condyle with a functional appliance. J Dent Res. 2013;92:322–8.CrossRefPubMedGoogle Scholar
  48. 48.
    •• Hayashi H, Fujita T, Shirakura M, Tsuka Y, Fujii E, Terao A, et al. Role of articular disc in condylar regeneration of the mandible. Exp Anim. 2014;63:395–401. This study shows that the presence of the articular disc is necessary for regeneration of the condyle, suggesting that the disc produces a factor(s) that activates periosteal cells, leading to condylar regeneration. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lai W-FT, Tsai Y-H, Su S-J, Su C-Y, Stockstill JW, Burch JG. Histological analysis of regeneration of temporomandibular joint discs in rabbits by using a reconstituted collagen template. Int J Oral Maxillofac Surg. 2005;34:311–20.  https://doi.org/10.1016/j.ijom.2004.05.003.CrossRefPubMedGoogle Scholar
  50. 50.
    Willard VP, Zhang L, Athanasiou KA. Tissue engineering of the temporomandibular joint. In Comprehensive Biomaterials. Vol. 5. Elsevier. 2011. p. 221–235.Google Scholar
  51. 51.
    Kinoshita Y, Kobayashi M, Fukuoka S, Yoyoka S, Ikada Y. Functional reconstruction of jaw bones using poly(L-lactide) mesh and autogeneic particulate cancellous bone and marrow. Tissue Eng. 1996;2:327–41.CrossRefPubMedGoogle Scholar
  52. 52.
    Warnke PH, Wiltfang J, Springer I, Acil Y, Bolte H, Kosmahl M, et al. Man as a living bioreactor: fate of an exogenously prepared customized tissue-engineered mandible. Biomaterials. 2006;27(17):3163–7.CrossRefPubMedGoogle Scholar
  53. 53.
    •• Park JH, Tai K, Sato Y. Orthodontic treatment of a patient with severe crowding and unilateral fracture of the mandibular condyle. Am J Orthod Dentofac Orthop. 2016;149:899–911. This reference documents the healing blastema for a fractured mandibular condyle emanates from the periosteal surface on the medial aspect of the ascending ramus. Thus, regeneration of a fractured mandibular condyle is similar to the fetal origin of the condylar process for the mandible. CrossRefGoogle Scholar
  54. 54.
    Choi YS, Choung PH, Moon HS, Kim SG. Temporomandibular disorders in 19-year-old Korean men. J Oral Maxillofac Surg. 2002;60(7):797–803.CrossRefPubMedGoogle Scholar
  55. 55.
    Tang Y, Wang X, Zhu Y, Sun H, Zhu M. A comparative evaluation of CBCT outcomes of two closed treatment methods in intracapsular condylar fractures. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123(5):e141–7.  https://doi.org/10.1016/j.oooo.2016.11.019.CrossRefPubMedGoogle Scholar
  56. 56.
    Wysocki J, Reymond J, Krasucki K. Vascularization of the mandibular condylar head with respect to intracapsular fractures of the mandible. J Craniomaxillofac Surg. 2012;40(2):112–5.CrossRefPubMedGoogle Scholar
  57. 57.
    Li H, Zhang G, Cui J, Liu W, Dilxat D, Liu L. A modified preauricular approach for treating intracapsular condylar fractures to prevent nerve injury: the supratemporalis approach. J Oral Maxillofac Surg. 2016;74(5):1013–22.CrossRefPubMedGoogle Scholar
  58. 58.
    Cai BL, Ren R, Yu HB, Liu PC, Shen SGF, Shi J. Do open reduction and internal fixation with articular disc anatomical reduction and rigid anchorage manifest a promising prospect in the treatment of intracapsular fractures. J Oral Maxillofac Surg. 2017;76:1026–35.  https://doi.org/10.1016/j.joms.2017.12.015.CrossRefPubMedGoogle Scholar
  59. 59.
    He D, Cai Y, Yang C. Analysis of temporomandibular joint ankylosis caused by condylar fracture. J Oral Maxillofac Surg. 2014;72(4):763e1–9.CrossRefGoogle Scholar
  60. 60.
    Cervelli V, Bottini DJ, Arpino A, Trimarco A, Cervelli G, Mugnaini F. Hypercondylia: problems in diagnosis abd therapeutic indictions. J Cranitofac Surg. 2008;19(2):406–10.CrossRefGoogle Scholar
  61. 61.
    Lu S-W, Chang C, Roberts WE. Asymmetric crowded Class II with missing first molars: space closure or implants? Int J Orthod Implantol. 2015;40:18–41.Google Scholar
  62. 62.
    Salti L, Rasse M, Al-Ouf K. Hemifacial hyperplasia. Contemp Clin Dent. 2017;8(2):327–31.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ghawsi S, Aagaard E, Thygesen TH. High condylectomy for the treatment of mandibular condylar hyperplasia: a systematic review of the literature. Int J Oral Maxillofac Surg. 2016;45:60–71.  https://doi.org/10.1016/j.ijom.2015.09.002.CrossRefPubMedGoogle Scholar
  64. 64.
    Greene CS, Laskin DM. Temporomandibular disorders: moving from a dentally based to a medically based model. J Dent Res. 2000;79(10):1736–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Tournavitis A, Tortopidis D, Fountoulakis K, Menexes G, Koidis P. Psychopathologic profiles of TMD patients with different pain locations. Int J Prosthodont. 2017;30(3):251–7.CrossRefPubMedGoogle Scholar
  66. 66.
    Boughner JC. Implications of vertebrate craniodental evo-devo for human oral health. J Exp Zool B Mol Dev Evol. 2017;328(4):321–33.CrossRefPubMedGoogle Scholar
  67. 67.
    Ikeda Y, Yonemitsu I, Takei M, Shibata S, Ono T. Mechanical loading leads to osteoarthritis-like changes in the hypofunctional temporomandibular joint in rats. Arch Oral Biol. 2014;59(12):1368–76.CrossRefPubMedGoogle Scholar
  68. 68.
    Lee A, Chang C, Roberts WE. MIH-related loss of mandibular first molars resulted in an acquired class II skeletal malocclusion: conservatively treated with space closure on one side and implant-supported prosthesis on the other. Int J Orthod Implantol. 2017;47:26–48.Google Scholar
  69. 69.
    Vasconcelos BC, Barbosa LM, Barbalho JC, Araújo GM, Melo AR, Santos LA. Ear pruritus: a new otologic finding related to temporomandibular disorder. Gen Dent. 2016;64(5):39–43.PubMedGoogle Scholar
  70. 70.
    Kim JW, Lee KR, Hong DY, Baek KJ, Lee YH, Park SO. Efficacy of various types of laryngoscope (direct, Pentax Airway scope and GlideScope) for endotracheal intubation in various cervical immobilization scenarios: a randomised cross-over simulation study. BMJ Open. 2016;6(10):e011089.  https://doi.org/10.1136/bmjopen-2016-011089.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Huang GJ, Rue TC. Third molar extraction as a risk factor for temporomandibular disorder. J Am Dent Assoc. 2006;137(11):1547–54.CrossRefPubMedGoogle Scholar
  72. 72.
    Kuritia H, Kurashina K, Ohtsuka A. Efficacy of a mandibular molar technique in reducing the permanently displaced temporomandibular joint disc. J Oral Maxillofac Surg. 1999;57(7):784–7.CrossRefGoogle Scholar
  73. 73.
    Hosgor H, Bas B, Celenk C. A comparison of the outcomes of four minimally invasive treatment methods for anterior disc displacement of the temporomandibular joint. Int J Oral Maxillofac Surg. 2017;46(11):1403–10.CrossRefPubMedGoogle Scholar
  74. 74.
    Gössi DB, Gallo LM, Bahr E, Palla S. Dynamic intra-articular space variation in clicking TMJs. J Dent Res. 2004;83(6):480–4.CrossRefPubMedGoogle Scholar
  75. 75.
    Michelotti A, Iodice G, Piergentili M, Farella M, Martina R. Incidence of temporomandibular joint clicking in adolescents with and without unilateral posterior cross-bite: a 10-year follow-up study. J Oral Rehabil. 2016;43(1):16–22.CrossRefPubMedGoogle Scholar
  76. 76.
    Al-Baghdadi M, Durham J, Araujo-Soares V, Robalino S, Errington L, Steele J. TMJ disc displacement without reduction management: a systematic review. J Dent Res. 2014;93(7 Suppl):37S–51S.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Jeon DM, Jung WS, Mah SJ, Kim TW, Ahn SJ. The effects of TMJ symptoms on skeletal morphology in orthodontic patients with TMJ disc displacement. Acta Odontol Scand. 2014;72(8):776–82.CrossRefPubMedGoogle Scholar
  78. 78.
    Fredricson AS, Khodabandehlou F, Weiner CK, Naimi-Akbar A, Adami J, Rosén A. Are there early signs that predict development of temporomandibular joint disease? J Oral Sci. 2017.  https://doi.org/10.2334/josnusd.17-0073.
  79. 79.
    Zhu Y, Zheng C, Deng Y, Wang Y. Arthroscopic surgery for treatment of anterior displacement of the disc without reduction of the temporomandibular joint. Br J Oral Maxillofac Surg. 2012;50(2):144–8.CrossRefPubMedGoogle Scholar
  80. 80.
    Liu XM, Cai XY, Yang C, Zhang SY, Chen MJ, Yun B, et al. Can puncture increase the risk of intra-articular adhesion in the temporomandibular joint? J Craniofac Surg. 2014;25(1):e26–9.CrossRefPubMedGoogle Scholar
  81. 81.
    Wang BL, Yang C, Cai XY, Chen MJ, Zhang SY, Fang B, et al. Malocclusion as a common occurrence in temporomandibular joint arthroplastic disc repositioning: outcomes at 49 days after surgery. J Oral Maxillofac Surg. 2011;69(6):1587–93.CrossRefPubMedGoogle Scholar
  82. 82.
    Kanatas AN, Jenkins GW, Smith AB, Worrall SF. Changes in pain and mouth opening at 1 year following temporomandibular joint replacement—a prospective study. Br J Oral Maxillofac Surg. 2011;49(6):455–8.CrossRefPubMedGoogle Scholar
  83. 83.
    Tarsitano A, Battaglia S, Ramieri V, Cascone P, Ciocca L, Scotti R, et al. Short-term outcomes of mandibular reconstruction in oncological patients using a CAD/CAM prosthesis including a condyle supporting a fibular free flap. J Craniomaxillofac Surg. 2017;45(2):330–7.CrossRefPubMedGoogle Scholar
  84. 84.
    Vilimek M, Horak Z, Baca V. Force ratio in masticatory muscles after total replacement of the temporomandibular joint. Acta Bioeng Biomech. 2016;18(3):131–6.PubMedGoogle Scholar
  85. 85.
    McKenzie WS, Louis PJ. Temporomandibular total joint prosthesis infections: a ten-year retrospective analysis. Int J Oral Maxillofac Surg. 2017;46(5):596–602.CrossRefPubMedGoogle Scholar
  86. 86.
    De Meurechy N, Mommaerts MY. Alloplastic temporomandibular joint replacement systems: a systematic review of their history. Int J Oral Maxillofac Surg. 2018.  https://doi.org/10.1016/j.ijom.2018.01.014.
  87. 87.
    Murphy MK, MacBarb RF, Wong ME, Athanasiou KA. Temporomandibular joint disorders: a review of etiology, clinical management, and tissue engineering strategies. Int J Oral Maxillofac Implants. 2013;28(6):e393–414.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Li X, Liu H, Gu S, Liu C, Sun C, Zheng Y, et al. Replacing Shox2 with human SHOX leads to congenital disc degeneration of the temporomandibular joint in mice. Cell Tissue Res. 2014;355(2):345–54.CrossRefPubMedGoogle Scholar
  89. 89.
    Ge C, Mohamed F, Binrayes A, Kapila S, Franceschi RT. Selective role of discoidin domain receptor 2 in murine temporomandibular joint development and aging. J Dent Res. 2018;97(3):321–8.CrossRefPubMedGoogle Scholar
  90. 90.
    Lin YY, Tanaka N, Ohkuma S, Iwabuchi Y, Tanne Y, Kamiya T, et al. Applying an excessive mechanical stress alters the effect of subchondral osteoblasts on chondrocytes in a co-culture system. Eur J Oral Sci. 2010;118(2):151–8.CrossRefPubMedGoogle Scholar
  91. 91.
    Ravosa MJ, Kane RJ. Dietary variation and mechanical properties of articular cartilage in the temporomandibular joint: implications for the role of plasticity in mechanobiology and pathobiology. Zoology. 2017;124:42–50.CrossRefPubMedGoogle Scholar
  92. 92.
    Liu F, Steinkeler A. Epidemiology, diagnosis, and treatment of temporomandibular disorders. Dent Clin N Am. 2013;57(3):465–79.CrossRefPubMedGoogle Scholar
  93. 93.
    Blanco Aguilera A, Gonzalez Lopez L, Blanco Aguilera E, De la Hoz Aizpurua JL, Rodriguez Torronteras A, Segura Saint-Gerons R, et al. Relationship between self-reported sleep bruxism and pain in patients with temporomandibular disorders. J Oral Rehabil. 2014;41(8):564–72.CrossRefPubMedGoogle Scholar
  94. 94.
    Chatzopoulos GS, Sanchez M, Cisneros A, Wolff LK. Prevalence of temporomandibular symptoms and parafunctional habits in a university dental clinic and association with gender, age and missing teeth. Cranio. 2017:1–9.  https://doi.org/10.1080/08869634.2017.1399649.
  95. 95.
    Bae S-M, Park M-S, Han J-W, Kim Y-J. Correlation between pain and degenerative bony changes on cone-beam computed tomography images of temporomandibular joints. Maxillofac Plast Reconstr Surg. 2017;39:19–24.  https://doi.org/10.1186/s40902-017-0117-1.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Arsan B, Köse TE, Çene E, Özcan I. Assessment of the trabecular structure of mandibular condyles in patients with temporomandibular disorders using fractal analysis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123(3):382–91.CrossRefPubMedGoogle Scholar
  97. 97.
    Roh H-S, Kim W, Kim Y-K, Lee J-Y. Relationships between disk displacement, joint effusion, and degenerative changes of the TMJ in TMD patients based on MRI findings. J Cranio-Maxillofac Surg. 2012;40(3):283–6.CrossRefGoogle Scholar
  98. 98.
    Hopfgartner AJ, Tymofiyeva O, Ehses P, Rottner K, Boldt J, Richter E-J, et al. Dynamic MRI of the TMJ under physical load. Dentomaxillofac Radiol. 2013;42:20120436.  https://doi.org/10.1259/dmfr.20120436.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Dimitroulis G. The prevalence of osteoarthrosis in cases of advanced internal derangement of the temporomandibular joint: a clinical, surgical and histological study. Int J Oral Maxillofac Surg. 2005;34(4):345–9.CrossRefPubMedGoogle Scholar
  100. 100.
    Vina ER, Ran D, Ashbeck EL, Kwoh CK. Natural history of pain and disability among African-Americans and Whites with or at risk for knee osteoarthritis: a longitudinal study. Osteoarthr Cartil. 2018;S1063-4584(18):30079–7.  https://doi.org/10.1016/j.joca.2018.01.020.CrossRefGoogle Scholar
  101. 101.
    Matsubara R, Yanagi Y, Oki K, Hisatomi M, Santos KC, Bamgbose BO, et al. Assessment of MRI findings and clinical symptoms in patients with temporomandibular joint disorders. Dentomaxillofac Radiol. 2018;16:20170412.  https://doi.org/10.1259/dmfr.20170412.CrossRefGoogle Scholar
  102. 102.
    Bertoli FMP, Bruzamolin CD, Pizzatto E, Losso EM, Brancher JA, de Souza JF. Prevalence of diagnosed temporomandibular disorders: a cross-sectional study in Brazilian adolescents. PLoS One. 2018;13(2):e0192254.  https://doi.org/10.1371/journal.pone.0192254. eCollection 2018CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Louca Jounger S, Christidis N, Svensson P, List T, Emberg M. Increased levels of intramuscular cytokines in patients with jaw muscle pain. J Headache Pain. 2017;18(1):30.  https://doi.org/10.1186/s10194-017-0737-y.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Roberts WE. Bone physiology, metabolism and biomechanics in orthodontic practice. Orthodontics: current principles and techniques, Chapter 10, 5th ed., Graber LW, Vanarsdall RL Jr, Vig KWL Elsevier Mosby, St. Louis, 2012, pp 287–343.Google Scholar
  105. 105.
    Roberts WE, Hartsfield JK Jr. Bone development and function: genetic and environmental mechanisms. Semin Orthod. 2004;10:100–22.CrossRefGoogle Scholar
  106. 106.
    Barghan S, Merrill R, Tetradis S. Cone beam computed tomography imaging in the evaluation of the temporomandibular joint. J Calif Dent Assoc. 2010;38(1):33–9.PubMedGoogle Scholar
  107. 107.
    Roberts WE, Roberts JA, Epker BN, Burr DB, Hartsfield JK Jr. Remodeling of mineralized tissues, part I: the Frost legacy. Semin Orthod. 2006;12(4):216–23.CrossRefGoogle Scholar
  108. 108.
    Chen KN, Wen CY, Shieh JY, Tseng TM. The somatotopy of the masticatory neurons in the rat trigeminal motor nucleus as revealed by HRP study. Proc Natl Sci Counc Repub China B. 1988;12(3):146–55.PubMedGoogle Scholar
  109. 109.
    Fay RA, Norgren R. Identification of rat brainstem multisynaptic connections to the oral motor nuclei using pseudorabies virus. I Masticatory muscle motor systems. Brain Res Brain Res Rev. 1997;25(3):255–75.CrossRefPubMedGoogle Scholar
  110. 110.
    Toro-Ibacache V, O’Higgins P. The effect of varying jaw-elevator muscle forces on a finite element model of the human cranium. Anat Rec (Hoboken). 2016;299(7):828–39.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Dentistry, Department of Orthodontics and Oral Facial GeneticsIndiana University-Purdue University (IUPUI)IndianapolisUSA
  2. 2.Department of OrthodonticsLoma Linda UniversityLoma LindaUSA
  3. 3.Advanced Dental EducationSt. Louis UniversitySt. LouisUSA
  4. 4.School of Science, Department of BiologyIndiana University-Purdue University (IUPUI)IndianapolisUSA

Personalised recommendations