Advertisement

Current Osteoporosis Reports

, Volume 16, Issue 4, pp 504–511 | Cite as

Recent Advances and Future of Gene Therapy for Bone Regeneration

  • Galina Shapiro
  • Raphael Lieber
  • Dan Gazit
  • Gadi Pelled
Orthopedic Management of Fractures (S Bukata and L Gerstenfeld, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Orthopedic Management of Fractures

Abstract

Purpose of Review

The purpose of this review is to discuss the recent advances in gene therapy as a treatment for bone regeneration. While most fractures heal spontaneously, patients who present with fracture nonunion suffer from prolonged pain, disability, and often require additional operations to regain musculoskeletal function.

Recent Findings

In the last few years, BMP gene delivery by means of electroporation and sonoporation resulted in repair of nonunion bone defects in mice, rats, and minipigs. Ex vivo transfection of porcine mesenchymal stem cells (MSCs) resulted in bone regeneration following implantation in vertebral defects of minipigs. Sustained release of VEGF gene from a collagen-hydroxyapatite scaffold to the mandible of a human patient was shown to be safe and osteoinductive.

Summary

In conclusion, gene therapy methods for bone regeneration are systematically becoming more efficient and show proof-of-concept in clinically relevant animal models. Yet, on the pathway to clinical use, more investigation is needed to determine the safety aspects of the various techniques in terms of biodistribution, toxicity, and tumorigenicity.

Keywords

Fracture Nonunion Gene therapy Gene-activated matrix Regenerative medicine Orthobiologics 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dan Gazit reports grants from California Institute for Regenerative Medicine (CIRM) and the NIH/National Center for Advancing Translational Science (NCATS) UCLA CTSI.

Gadi Pelled reports grants from California Institute for Regenerative Medicine (CIRM), the USAMRMC/TATRC, IDF Medical Corps, the Milgrom Family Fund, and the NIH/National Center for Advancing Translational Science (NCATS) UCLA CTSI.

Dan Gazit and Gadi Pelled are co-founders and shareholders at GamlaStem Medical Inc., and have patents pending (one for a method of endogenous stem cell activation for tendon/ligament osseointegration, and another for a novel transfection and drug delivery device).

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. 1.
    de Vries F, Klop C, van Staa T, Cooper C, Harvey N, editors. The epidemiology of mortality after fragility fracture in England and Wales. Osteoporos Int. 2016: Springer London Ltd 236 Grays Inn RD, 6th floor, London WC1X 8HL, England.Google Scholar
  2. 2.
    Bonafede M, Espindle D, Bower AG. The direct and indirect costs of long bone fractures in a working age US population. J Med Econ. 2013;16(1):169–78.CrossRefPubMedGoogle Scholar
  3. 3.
    Starr AJ. Fracture repair: successful advances, persistent problems, and the psychological burden of trauma. J Bone Joint Surg Am. 2008;90(Suppl 1):132–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Zura R, Xiong Z, Einhorn T, Watson JT, Ostrum RF, Prayson MJ, et al. Epidemiology of fracture nonunion in 18 human bones. JAMA Surg. 2016;151(11):e162775.CrossRefPubMedGoogle Scholar
  5. 5.
    Giannoudis PV, Jones E, Einhorn TA. Fracture healing and bone repair. Injury. 2011;42(6):549–50.CrossRefPubMedGoogle Scholar
  6. 6.
    Tay WH, de Steiger R, Richardson M, Gruen R, Balogh ZJ. Health outcomes of delayed union and nonunion of femoral and tibial shaft fractures. Injury. 2014;45(10):1653–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38(Suppl 4):S3–6.CrossRefGoogle Scholar
  8. 8.
    Bhargava R, Sankhla S, Gupta A, Changani R, Gagal K. Percutaneous autologus bone marrow injection in the treatment of delayed or nonunion. Indian J Orthop. 2007;41(1):67–71.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Giordano A, Galderisi U, Marino IR. From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol. 2007;211(1):27–35.CrossRefPubMedGoogle Scholar
  10. 10.
    Sheyn D, Ben-David S, Shapiro G, De Mel S, Bez M, Ornelas L, et al. Human induced pluripotent stem cells differentiate into functional mesenchymal stem cells and repair bone defects. Stem Cells Transl Med. 2016;5(11):1447–60.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sheyn D, Shapiro G, Tawackoli W, Jun DS, Koh Y, Kang KB, et al. PTH induces systemically administered mesenchymal stem cells to migrate to and regenerate spine injuries. Mol Ther. 2016;24(2):318–30.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Emara KM, Diab RA, Emara AK. Recent biological trends in management of fracture non-union. World J Orthop. 2015;6(8):623–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30(10):546–54.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011;11(6):471–91.CrossRefPubMedGoogle Scholar
  15. 15.
    Kimelman-Bleich N, Pelled G, Zilberman Y, Kallai I, Mizrahi O, Tawackoli W, et al. Targeted gene-and-host progenitor cell therapy for nonunion bone fracture repair. Mol Ther. 2011;19(1):53–9.CrossRefPubMedGoogle Scholar
  16. 16.
    • Shapiro G, Kallai I, Sheyn D, Tawackoli W, Koh YD, Bae H, et al. Ultrasound-mediated transgene expression in endogenous stem cells recruited to bone injury sites. Polym Adv Technol. 2014;25(5):525–31. Mesenchymal stem cells recruited to a bone defect using a collagen scaffold were successfully transfected using naked DNA sonoporation. CrossRefGoogle Scholar
  17. 17.
    Sheyn D, Kimelman-Bleich N, Pelled G, Zilberman Y, Gazit D, Gazit Z. Ultrasound-based nonviral gene delivery induces bone formation in vivo. Gene Ther. 2008;15(4):257–66.CrossRefPubMedGoogle Scholar
  18. 18.
    Shapiro G, Wong AW, Bez M, Yang F, Tam S, Even L, et al. Multiparameter evaluation of in vivo gene delivery using ultrasound-guided, microbubble-enhanced sonoporation. J Control Release. 2016;223:157–64.CrossRefPubMedGoogle Scholar
  19. 19.
    •• Bez M, Sheyn D, Tawackoli W, Avalos P, Shapiro G, Giaconi JC, Da X, David SB, Gavrity J, Awad HA, Bae HW, Ley EJ, Kremen TJ, Gazit Z, Ferrara KW, Pelled G, Gazit D. In situ bone tissue engineering via ultrasound-mediated gene delivery to endogenous progenitor cells in mini-pigs. Sci Transl Med. 2017;9(390). Endogenous mesenchymal stem cells recruited to a critical fracture were transfected to express BMP6 using microbubble-enhanced sonoporation, leading to fracture healing in minipigs. Google Scholar
  20. 20.
    Feichtinger GA, Hofmann AT, Slezak P, Schuetzenberger S, Kaipel M, Schwartz E, et al. Sonoporation increases therapeutic efficacy of inducible and constitutive BMP2/7 in vivo gene delivery. Hum Gene Ther Methods. 2014;25(1):57–71.CrossRefPubMedGoogle Scholar
  21. 21.
    Wilson CG, Martin-Saavedra FM, Padilla F, Fabiilli ML, Zhang M, Baez AM, et al. Patterning expression of regenerative growth factors using high intensity focused ultrasound. Tissue Eng Part C Methods. 2014;20(10):769–79.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Qiao C, Zhang K, Jin H, Miao L, Shi C, Liu X, et al. Using poly(lactic-co-glycolic acid) microspheres to encapsulate plasmid of bone morphogenetic protein 2/polyethylenimine nanoparticles to promote bone formation in vitro and in vivo. Int J Nanomedicine. 2013;8:2985–95.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Kaur H, Uludag H, El-Bialy T. Effect of nonviral plasmid delivered basic fibroblast growth factor and low intensity pulsed ultrasound on mandibular condylar growth: a preliminary study. Biomed Res Int. 2014;2014:426710.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Fang J, Zhu YY, Smiley E, Bonadio J, Rouleau JP, Goldstein SA, et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci U S A. 1996;93(12):5753–8.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bozo IY, Deev RV, Drobyshev AY, Isaev AA, Eremin II. World’s first clinical case of gene-activated bone substitute application. Case Rep Dent. 2016;2016:8648949.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Qiao C, Zhang K, Sun B, Liu J, Song J, Hu Y, et al. Sustained release poly (lactic-co-glycolic acid) microspheres of bone morphogenetic protein 2 plasmid/calcium phosphate to promote in vitro bone formation and in vivo ectopic osteogenesis. Am J Transl Res. 2015;7(12):2561–72.PubMedPubMedCentralGoogle Scholar
  27. 27.
    • Elangovan S, D'Mello SR, Hong L, Ross RD, Allamargot C, Dawson DV, et al. The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor. Biomaterials. 2014;35(2):737–47. The delivery of polyethylenimine-platelet derived growth factor B to bone marrow stromal cells using a collagen scaffold favors cellular attachment and proliferation in vitro and in vivo osteogenesis in rat calvarial defects. CrossRefPubMedGoogle Scholar
  28. 28.
    D’Mello S, Elangovan S, Salem AK. FGF2 gene activated matrices promote proliferation of bone marrow stromal cells. Arch Oral Biol. 2015;60(12):1742–9.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yue J, Wu J, Liu D, Zhao X, Lu WW. BMP2 gene delivery to bone mesenchymal stem cell by chitosan-g-PEI nonviral vector. Nanoscale Res Lett. 2015;10:203.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    • Plonka AB, Khorsand B, Yu N, Sugai JV, Salem AK, Giannobile WV, et al. Effect of sustained PDGF nonviral gene delivery on repair of tooth-supporting bone defects. Gene Ther. 2017;24(1):31–9. Platelet-derived growth factor BB delivered on polyethylenimine to collagen scaffolds in periodontal defects resulted in a sustained inflammatory response and delayed bone healing in rodents. CrossRefPubMedGoogle Scholar
  31. 31.
    Keeney M, Chung MT, Zielins ER, Paik KJ, McArdle A, Morrison SD, et al. Scaffold-mediated BMP-2 minicircle DNA delivery accelerated bone repair in a mouse critical-size calvarial defect model. J Biomed Mater Res A. 2016;104(8):2099–107.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    D'Mello SR, Elangovan S, Hong L, Ross RD, Sumner DR, Salem AK. A pilot study evaluating combinatorial and simultaneous delivery of polyethylenimine-plasmid DNA complexes encoding for VEGF and PDGF for bone regeneration in calvarial bone defects. Curr Pharm Biotechnol. 2015;16(7):655–60.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jin H, Zhang K, Qiao C, Yuan A, Li D, Zhao L, et al. Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation. Int J Nanomedicine. 2014;9:2179.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012—an update. J Gene Med. 2013;15(2):65–77.CrossRefPubMedGoogle Scholar
  35. 35.
    Gafni Y, Pelled G, Zilberman Y, Turgeman G, Apparailly F, Yotvat H, et al. Gene therapy platform for bone regeneration using an exogenously regulated, AAV-2-based gene expression system. Mol Ther. 2004;9(4):587–95.CrossRefPubMedGoogle Scholar
  36. 36.
    Ben Arav A, Pelled G, Zilberman Y, Kimelman-Bleich N, Gazit Z, Schwarz EM, et al. Adeno-associated virus-coated allografts: a novel approach for cranioplasty. J Tissue Eng Regen Med. 2012;6(10):e43–50.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yazici C, Takahata M, Reynolds DG, Xie C, Samulski RJ, Samulski J, et al. Self-complementary AAV2.5-BMP2-coated femoral allografts mediated superior bone healing versus live autografts in mice with equivalent biomechanics to unfractured femur. Mol Ther. 2011;19(8):1416–25.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Li W, Wei H, Xia C, Zhu X, Hou G, Xu F, et al. Gene gun transferring-bone morphogenetic protein 2 (BMP-2) gene enhanced bone fracture healing in rabbits. Int J Clin Exp Med. 2015;8(11):19982–93.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Liu F, Porter RM, Wells J, Glatt V, Pilapil C, Evans CH. Evaluation of BMP-2 gene-activated muscle grafts for cranial defect repair. J Orthop Res. 2012;30(7):1095–102.CrossRefPubMedGoogle Scholar
  40. 40.
    Betz OB, Betz VM, Schroder C, Penzkofer R, Gottlinger M, Mayer-Wagner S, et al. Repair of large segmental bone defects: BMP-2 gene activated muscle grafts vs. autologous bone grafting. BMC Biotechnol. 2013;13:65.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    • Liu F, Ferreira E, Porter RM, Glatt V, Schinhan M, Shen Z, et al. Rapid and reliable healing of critical size bone defects with genetically modified sheep muscle. Eur Cell Mater. 2015;30:118–30; discussion 30–1. Sheep skeletal muscle transfected with a BMP2 encoding adenovirus resulted in well-organized new bone after being transplanted in calvarial defects of immunosuppressed rats. Google Scholar
  42. 42.
    • Tian K, Qi M, Wang L, Li Z, Xu J, Li Y, et al. Two-stage therapeutic utility of ectopically formed bone tissue in skeletal muscle induced by adeno-associated virus containing bone morphogenetic protein-4 gene. J Orthop Surg Res. 2015;10:86. Gene therapy-associated bone overgrowth may be overcome by first transfecting skeletal muscle with a BMP4 encoding adeno-associated virus, and then transplanting the ectopic bone into a murine calvarial defect. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gazit D, Turgeman G, Kelley P, Wang E, Jalenak M, Zilberman Y, et al. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy. J Gene Med. 1999;1(2):121–33.CrossRefPubMedGoogle Scholar
  44. 44.
    Turgeman G, Pittman DD, Muller R, Kurkalli BG, Zhou S, Pelled G, et al. Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. J Gene Med. 2001;3(3):240–51.CrossRefPubMedGoogle Scholar
  45. 45.
    •• Pelled G, Sheyn D, Tawackoli W, Jun DS, Koh Y, Su S, et al. BMP6-engineered MSCs induce vertebral bone repair in a pig model: a pilot study. Stem Cells Int. 2016;2016:6530624. Locally implanted allogeneic BMP6 overexpressing mesenchymal stem cells increased bone formation in a porcine vertebral defect model. CrossRefPubMedGoogle Scholar
  46. 46.
    Liu J, Chen W, Zhao Z, Xu HH. Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering. Biomaterials. 2013;34(32):7862–72.CrossRefPubMedGoogle Scholar
  47. 47.
    Benjamin S, Sheyn D, Ben-David S, Oh A, Kallai I, Li N, et al. Oxygenated environment enhances both stem cell survival and osteogenic differentiation. Tissue Eng A. 2013;19(5–6):748–58.CrossRefGoogle Scholar
  48. 48.
    Schwabe P, Greiner S, Ganzert R, Eberhart J, Dahn K, Stemberger A, et al. Effect of a novel nonviral gene delivery of BMP-2 on bone healing. ScientificWorldJournal. 2012;2012:560142.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Khorsand B, Nicholson N, Do AV, Femino JE, Martin JA, Petersen E, et al. Regeneration of bone using nanoplex delivery of FGF-2 and BMP-2 genes in diaphyseal long bone radial defects in a diabetic rabbit model. J Control Release. 2017;248:53–9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Atluri K, Seabold D, Hong L, Elangovan S, Salem AK. Nanoplex-mediated codelivery of fibroblast growth factor and bone morphogenetic protein genes promotes osteogenesis in human adipocyte-derived mesenchymal stem cells. Mol Pharm. 2015;12(8):3032–42.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lin Z, Rios HF, Park CH, Taut AD, Jin Q, Sugai JV, et al. LIM domain protein-3 (LMP3) cooperates with BMP7 to promote tissue regeneration by ligament progenitor cells. Gene Ther. 2013;20(1):1–6.CrossRefPubMedGoogle Scholar
  52. 52.
    Shen Y, Qiao H, Fan Q, Zhang S, Tang T. Potentiated osteoinductivity via cotransfection with BMP-2 and VEGF genes in microencapsulated C2C12 cells. Biomed Res Int. 2015;2015:435253.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Seamon J, Wang X, Cui F, Keller T, Dighe AS, Balian G, et al. Adenoviral delivery of the VEGF and BMP-6 genes to rat mesenchymal stem cells potentiates osteogenesis. Bone Marrow Res. 2013;2013:737580.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Reichert JC, Schmalzl J, Prager P, Gilbert F, Quent VM, Steinert AF, et al. Synergistic effect of Indian hedgehog and bone morphogenetic protein-2 gene transfer to increase the osteogenic potential of human mesenchymal stem cells. Stem Cell Res Ther. 2013;4(5):105.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ishihara A, Weisbrode SE, Bertone AL. Autologous implantation of BMP2-expressing dermal fibroblasts to improve bone mineral density and architecture in rabbit long bones. J Orthop Res. 2015;33(10):1455–65.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Xiang L, Liang C, Zhen-Yong K, Liang-Jun Y, Zhong-Liang D. BMP9-induced osteogenetic differentiation and bone formation of muscle-derived stem cells. J Biomed Biotechnol. 2012;2012:610952.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Dumanian ZP, Tollemar V, Ye J, Lu M, Zhu Y, Liao J, et al. Repair of critical sized cranial defects with BMP9-transduced calvarial cells delivered in a thermoresponsive scaffold. PLoS One. 2017;12(3):e0172327.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    • Huang C, Tang M, Yehling E, Zhang X. Overexpressing sonic hedgehog peptide restores periosteal bone formation in a murine bone allograft transplantation model. Mol Ther. 2014;22(2):430–9. N-terminal sonic hedgehog gene transfected periostal-derived mesenchymal stem cells induced microvessel and periosteal bone collar formation in a murine segmental fracture model. CrossRefPubMedGoogle Scholar
  59. 59.
    Feng L, Wu H, E L, Wang D, Feng F, Dong Y, et al. Effects of vascular endothelial growth factor 165 on bone tissue engineering. PLoS One. 2013;8(12):e82945.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Hernandez-Hurtado AA, Borrego-Soto G, Marino-Martinez IA, Lara-Arias J, Romero-Diaz VJ, Abrego-Guerra A, et al. Implant composed of demineralized bone and mesenchymal stem cells genetically modified with AdBMP2/AdBMP7 for the regeneration of bone fractures in ovis aries. Stem Cells Int. 2016;2016:7403890.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Fernandes G, Wang C, Yuan X, Liu Z, Dziak R, Yang S. Combination of controlled release platelet-rich plasma alginate beads and bone morphogenetic protein-2 genetically modified mesenchymal stem cells for bone regeneration. J Periodontol. 2016;87(4):470–80.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Park SY, Kim KH, Shin SY, Koo KT, Lee YM, Seol YJ. Dual delivery of rhPDGF-BB and bone marrow mesenchymal stromal cells expressing the BMP2 gene enhance bone formation in a critical-sized defect model. Tissue Eng Part A. 2013;19(21–22):2495–505.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Persons DA. Lentiviral vector gene therapy: effective and safe? Mol Ther. 2010;18(5):861–2.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    • Alaee F, Sugiyama O, Virk MS, Tang H, Drissi H, Lichtler AC, et al. Suicide gene approach using a dual-expression lentiviral vector to enhance the safety of ex vivo gene therapy for bone repair. Gene Ther. 2014;21(2):139–47. A lentiviral vector encoding for both BMP2 and a pharmacologically-activatable suicide gene could be used to reduce the oncogenic potential of lentiviral nuclear integration. CrossRefPubMedGoogle Scholar
  65. 65.
    Pensak M, Hong S, Dukas A, Tinsley B, Drissi H, Tang A, et al. The role of transduced bone marrow cells overexpressing BMP-2 in healing critical-sized defects in a mouse femur. Gene Ther. 2015;22(6):467–75.CrossRefPubMedGoogle Scholar
  66. 66.
    Alaee F, Bartholomae C, Sugiyama O, Virk MS, Drissi H, Wu Q, et al. Biodistribution of LV-TSTA transduced rat bone marrow cells used for “ex-vivo” regional gene therapy for bone repair. Curr Gene Ther. 2015;15(5):481–91.CrossRefPubMedGoogle Scholar
  67. 67.
    Lu S, Wang J, Ye J, Zou Y, Zhu Y, Wei Q, et al. Bone morphogenetic protein 9 (BMP9) induces effective bone formation from reversibly immortalized multipotent adipose-derived (iMAD) mesenchymal stem cells. Am J Transl Res. 2016;8(9):3710–30.PubMedPubMedCentralGoogle Scholar
  68. 68.
    • Guan J, Zhang J, Zhu Z, Niu X, Guo S, Wang Y, et al. Bone morphogenetic protein 2 gene transduction enhances the osteogenic potential of human urine-derived stem cells. Stem Cell Res Ther. 2015;6:5. Transfection of human urine-derived stem cells with BMP2 encoding lentiviruses results in osteogenic differentiation in vitro and bone formation in vivo in nude mice. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Gao X, Usas A, Tang Y, Lu A, Tan J, Schneppendahl J, et al. A comparison of bone regeneration with human mesenchymal stem cells and muscle-derived stem cells and the critical role of BMP. Biomaterials. 2014;35(25):6859–70.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Gao X, Usas A, Lu A, Tang Y, Wang B, Chen CW, et al. BMP2 is superior to BMP4 for promoting human muscle-derived stem cell-mediated bone regeneration in a critical-sized calvarial defect model. Cell Transplant. 2013;22(12):2393–408.CrossRefPubMedGoogle Scholar
  71. 71.
    Zhang W, Zhang X, Ling J, Wei X, Jian Y. Osteo-/odontogenic differentiation of BMP2 and VEGF gene-co-transfected human stem cells from apical papilla. Mol Med Rep. 2016;13(5):3747–54.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Lin Z, Wang JS, Lin L, Zhang J, Liu Y, Shuai M, et al. Effects of BMP2 and VEGF165 on the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Exp Ther Med. 2014;7(3):625–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Wang Y, He T, Liu J, Liu H, Zhou L, Hao W, et al. Synergistic effects of overexpression of BMP2 and TGFbeta3 on osteogenic differentiation of bone marrow mesenchymal stem cells. Mol Med Rep. 2016;14(6):5514–20.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bougioukli S, Jain A, Sugiyama O, Tinsley BA, Tang AH, Tan MH, et al. Combination therapy with BMP-2 and a systemic RANKL inhibitor enhances bone healing in a mouse critical-sized femoral defect. Bone. 2016;84:93–103.CrossRefPubMedGoogle Scholar
  75. 75.
    Lin CY, Chang YH, Sung LY, Chen CL, Lin SY, Li KC, et al. Long-term tracking of segmental bone healing mediated by genetically engineered adipose-derived stem cells: focuses on bone remodeling and potential side effects. Tissue Eng Part A. 2014;20(9–10):1392–402.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Liao JC. Bone marrow mesenchymal stem cells expressing baculovirus-engineered bone morphogenetic protein-7 enhance rabbit posterolateral fusion. Int J Mol Sci. 2016;17(7).Google Scholar
  77. 77.
    Waki T, Lee SY, Niikura T, Iwakura T, Dogaki Y, Okumachi E, et al. Profiling microRNA expression during fracture healing. BMC Musculoskelet Disord. 2016;17:83.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Waki T, Lee SY, Niikura T, Iwakura T, Dogaki Y, Okumachi E, et al. Profiling microRNA expression in fracture nonunions: potential role of microRNAs in nonunion formation studied in a rat model. Bone Joint J. 2015;97-B(8):1144–51.CrossRefPubMedGoogle Scholar
  79. 79.
    He B, Zhang ZK, Liu J, He YX, Tang T, Li J, Guo BS, Lu AP, Zhang BT, Zhang G. Bioinformatics and microarray analysis of miRNAs in aged female mice model implied new molecular mechanisms for impaired fracture healing. Int J Mol Sci. 2016;17(8).Google Scholar
  80. 80.
    Weilner S, Skalicky S, Salzer B, Keider V, Wagner M, Hildner F, et al. Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone. 2015;79:43–51.CrossRefPubMedGoogle Scholar
  81. 81.
    Sun Y, Xu J, Xu L, Zhang J, Chan K, Pan X, et al. MiR-503 promotes bone formation in distraction osteogenesis through suppressing Smurf1 expression. Sci Rep. 2017;7(1):409.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Xie Q, Wang Z, Zhou H, Yu Z, Huang Y, Sun H, et al. The role of miR-135-modified adipose-derived mesenchymal stem cells in bone regeneration. Biomaterials. 2016;75:279–94.CrossRefPubMedGoogle Scholar
  83. 83.
    Xie Q, Wei W, Ruan J, Ding Y, Zhuang A, Bi X, et al. Effects of miR-146a on the osteogenesis of adipose-derived mesenchymal stem cells and bone regeneration. Sci Rep. 2017;7:42840.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Murata K, Ito H, Yoshitomi H, Yamamoto K, Fukuda A, Yoshikawa J, et al. Inhibition of miR-92a enhances fracture healing via promoting angiogenesis in a model of stabilized fracture in young mice. J Bone Miner Res. 2014;29(2):316–26.CrossRefPubMedGoogle Scholar
  85. 85.
    Kocijan R, Muschitz C, Geiger E, Skalicky S, Baierl A, Dormann R, et al. Circulating microRNA signatures in patients with idiopathic and postmenopausal osteoporosis and fragility fractures. J Clin Endocrinol Metab. 2016;101(11):4125–34.CrossRefPubMedGoogle Scholar
  86. 86.
    Evans CH, Huard J. Gene therapy approaches to regenerating the musculoskeletal system. Nat Rev Rheumatol. 2015;11(4):234–42. Available from: https://clinicaltrials.gov/ct2/home CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174(3):101–9.CrossRefPubMedGoogle Scholar
  88. 88.
    Seebach C, Henrich D, Tewksbury R, Wilhelm K, Marzi I. Number and proliferative capacity of human mesenchymal stem cells are modulated positively in multiple trauma patients and negatively in atrophic nonunions. Calcif Tissue Int. 2007;80(4):294–300.CrossRefPubMedGoogle Scholar
  89. 89.
    Leskelä H-V, Risteli J, Niskanen S, Koivunen J, Ivaska KK, Lehenkari P. Osteoblast recruitment from stem cells does not decrease by age at late adulthood. Biochem Biophys Res Commun. 2003;311(4):1008–13.CrossRefPubMedGoogle Scholar
  90. 90.
    Siegel G, Kluba T, Hermanutz-Klein U, Bieback K, Northoff H, Schafer R. Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Med. 2013;11:146.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Corsi KA, Pollett JB, Phillippi JA, Usas A, Li G, Huard J. Osteogenic potential of postnatal skeletal muscle-derived stem cells is influenced by donor sex. J Bone Miner Res. 2007;22(10):1592–602.CrossRefPubMedGoogle Scholar
  92. 92.
    Meszaros LB, Usas A, Cooper GM, Huard J. Effect of host sex and sex hormones on muscle-derived stem cell-mediated bone formation and defect healing. Tissue Eng Part A. 2012;18(17–18):1751–9.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Taylor K, Vallejo-Giraldo C, Schaible N, Zakeri R, Miller V. Reporting of sex as a variable in cardiovascular studies using cultured cells. Biol Sex Differ. 2011;2(11):152.Google Scholar
  94. 94.
    Clayton JA, Collins FS. NIH to balance sex in cell and animal studies. Nature. 2014;509(7500):282–3.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Liebergall M, Schroeder J, Mosheiff R, Gazit Z, Yoram Z, Rasooly L, et al. Stem cell-based therapy for prevention of delayed fracture union: a randomized and prospective preliminary study. Mol Ther. 2013;21(8):1631–8.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Morshed S. Current options for determining fracture union. Adv Med. 2014;2014:708574.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    O'Halloran K, Coale M, Costales T, Zerhusen T Jr, Castillo RC, Nascone JW, et al. Will my tibial fracture heal? Predicting nonunion at the time of definitive fixation based on commonly available variables. Clin Orthop Relat Res. 2016;474(6):1385–95.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Galina Shapiro
    • 1
  • Raphael Lieber
    • 1
  • Dan Gazit
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • Gadi Pelled
    • 1
    • 2
    • 3
    • 5
    • 6
  1. 1.Skeletal Biotech LaboratoryThe Hebrew University–Hadassah Faculty of Dental MedicineJerusalemIsrael
  2. 2.Department of SurgeryCedars-Sinai Medical CenterLos AngelesUSA
  3. 3.Cedars-Sinai Medical CenterBoard of Governors Regenerative Medicine InstituteLos AngelesUSA
  4. 4.Department of OrthopedicsCedars-Sinai Medical CenterLos AngelesUSA
  5. 5.Department of Biomedical SciencesCedars-Sinai Medical CenterLos AngelesUSA
  6. 6.Cedars-Sinai Medical CenterBiomedical Imaging Research InstituteLos AngelesUSA

Personalised recommendations