Current Osteoporosis Reports

, Volume 16, Issue 4, pp 434–442 | Cite as

Bone Marrow Adipose Tissue and Skeletal Health

  • Shanmugam Muruganandan
  • Rajgopal Govindarajan
  • Christopher J. SinalEmail author
Bone Marrow and Adipose Tissue (G Duque and B Lecka-Czernik, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Bone Marrow and Adipose Tissue


Purpose of Review

To summarize and discuss recent progress and novel signaling mechanisms relevant to bone marrow adipocyte formation and its physiological/pathophysiological implications for bone remodeling.

Recent Findings

Skeletal remodeling is a coordinated process entailing removal of old bone and formation of new bone. Several bone loss disorders such as osteoporosis are commonly associated with increased bone marrow adipose tissue. Experimental and clinical evidence supports that a reduction in osteoblastogenesis from mesenchymal stem cells at the expense of adipogenesis, as well as the deleterious effects of adipocyte-derived signaling, contributes to the etiology of osteoporosis as well as bone loss associated with aging, diabetes mellitus, post-menopause, and chronic drug therapy. However, this view is challenged by findings indicating that, in some contexts, bone marrow adipose tissue may have a beneficial impact on skeletal health.


Further research is needed to better define the role of marrow adipocytes in bone physiology/pathophysiology and to determine the therapeutic potential of manipulating mesenchymal stem cell differentiation.


Adipocyte Bone Differentiation Mesenchymal stem cell Osteoblast 


Funding Information

This work was supported by grants from the Canadian Institutes of Health Research and the National Sciences and Engineering Research Council of Canada (CJS) and the National Institutes of Health grants R03AR063326 (RG) and R01CA188464 (RG).

Compliance with Ethical Standards

Conflict of Interest

Muruganandan Shanmugam and Rajgopal Govindarajan declare no conflict of interest. Christopher Sinal reports grants from Canadian Institutes of Health Research and the National Sciences and Engineering Research Council, during the conduct of the study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Kawai M, de Paula FJ, Rosen CJ. New insights into osteoporosis: the bone-fat connection. J Intern Med. 2012;272:317–29.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Meunier P, Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res. 1971;80:147–54.PubMedCrossRefGoogle Scholar
  3. 3.
    •• Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM, Bocian C, et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell. 2017;20:771–784 e776. This study characterizes changes in cell state and cell surface marker profiles of bone marrow-resident stem cells during bone cell fate decision. PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Krings A, Rahman S, Huang S, Lu Y, Czernik PJ, Lecka-Czernik B. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone. 2012;50:546–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Muruganandan S, Sinal CJ. The impact of bone marrow adipocytes on osteoblast and osteoclast differentiation. IUBMB Life. 2014;66:147–55.PubMedCrossRefGoogle Scholar
  6. 6.
    Muruganandan S, Roman AA, Sinal CJ. Adipocyte differentiation of bone marrow-derived mesenchymal stem cells: cross talk with the osteoblastogenic program. Cell Mol Life Sci. 2009;66:236–53.PubMedCrossRefGoogle Scholar
  7. 7.
    Sun H, Kim JK, Mortensen R, Mutyaba LP, Hankenson KD, Krebsbach PH. Osteoblast-targeted suppression of PPARgamma increases osteogenesis through activation of mTOR signaling. Stem Cells. 2013;31:2183–92.PubMedCrossRefGoogle Scholar
  8. 8.
    Lecka-Czernik B, Suva LJ. Resolving the two “bony” faces of PPAR-gamma. PPAR Res. 2006;2006:27489.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Kveiborg M, Sabatakos G, Chiusaroli R, Wu M, Philbrick WM, Horne WC, et al. DeltaFosB induces osteosclerosis and decreases adipogenesis by two independent cell-autonomous mechanisms. Mol Cell Biol. 2004;24:2820–30.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108:17–29.PubMedCrossRefGoogle Scholar
  11. 11.
    Komori T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 2010;339:189–95.PubMedCrossRefGoogle Scholar
  12. 12.
    Liu J, Farmer SR. Regulating the balance between peroxisome proliferator-activated receptor gamma and beta-catenin signaling during adipogenesis. A glycogen synthase kinase 3beta phosphorylation-defective mutant of beta-catenin inhibits expression of a subset of adipogenic genes. J Biol Chem. 2004;279:45020–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Kawai M, Mushiake S, Bessho K, Murakami M, Namba N, Kokubu C, et al. Wnt/Lrp/beta-catenin signaling suppresses adipogenesis by inhibiting mutual activation of PPARgamma and C/EBPalpha. Biochem Biophys Res Commun. 2007;363:276–82.PubMedCrossRefGoogle Scholar
  14. 14.
    Song L, Liu M, Ono N, Bringhurst FR, Kronenberg HM, Guo J. Loss of wnt/beta-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J Bone Miner Res. 2012;27:2344–58.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kang S, Bennett CN, Gerin I, Rapp LA, Hankenson KD, Macdougald OA. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J Biol Chem. 2007;282:14515–24.PubMedCrossRefGoogle Scholar
  16. 16.
    Takada I, Kouzmenko AP, Kato S. Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol. 2009;5:442–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Kokabu S, Nguyen T, Ohte S, Sato T, Katagiri T, Yoda T, et al. TLE3, transducing-like enhancer of split 3, suppresses osteoblast differentiation of bone marrow stromal cells. Biochem Biophys Res Commun. 2013;438:205–10.PubMedCrossRefGoogle Scholar
  18. 18.
    Villanueva CJ, Waki H, Godio C, Nielsen R, Chou WL, Vargas L, et al. TLE3 is a dual-function transcriptional coregulator of adipogenesis. Cell Metab. 2011;13:413–27.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology. 2001;2:165–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Yeung DK, Griffith JF, Antonio GE, Lee FK, Woo J, Leung PC. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging. 2005;22:279–85.PubMedCrossRefGoogle Scholar
  21. 21.
    Botolin S, McCabe LR. Bone loss and increased bone adiposity in spontaneous and pharmacologically induced diabetic mice. Endocrinology. 2007;148:198–205.PubMedCrossRefGoogle Scholar
  22. 22.
    Piccinin MA, Khan ZA. Pathophysiological role of enhanced bone marrow adipogenesis in diabetic complications. Adipocyte. 2014;3:263–72.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Wang FS, Lian WS, Weng WT, Sun YC, Ke HJ, Chen YS, et al. Neuropeptide Y mediates glucocorticoid-induced osteoporosis and marrow adiposity in mice. Osteoporos Int. 2016;27:2777–89.PubMedCrossRefGoogle Scholar
  24. 24.
    Ko JY, Chuang PC, Ke HJ, Chen YS, Sun YC, Wang FS. MicroRNA-29a mitigates glucocorticoid induction of bone loss and fatty marrow by rescuing Runx2 acetylation. Bone. 2015;81:80–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Bredella MA, Fazeli PK, Miller KK, Misra M, Torriani M, Thomas BJ, et al. Increased bone marrow fat in anorexia nervosa. J Clin Endocrinol Metab. 2009;94:2129–36.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Abdallah BM. Marrow adipocytes inhibit the differentiation of mesenchymal stem cells into osteoblasts via suppressing BMP-signaling. J Biomed Sci. 2017;24:11.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Abdallah BM, Kassem M. New factors controlling the balance between osteoblastogenesis and adipogenesis. Bone. 2012;50:540–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Taipaleenmaki H, Abdallah BM, AlDahmash A, Saamanen AM, Kassem M. Wnt signalling mediates the cross-talk between bone marrow derived pre-adipocytic and pre-osteoblastic cell populations. Exp Cell Res. 2011;317:745–56.PubMedCrossRefGoogle Scholar
  29. 29.
    Muruganandan S, Dranse HJ, Rourke JL, McMullen NM, Sinal CJ. Chemerin neutralization blocks hematopoietic stem cell osteoclastogenesis. Stem Cells. 2013;31:2172–82.PubMedCrossRefGoogle Scholar
  30. 30.
    Jafari A, Qanie D, Andersen TL, Zhang Y, Chen L, Postert B, et al. Legumain regulates differentiation fate of human bone marrow stromal cells and is altered in postmenopausal osteoporosis. Stem Cell Reports. 2017;8:373–86.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Muruganandan S, Roman AA, Sinal CJ. Role of chemerin/CMKLR1 signaling in adipogenesis and osteoblastogenesis of bone marrow stem cells. J Bone Miner Res. 2010;25:222–34.PubMedCrossRefGoogle Scholar
  32. 32.
    Muruganandan S, Parlee SD, Rourke JL, Ernst MC, Goralski KB, Sinal CJ. Chemerin, a novel peroxisome proliferator-activated receptor gamma (PPARgamma) target gene that promotes mesenchymal stem cell adipogenesis. J Biol Chem. 2011;286:23982–95.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    • Muruganandan S, Govindarajan R, McMullen NM, Sinal CJ. Chemokine-like receptor 1 is a novel Wnt target gene that regulates mesenchymal stem cell differentiation. Stem Cells. 2017;35:711–24. This study identifies a negative feedback loop operating through chemerin system that can tip cell fate decisions between adipocytes and osteoblasts in bone marrow stem cells. PubMedCrossRefGoogle Scholar
  34. 34.
    Kim JY, Min JY, Baek JM, Ahn SJ, Jun HY, Yoon KH, et al. CTRP3 acts as a negative regulator of osteoclastogenesis through AMPK-c-Fos-NFATc1 signaling in vitro and RANKL-induced calvarial bone destruction in vivo. Bone. 2015;79:242–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Li ZY, Zheng SL, Wang P, Xu TY, Guan YF, Zhang YJ, et al. Subfatin is a novel adipokine and unlike Meteorin in adipose and brain expression. CNS Neurosci Ther. 2014;20:344–54.PubMedCrossRefGoogle Scholar
  36. 36.
    Gong W, Liu Y, Wu Z, Wang S, Qiu G, Lin S. Meteorin-like shows unique expression pattern in bone and its overexpression inhibits osteoblast differentiation. PLoS One. 2016;11:e0164446.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Chen TL, Shen WJ, Kraemer FB. Human BMP-7/OP-1 induces the growth and differentiation of adipocytes and osteoblasts in bone marrow stromal cell cultures. J Cell Biochem. 2001;82:187–99.PubMedCrossRefGoogle Scholar
  38. 38.
    Burnstock G, Ulrich H. Purinergic signaling in embryonic and stem cell development. Cell Mol Life Sci. 2011;68:1369–94.PubMedCrossRefGoogle Scholar
  39. 39.
    Ferrari D, Gulinelli S, Salvestrini V, Lucchetti G, Zini R, Manfredini R, et al. Purinergic stimulation of human mesenchymal stem cells potentiates their chemotactic response to CXCL12 and increases the homing capacity and production of proinflammatory cytokines. Exp Hematol. 2011;39:360–74. 374 e361–365PubMedCrossRefGoogle Scholar
  40. 40.
    Kaunitz JD, Yamaguchi DT. TNAP, TrAP, ecto-purinergic signaling, and bone remodeling. J Cell Biochem. 2008;105:655–62.PubMedCrossRefGoogle Scholar
  41. 41.
    Takedachi M, Oohara H, Smith BJ, Iyama M, Kobashi M, Maeda K, et al. CD73-generated adenosine promotes osteoblast differentiation. J Cell Physiol. 2012;227:2622–31.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    He W, Mazumder A, Wilder T, Cronstein BN. Adenosine regulates bone metabolism via A1, A2A, and A2B receptors in bone marrow cells from normal humans and patients with multiple myeloma. FASEB J. 2013;27:3446–54.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gharibi B, Abraham AA, Ham J, Evans BA. Adenosine receptor subtype expression and activation influence the differentiation of mesenchymal stem cells to osteoblasts and adipocytes. J Bone Miner Res. 2011;26:2112–24.PubMedCrossRefGoogle Scholar
  44. 44.
    Gharibi B, Abraham AA, Ham J, Evans BA. Contrasting effects of A1 and A2b adenosine receptors on adipogenesis. Int J Obes. 2012;36:397–406.CrossRefGoogle Scholar
  45. 45.
    Kaebisch C, Schipper D, Babczyk P, Tobiasch E. The role of purinergic receptors in stem cell differentiation. Comput Struct Biotechnol J. 2015;13:75–84.PubMedCrossRefGoogle Scholar
  46. 46.
    Katebi M, Soleimani M, Cronstein BN. Adenosine A2A receptors play an active role in mouse bone marrow-derived mesenchymal stem cell development. J Leukoc Biol. 2009;85:438–44.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Mediero A, Wilder T, Perez-Aso M, Cronstein BN. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2. FASEB J. 2015;29:1577–90.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ciciarello M, Zini R, Rossi L, Salvestrini V, Ferrari D, Manfredini R, et al. Extracellular purines promote the differentiation of human bone marrow-derived mesenchymal stem cells to the osteogenic and adipogenic lineages. Stem Cells Dev. 2013;22:1097–111.PubMedCrossRefGoogle Scholar
  49. 49.
    Ode A, Schoon J, Kurtz A, Gaetjen M, Ode JE, Geissler S, et al. CD73/5′-ecto-nucleotidase acts as a regulatory factor in osteo−/chondrogenic differentiation of mechanically stimulated mesenchymal stromal cells. Eur Cell Mater. 2013;25:37–47.PubMedCrossRefGoogle Scholar
  50. 50.
    Napieralski R, Kempkes B, Gutensohn W. Evidence for coordinated induction and repression of ecto-5′-nucleotidase (CD73) and the A2a adenosine receptor in a human B cell line. Biol Chem. 2003;384:483–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Kara FM, Chitu V, Sloane J, Axelrod M, Fredholm BB, Stanley ER, et al. Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function. FASEB J. 2010;24:2325–33.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    He W, Wilder T, Cronstein BN. Rolofylline, an adenosine A1 receptor antagonist, inhibits osteoclast differentiation as an inverse agonist. Br J Pharmacol. 2013;170:1167–76.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Mediero A, Kara FM, Wilder T, Cronstein BN. Adenosine A(2A) receptor ligation inhibits osteoclast formation. Am J Pathol. 2012;180:775–86.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Mediero A, Cronstein BN. Adenosine and bone metabolism. Trends Endocrinol Metab. 2013;24:290–300.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kara FM, Doty SB, Boskey A, Goldring S, Zaidi M, Fredholm BB, et al. Adenosine A(1) receptors regulate bone resorption in mice: adenosine A(1) receptor blockade or deletion increases bone density and prevents ovariectomy-induced bone loss in adenosine A(1) receptor-knockout mice. Arthritis Rheum. 2010;62:534–41.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Rossi L, Salvestrini V, Ferrari D, Di Virgilio F, Lemoli RM. The sixth sense: hematopoietic stem cells detect danger through purinergic signaling. Blood. 2012;120:2365–75.PubMedCrossRefGoogle Scholar
  57. 57.
    Hinton DJ, McGee-Lawrence ME, Lee MR, Kwong HK, Westendorf JJ, Choi DS. Aberrant bone density in aging mice lacking the adenosine transporter ENT1. PLoS One. 2014;9:e88818.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Warraich S, Bone DB, Quinonez D, Ii H, Choi DS, Holdsworth DW, et al. Loss of equilibrative nucleoside transporter 1 in mice leads to progressive ectopic mineralization of spinal tissues resembling diffuse idiopathic skeletal hyperostosis in humans. J Bone Miner Res. 2013;28:1135–49.PubMedCrossRefGoogle Scholar
  59. 59.
    Daniels G, Ballif BA, Helias V, Saison C, Grimsley S, Mannessier L, et al. Lack of the nucleoside transporter ENT1 results in the Augustine-null blood type and ectopic mineralization. Blood. 2015;125:3651–4.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Rahman MF, Askwith C, Govindarajan R. Molecular determinants of acidic pH-dependent transport of human equilibrative nucleoside transporter-3. J Biol Chem. 2017;292:14775–85.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Campeau PM, Lu JT, Sule G, Jiang MM, Bae Y, Madan S, et al. Whole-exome sequencing identifies mutations in the nucleoside transporter gene SLC29A3 in dysosteosclerosis, a form of osteopetrosis. Hum Mol Genet. 2012;21:4904–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A. 2003;100:3077–82.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Poloni A, Maurizi G, Serrani F, Mancini S, Zingaretti MC, Frontini A, et al. Molecular and functional characterization of human bone marrow adipocytes. Exp Hematol. 2013;41:558–566 e552.PubMedCrossRefGoogle Scholar
  64. 64.
    Olmsted-Davis E, Gannon FH, Ozen M, Ittmann MM, Gugala Z, Hipp JA, et al. Hypoxic adipocytes pattern early heterotopic bone formation. Am J Pathol. 2007;170:620–32.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Yakar S, Adamo ML. Insulin-like growth factor 1 physiology: lessons from mouse models. Endocrinol Metab Clin N Am. 2012;41:231–47. vCrossRefGoogle Scholar
  66. 66.
    •• Rahman S, Lu Y, Czernik PJ, Rosen CJ, Enerback S, Lecka-Czernik B. Inducible brown adipose tissue, or beige fat, is anabolic for the skeleton. Endocrinology. 2013;154:2687–701. A pioneering study that mechanistically identifies adipogenic signals as osteoanabolic. PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Li J, Zhang N, Huang X, Xu J, Fernandes JC, Dai K, et al. Dexamethasone shifts bone marrow stromal cells from osteoblasts to adipocytes by C/EBPalpha promoter methylation. Cell Death Dis. 2013;4:e832.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Muthusami S, Ramachandran I, Muthusamy B, Vasudevan G, Prabhu V, Subramaniam V, et al. Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin Chim Acta. 2005;360:81–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Halade GV, Rahman MM, Williams PJ, Fernandes G. Combination of conjugated linoleic acid with fish oil prevents age-associated bone marrow adiposity in C57Bl/6J mice. J Nutr Biochem. 2011;22:459–69.PubMedCrossRefGoogle Scholar
  70. 70.
    Hu W, Yu Q, Zhang J, Liu D. Rosiglitazone ameliorates diabetic nephropathy by reducing the expression of chemerin and ChemR23 in the kidney of streptozotocin-induced diabetic rats. Inflammation. 2012;35:1287–93.PubMedCrossRefGoogle Scholar
  71. 71.
    Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31:266–300.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Rebiger L, Lenzen S, Mehmeti I. Susceptibility of brown adipocytes to pro-inflammatory cytokine toxicity and reactive oxygen species. Biosci Rep. 2016;36:e00306.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Almeida M, Han L, Martin-Millan M, O'Brien CA, Manolagas SC. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem. 2007;282:27298–305.PubMedCrossRefGoogle Scholar
  74. 74.
    • Ambrogini E, Almeida M, Martin-Millan M, Paik JH, Depinho RA, Han L, et al. FoxO-mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice. Cell Metab. 2010;11:136–46. This study explains how free radicals generated by aerobic metabolism are handled in osteoblasts to prevent cell death or bone-to-fat switch. PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Almeida M, Ambrogini E, Han L, Manolagas SC, Jilka RL. Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem. 2009;284:27438–48.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Grey A, Beckley V, Doyle A, Fenwick S, Horne A, Gamble G, et al. Pioglitazone increases bone marrow fat in type 2 diabetes: results from a randomized controlled trial. Eur J Endocrinol. 2012;166:1087–91.PubMedCrossRefGoogle Scholar
  77. 77.
    Paccou J, Hardouin P, Cotten A, Penel G, Cortet B. The role of bone marrow fat in skeletal health: usefulness and perspectives for clinicians. J Clin Endocrinol Metab. 2015;100:3613–21.PubMedCrossRefGoogle Scholar
  78. 78.
    Iwaniec UT, Turner RT. Failure to generate bone marrow adipocytes does not protect mice from ovariectomy-induced osteopenia. Bone. 2013;53:145–53.PubMedCrossRefGoogle Scholar
  79. 79.
    Justesen J, Mosekilde L, Holmes M, Stenderup K, Gasser J, Mullins JJ, et al. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation. Endocrinology. 2004;145:1916–25.PubMedCrossRefGoogle Scholar
  80. 80.
    Ackert-Bicknell CL, Shockley KR, Horton LG, Lecka-Czernik B, Churchill GA, Rosen CJ. Strain-specific effects of rosiglitazone on bone mass, body composition, and serum insulin-like growth factor-I. Endocrinology. 2009;150:1330–40.PubMedCrossRefGoogle Scholar
  81. 81.
    Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, et al. Marrow fat and bone--new perspectives. J Clin Endocrinol Metab. 2013;98:935–45.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Fazeli PK, Bredella MA, Freedman L, Thomas BJ, Breggia A, Meenaghan E, et al. Marrow fat and preadipocyte factor-1 levels decrease with recovery in women with anorexia nervosa. J Bone Miner Res. 2012;27:1864–71.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Devlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S, Pinz I, et al. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res. 2010;25:2078–88.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Menagh PJ, Turner RT, Jump DB, Wong CP, Lowry MB, Yakar S, et al. Growth hormone regulates the balance between bone formation and bone marrow adiposity. J Bone Miner Res. 2010;25:757–68.PubMedGoogle Scholar
  85. 85.
    Canalis E, Mazziotti G, Giustina A, Bilezikian JP. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007;18:1319–28.PubMedCrossRefGoogle Scholar
  86. 86.
    Montagnani A, Gonnelli S. Antidiabetic therapy effects on bone metabolism and fracture risk. Diabetes Obes Metab. 2013;15:784–91.PubMedCrossRefGoogle Scholar
  87. 87.
    Zhu ZN, Jiang YF, Ding T. Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. Bone. 2014;68:115–23.PubMedCrossRefGoogle Scholar
  88. 88.
    Schett G, Saag KG, Bijlsma JW. From bone biology to clinical outcome: state of the art and future perspectives. Ann Rheum Dis. 2010;69:1415–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Yao W, Cheng Z, Busse C, Pham A, Nakamura MC, Lane NE. Glucocorticoid excess in mice results in early activation of osteoclastogenesis and adipogenesis and prolonged suppression of osteogenesis: a longitudinal study of gene expression in bone tissue from glucocorticoid-treated mice. Arthritis Rheum. 2008;58:1674–86.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Bernardino JI, Mocroft A, Mallon PW, Wallet C, Gerstoft J, Russell C, et al. Bone mineral density and inflammatory and bone biomarkers after darunavir-ritonavir combined with either raltegravir or tenofovir-emtricitabine in antiretroviral-naive adults with HIV-1: a substudy of the NEAT001/ANRS143 randomised trial. Lancet HIV. 2015;2:e464–73.PubMedCrossRefGoogle Scholar
  91. 91.
    Grigsby IF, Pham L, Mansky LM, Gopalakrishnan R, Mansky KC. Tenofovir-associated bone density loss. Ther Clin Risk Manag. 2010;6:41–7.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Jain RG, Lenhard JM. Select HIV protease inhibitors alter bone and fat metabolism ex vivo. J Biol Chem. 2002;277:19247–50.PubMedCrossRefGoogle Scholar
  93. 93.
    Xian CJ, Howarth GS, Cool JC, Foster BK. Effects of acute 5-fluorouracil chemotherapy and insulin-like growth factor-I pretreatment on growth plate cartilage and metaphyseal bone in rats. Bone. 2004;35:739–49.PubMedCrossRefGoogle Scholar
  94. 94.
    Fan C, Georgiou KR, McKinnon RA, Keefe DM, Howe PR, Xian CJ. Combination chemotherapy with cyclophosphamide, epirubicin and 5-fluorouracil causes trabecular bone loss, bone marrow cell depletion and marrow adiposity in female rats. J Bone Miner Metab. 2016;34:277–90.PubMedCrossRefGoogle Scholar
  95. 95.
    Cromer BA, Scholes D, Berenson A, Cundy T, Clark MK, Kaunitz AM, et al. Depot medroxyprogesterone acetate and bone mineral density in adolescents—the black box warning: a position paper of the Society for Adolescent Medicine. J Adolesc Health. 2006;39:296–301.PubMedCrossRefGoogle Scholar
  96. 96.
    Hadji P. Aromatase inhibitor-associated bone loss in breast cancer patients is distinct from postmenopausal osteoporosis. Crit Rev Oncol Hematol. 2009;69:73–82.PubMedCrossRefGoogle Scholar
  97. 97.
    Duque G, Li W, Adams M, Xu S, Phipps R. Effects of risedronate on bone marrow adipocytes in postmenopausal women. Osteoporos Int. 2011;22:1547–53.PubMedCrossRefGoogle Scholar
  98. 98.
    Wilson C. Bone: risedronate and marrow adiposity. Nat Rev Endocrinol. 2010;6:597.PubMedGoogle Scholar
  99. 99.
    Li GW, Xu Z, Chang SX, Zhou L, Wang XY, Nian H, et al. Influence of early zoledronic acid administration on bone marrow fat in ovariectomized rats. Endocrinology. 2014;155:4731–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Yang Y, Luo X, Xie X, Yan F, Chen G, Zhao W, et al. Influences of teriparatide administration on marrow fat content in postmenopausal osteopenic women using MR spectroscopy. Climacteric. 2016;19:285–91.PubMedCrossRefGoogle Scholar
  101. 101.
    Rickard DJ, Wang FL, Rodriguez-Rojas AM, Wu Z, Trice WJ, Hoffman SJ, et al. Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule agonist of the PTH1 receptor inhibits adipocyte differentiation in human bone marrow stromal cells. Bone. 2006;39:1361–72.PubMedCrossRefGoogle Scholar
  102. 102.
    Balani DH, Ono N, Kronenberg HM. Parathyroid hormone regulates fates of murine osteoblast precursors in vivo. J Clin Invest. 2017;127:3327–38.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Papapoulos S, Lippuner K, Roux C, Lin CJ, Kendler DL, Lewiecki EM, et al. The effect of 8 or 5 years of denosumab treatment in postmenopausal women with osteoporosis: results from the FREEDOM extension study. Osteoporos Int. 2015;26:2773–83.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Rosen CJ, Bilezikian JP. Clinical review 123: anabolic therapy for osteoporosis. J Clin Endocrinol Metab. 2001;86:957–64.PubMedCrossRefGoogle Scholar
  105. 105.
    Cosman F. Anabolic and antiresorptive therapy for osteoporosis: combination and sequential approaches. Curr Osteoporos Rep. 2014;12:385–95.PubMedCrossRefGoogle Scholar
  106. 106.
    Palacios S, Mejia A. Antiresorptives and anabolic therapy in sequence or combination for postmenopausal osteoporosis. Climacteric. 2015;18:453–5.PubMedCrossRefGoogle Scholar
  107. 107.
    Cosman F, Nieves JW, Dempster DW. Treatment sequence matters: anabolic and antiresorptive therapy for osteoporosis. J Bone Miner Res. 2017;32:198–202.PubMedCrossRefGoogle Scholar
  108. 108.
    Lou S, Lv H, Wang G, Li Z, Li M, Zhang L, et al. The effect of sequential therapy for postmenopausal women with osteoporosis: a PRISMA-compliant meta-analysis of randomized controlled trials. Medicine (Baltimore). 2016;95:e5496.CrossRefGoogle Scholar
  109. 109.
    Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J. 2004;18:980–2.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shanmugam Muruganandan
    • 1
  • Rajgopal Govindarajan
    • 1
  • Christopher J. Sinal
    • 2
    Email author
  1. 1.Division of Pharmaceutics and Pharmaceutical ChemistryThe Ohio State UniversityColumbusUSA
  2. 2.Department of PharmacologyDalhousie UniversityHalifaxCanada

Personalised recommendations