Current Osteoporosis Reports

, Volume 16, Issue 4, pp 360–368 | Cite as

Part I: Development and Physiology of the Temporomandibular Joint

  • David L. Stocum
  • W. Eugene Roberts
Craniofacial Skeleton (WE Roberts, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Craniofacial Skeleton


Purpose of Review

Investigate the developmental physiology of the temporomandibular joint (TMJ), a unique articulation between the cranium and the mandible.

Recent Findings

Principal regulatory factors for TMJ and disc development are Indian hedgehog (IHH) and bone morphogenetic protein (BMP-2). The mechanism is closely associated with ear morphogenesis. Secondary condylar cartilage emerges as a subperiosteal blastema on the medial surface of the posterior mandible. The condylar articular surface is immunoreactive for tenascin-C, so it is a modified fibrous periosteum with an underlying proliferative zone (cambrium layer) that differentiates into fibrocartilage. The latter cushions high loads and subsequently produces endochondral bone. The TMJ is a heavily loaded joint with three cushioning layers of fibrocartilage in the disc, as well as in subarticular zones in the fossa and mandibular condyle.


The periosteal articular surface produces fibrocartilage to resist heavy loads, and has unique healing and adaptive properties for maintaining life support functions under adverse environmental conditions.


TMJ Indian hedgehog BMP-2 Healing blastema Tenascin-C Fibrocartilage Periosteum Morphogenesis Pharyngeal arch 


Compliance with Ethical Standards

Conflict of Interest

David Stocum and Eugene Roberts declare no conflict of interest. Dr. Roberts is the section editor for this section of the journal, but the paper was reviewed by an outside reviewer to avoid conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Willard VP, Zhang L, Athanasiou KA. Tissue engineering of the temporomandibular joint. Elsevier 2011.Google Scholar
  2. 2.
    Nokar S, Sadighpour L, Shirzad H, Shahrokhi Rad A, Keshvad A. Evaluation of signs, symptoms, and occlusal factors among patients with temporomandibular disorders. Cranio. 2018;30:1–6. Scholar
  3. 3.
    Anthwal N, Joshi L, Tucker AS. Evolution of the mammalia midde ear and jaw: adaptations and novel structures. J Anat. 2013;222:147–60. Scholar
  4. 4.
    Reichert KB. Uber die Visceralbogen der Wirbelthiere im Allgemeinen und deren Metamorphosen bei den Vogeln und Saugethieren. Arch Anat Physiol Wissensch Med. 1837:120–220.Google Scholar
  5. 5.
    Gaupp E. De Reichertsche Theorie. Arch Anat Physiol Suppl. 1912:1–416.Google Scholar
  6. 6.
    Khojastepour L, Vojdani M, Forghani M. The association between condylar bone changes revealed in cone beam computed tomography and clinical dysfunction index in patients with or without temporomandibular joint disorders. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123(5):600–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Hinton RJ. Genes that regulate morphogenesis and growth of the temporomandibular joint: a review. Dev Dynam. 2014;243:864–74. Scholar
  8. 8.
    Blackwood HJ. Growth of the mandibular condyle of the rat studied with tritiated thymidine. Arch Oral Biol. 1966;11(5):493–500.CrossRefPubMedGoogle Scholar
  9. 9.
    Helm NB, Padala S, Beck FM, D’Atri AM, Huja SS. Short-term zoledronic acid reduces trabecular bone remodeling in dogs. Eur J Oral Sci. 2010;118(5):460–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Detamore MS, Orfanos JG, Almarza AJ, French MM, Wong ME. Athansiou. Matrix Biol. 2005;24:45–57.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Landesberg R, Takeuchi E, Puzas JE, et al. Cellular, biochemical and molecular characterization of the bovine temporomandibular joint disc. Arch Oral Biol. 1996;41:761–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Almarza AJ, Bean AC, Baggett LS, Athanasiou KA. Biological analysis of the porcine temporomandibular joint disc. Br J Oral Maxillofac Surg. 2006;44:124–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Mizoguchi I, Nakamura M, Takahashi I, Kagayama M, Mitani H. A comparison of the immunohistochemical localization of type I and type Il collagens in craniofacial cartilages of the rat. Acta Anat (Basal). 1992;144(1):59–64.CrossRefGoogle Scholar
  14. 14.
    Kato T, Takahashi S, Domon T. Effects of liquid diet on the temporomandibular joint of growing rats. Med Princ Pract. 2015;24:257–62.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15••.
    . Utreja A, Dyment NA, Yadav S, Villa MM, Yingcui L, Xi J, et al. Cell and matrix response of temporomandibular cartilage to mechanical loading. Osteoarthr Cartil. 2016;24(2):335–44. Transgenic mice expressing fluorescent proteins to identify areas of gene expression in the mandibular condyle have documented the cell lineage progression in response to TMJ loading. CrossRefPubMedGoogle Scholar
  16. 16.
    Krupnik VE, Sharp JD, Jiang C, Robison K, Chickering TW, Amaravadi L, et al. Functional and structural diversity of the human Dickkopf gene family. Gene. 1999;238(2):301–13.CrossRefPubMedGoogle Scholar
  17. 17.
    Kuboto T, Michigami T, Ozono K. Wnt signaling in bone metabolism. J Bone Miner Metab. 2009;27(3):265–71.CrossRefGoogle Scholar
  18. 18.
    Outani H, Okada M, Yamashita A, Nakagawa K, Yoshikawa H, Tsumaki N. Direct induction of chrondrogenic cells from human dermal fibroblast culture by defined factors. PLoS One. 2013;8(10):e77365. Scholar
  19. 19.
    Takahashi I. Mechano-reaction of chondrocytes in the mandibular condyle during orthopedic-orthodontic interaction. In: Ngan PW, Deguchi T, Roberts WE, editors. Orthodontic treatment of class III malocclusion. Mumbai: Bentham Books; 2014. p. 37–60.Google Scholar
  20. 20.
    Koyama E, Saunders C, Salhab I, Decker RS, Chen I, Um H, et al. Lubricin is required for the structural integrity and post-natal maintenance of TMJ. J Dent Res. 2014;93(7):663–70.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ito MM, Kida M. Morphological and biochemical re-evaluation of the process of cavitation in the rat knee joint: cellular and cell strata alterations in the interzone. J Anat. 2000;197:659–79.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Badel T, Savic-Pavicin I, Zadravec D, Marotti M, Krolo I, Grbesa D. Temporomandibular joint development and functional disorders related to clinical otologic symptomatology. Acta Clin Croat. 2011;50:51–60.PubMedGoogle Scholar
  23. 23••.
    . Shibata S, Sakamoto Y, Yokohama-Tamaki T, Murakami G, Cho BH. Distribution of matrix proteins in perichondrium and periosteum during the incorporation of Meckel’s cartilage into ossifying mandible in midterm human fetuses: an immunochemical study. Anat Rec. 2014;297:1208–17. This reference documents that the articular surface of the mandibular condyle is covered with periosteum and not cartilage. CrossRefGoogle Scholar
  24. 24.
    Shibata S, Sato R, Murakami G, Fukuoka H, Rodriguez-Vazquez JF. Origin of mandibular condylar cartilage in mice, rats and humans: periosteum or separate blastema? J Oral Biosci. 2013;55:208–16.CrossRefGoogle Scholar
  25. 25.
    Liang W, Li X, Gao B, Gan H, Lin X, Liao L, et al. Observing the development of the temporomandibular joint in embryonic and post-natal mice using various staining methods. Exp Therapeut Med. 2016;11:481–9.CrossRefGoogle Scholar
  26. 26.
    Zhang H, Zhao X, Zhang Z, Chen W, Zhang X. An immunohistochemistry study of Soxp9, Runx2, and Osterix expression in the mandibular cartilages of newborn mouse. Biomed Res Int. 2013;
  27. 27.
    Huang Q, Opstelten D, Samman N, Tidman H. Experimentally induced unilateral tooth loss: expression of type II collagen in temporomandibular joint cartilage. J Oral Maxillofac Surg. 2003;61:1054–60.CrossRefPubMedGoogle Scholar
  28. 28.
    Gu Z, Jin X, Feng J, Shibata T, Hu J, Zhan J, et al. Type II collagen and aggrecan mRNA expressions in rabbit condyle following disc displacement. J Oral Rehabil. 2005;32:254–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Natiella JR, Burch L, Fries KM, Upton LG, Edsborg LE. Analysis of the collagen 1 and fibronectin of temporomandibular joint synovial fluid and discs. J Oral Maxillofac Surg. 2009;67:105–13.CrossRefPubMedGoogle Scholar
  30. 30.
    Toriya N, Takuma T, Arakawa T, Sasano AY, Takahashi I, et al. Expression and localization of versican during postnatal development of rat temporomandibular joint disc. Histochem Cell Biol. 2006;125:205–14. CrossRefPubMedGoogle Scholar
  31. 31.
    Shibata S, Suda N, Suzuki S, Fukuoka H, Yamashita Y. An in situ hybridization study of Runx2, Osterix, and Sox9 at the onset of condylar cartilage formation in fetal mouse mandible. J Anat. 2006;208:169–77.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Shibata S, Suda N, Yoda S, Fukuoka H, Ohyama K, Yamashita Y, et al. Runx2-deficient mice lack mandibular condylar cartilage and have deformed Meckel’s cartilage. Anat Embryol. 2004;208:273–80.CrossRefPubMedGoogle Scholar
  33. 33.
    Fukuoka H, Shibata S, Suda N, Yamashita Y, Komori T. Bone morphogenetic protein rescues the lack of secondary cartilage in Runx2-deficient mice. J Anat. 2007;211:8–15.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996;273:613–22.CrossRefPubMedGoogle Scholar
  35. 35.
    Vortkamp A, Pathi S, Peretti GM, Caruso EM, Zaleske DJ, Tabin CJ. Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech Dev. 1998;71:65–76.CrossRefPubMedGoogle Scholar
  36. 36.
    Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP, and Vortkamp A. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 2001:128:4523–4534.Google Scholar
  37. 37••.
    . Purcell P, Joo BW, Hu JK, Tran PV, Calicchio ML, O’Connell DJ, et al. Temporomandibular joint formation requires two distinct hedgehog-dependent steps. Proc Natl Acad Sci U S A. 2009;106:18297–302. An in-depth examination of Hedgehog signaling in TMJ development. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Shibukawa Y, Young B, Wu C, Yamada S, Long F, Pacifici M, et al. Temporomandibular joint formation and condyle growth require Indian hedgehog signaling. Dev Dynam. 2007;236:426–34.CrossRefGoogle Scholar
  39. 39••.
    . Gu S, Wu W, Liu C, Yang L, Sun C, Ye W, et al. BMPR1A mediated signaling is essential for temporomandibular joint development in mice. PLoS One. 2014;9:e101000. This paper integrates information on IHH and BMP signaling in the development of the TMJ CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Frommer J. Prenatal development of the mandibular joint in mice. Anat Rec. 1964;150:449–61.CrossRefPubMedGoogle Scholar
  41. 41.
    Gu S, Wei N, Yu L, Fei J, Chen Y. Shox2-deficiency leads to dysplasia and ankylosis of the temporomandibular joint in mice. Mech Dev. 2008;125(8):729–42.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tang GH, Rabie A, Hagg U. Indian hedgehog: a mechanotransduction mediator in condylar cartilage. J Dent Res. 2004;83:434–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Science, Department of BiologyIndiana University-Purdue University Indianapolis (IUPUI)IndianapolisUSA
  2. 2.School of Dentistry, Department of Orthodontics & Orofacial GeneticsIndiana University-Purdue University Indianapolis (IUPUI)IndianapolisUSA
  3. 3.Department of OrthodonticsLoma Linda UniversityLoma LindaUSA
  4. 4.Advanced Dental EducationSt. Louis UniversitySt. LouisUSA

Personalised recommendations