Advertisement

Current Osteoporosis Reports

, Volume 16, Issue 3, pp 312–319 | Cite as

Bone Marrow Adipocyte Developmental Origin and Biology

  • Joanna Bukowska
  • Trivia Frazier
  • Stanley Smith
  • Theodore Brown
  • Robert Bender
  • Michelle McCarthy
  • Xiying Wu
  • Bruce A. Bunnell
  • Jeffrey M. Gimble
Bone Marrow and Adipose Tissue (G Duque and B Lecka-Czernik, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Bone Marrow and Adipose Tissue

Abstract

Purpose of Review

This review explores how the relationships between bone marrow adipose tissue (BMAT) adipogenesis with advancing age, obesity, and/or bone diseases (osteopenia or osteoporosis) contribute to mechanisms underlying musculoskeletal pathophysiology.

Recent Findings

Recent studies have re-defined adipose tissue as a dynamic, vital organ with functions extending beyond its historic identity restricted solely to that of an energy reservoir or sink. “State of the art” methodologies provide novel insights into the developmental origin, physiology, and function of different adipose tissue depots. These include genetic tracking of adipose progenitors, viral vectors application, and sophisticated non-invasive imaging modalities.

Summary

While constricted within the rigid bone cavity, BMAT vigorously contributes to local and systemic metabolic processes including hematopoiesis, osteogenesis, and energy metabolism and undergoes dynamic changes as a function of age, diet, bone topography, or sex. These insights will impact future research and therapies relating to osteoporosis.

Keywords

Beige cells Bone marrow Brown adipose tissue Cytomegalovirus White adipose tissue 

Notes

Acknowledgements

The authors thank Barbara Gawronska-Kozak Ph.D. for her critical review of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

Xiying Wu and Smith report a patent on use of adipose cells in therapy in the submission process from LaCell LLC.

Jeff Gimble is a co-founder and co-owner of Talaria Antibodies, a polyclonal antibody production company; Obatala Sciences, a fat on a chip technology; and is a co-founder, co-owner, and employee at LaCell LLC. Xiying Wu is a co-founder, co-owner, and R&D Director at LaCell LLC; a co-owner and co-founder of Obatala Sciences; and reports a patent on use of adipose cells in therapy in the submission process from LaCell LLC. Stanley Smith reports a patent on use of adipose cells in therapy in the submission process from LaCell LLC. Michelle McCarthy, Trivia Frazier, Joanna Bukowska, Theodore Brown, Robert Bender, and Bruce Bunnell declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Rodeheffer MS, Birsoy K, Friedman JM. Identification of white adipocyte progenitor cells in vivo. Cell. 2008;135:240–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Berry R, Rodeheffer MS. Characterization of the adipocyte cellular lineage in vivo. Nat Cell Biol. 2013;15:302–8.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–13.CrossRefPubMedGoogle Scholar
  4. 4.
    Lecka-Czernik B, Stechschulte LA, Czernik PJ, Dowling AR. High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol Cell Endocrinol. 2015;410:35–41.CrossRefPubMedGoogle Scholar
  5. 5.
    Chu DT, Malinowska E, Gawronska-Kozak B, Kozak LP. Expression of adipocyte biomarkers in a primary cell culture models reflects preweaning adipobiology. J Biol Chem. 2014;289:18478–88.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wang W, Seale P. Control of brown and beige fat development. Nat Rev Mol Cell Biol. 2016;17:691–702.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100:1249–60.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9:191–200.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Berry DC, Stenesen D, Zeve D, Graff JM. The developmental origins of adipose tissue. Development. 2013;140:3939–49.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    La Merrill M, Emond C, Kim MJ, Antignac JP, Le Bizec B, Clement K, et al. Toxicological function of adipose tissue: focus on persistent organic pollutants. Environ Health Perspect. 2013;121:162–9.PubMedGoogle Scholar
  11. 11.
    Giralt M, Villarroya F. White, brown, beige/brite: different adipose cells for different functions? Endocrinology. 2013;154:2992–3000.CrossRefPubMedGoogle Scholar
  12. 12.
    Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19:1252–63.CrossRefPubMedGoogle Scholar
  13. 13.
    Carey AL, Vorlander C, Reddy-Luthmoodoo M, Natoli AK, Formosa MF, Bertovic DA, et al. Reduced UCP-1 content in in vitro differentiated beige/brite adipocytes derived from preadipocytes of human subcutaneous white adipose tissues in obesity. PLoS One. 2014;9:e91997.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lecka-Czernik B, Stechschulte LA, Czernik PJ, Sherman SB, Huang S, Krings A. Marrow adipose tissue: skeletal location, sexual dimorphism, and response to sex steroid deficiency. Front Endocrinol (Lausanne). 2017;8:188.CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Garcia RA, Roemmich JN, Claycombe KJ. Evaluation of markers of beige adipocytes in white adipose tissue of the mouse. Nutr Metab (Lond). 2016;13:24.CrossRefGoogle Scholar
  16. 16.
    Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150:366–76.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lee P, Werner CD, Kebebew E, Celi FS. Functional thermogenic beige adipogenesis is inducible in human neck fat. Int J Obes. 2014;38:170–6.CrossRefGoogle Scholar
  18. 18.
    Krings A, Rahman S, Huang S, Lu Y, Czernik PJ, Lecka-Czernik B. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone. 2012;50:546–52.CrossRefPubMedGoogle Scholar
  19. 19.
    Scheller EL, Doucette CR, Learman BS, Cawthorn WP, Khandaker S, Schell B, et al. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat Commun. 2015;6:7808.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    •• Rahman S, Lu Y, Czernik PJ, Rosen CJ, Enerback S, Lecka-Czernik B. Inducible brown adipose tissue, or beige fat, is anabolic for the skeleton. Endocrinology. 2013;154:2687–701. Highly Important: First study to characterize the role of beige adipocytes in BMAT. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cawthorn WP, Scheller EL, Learman BS, Parlee SD, Simon BR, Mori H, et al. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 2014;20:368–75.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res. 2008;102:77–85.CrossRefPubMedGoogle Scholar
  23. 23.
    Zannettino AC, Paton S, Arthur A, Khor F, Itescu S, Gimble JM, et al. Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol. 2008;214:413–21.CrossRefPubMedGoogle Scholar
  24. 24.
    •• Guimaraes-Camboa N, Cattaneo P, Sun Y, Moore-Morris T, Gu Y, Dalton ND, et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell. 2017;20:345–59. e5. Highly Important: This study challenges the concept that pericytes and MSC are equivalent. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gawronska-Kozak B, Staszkiewicz J, Gimble JM, Kirk-Ballard H. Recruitment of fat cell precursors during high fat diet in C57BL/6J mice is fat depot specific. Obesity. 2014;22:1091–102.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Frazier TPBA, Lee S, Abbott R, Tucker HA, Kaplan D, Wang M, et al. Serially transplanted non-pericytic CD146- adipose stromal/stem cells in silk bioscaffolds regenerate adipose tissue in vivo. Stem Cells. 2016;34:1097–111.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Philips BJ, Grahovac TL, Valentin JE, Chung CW, Bliley JM, Pfeifer ME, et al. Prevalence of endogenous CD34+ adipose stem cells predicts human fat graft retention in a xenograft model. Plast Reconstr Surg. 2013;132:845–58.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    • Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA, et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med. 2013;19:635–9. Important: This study is among the first to provide a detailed analysis of human brown fat. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25.CrossRefPubMedGoogle Scholar
  31. 31.
    Ricquier D. UCP1, the mitochondrial uncoupling protein of brown adipocyte: a personal contribution and a historical perspective. Biochimie. 2017;134:3–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Nicholls DG. The hunt for the molecular mechanism of brown fat thermogenesis. Biochimie. 2017;134:9–18.CrossRefPubMedGoogle Scholar
  33. 33.
    Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature. 2009;460:1154–8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 2007;6:38–54.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Qian S, Huang H, Tang Q. Brown and beige fat: the metabolic function, induction, and therapeutic potential. Front Med. 2015;9:162–72.CrossRefPubMedGoogle Scholar
  36. 36.
    Liu X, Cervantes C, Liu F. Common and distinct regulation of human and mouse brown and beige adipose tissues: a promising therapeutic target for obesity. Protein Cell. 2017;8:446–54.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cousin B, Andre M, Arnaud E, Penicaud L, Casteilla L. Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochem Biophys Res Commun. 2003;301:1016–22.CrossRefPubMedGoogle Scholar
  38. 38.
    Han J, Koh YJ, Moon HR, Ryoo HG, Cho CH, Kim I, et al. Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells. Blood. 2010;115:957–64.CrossRefPubMedGoogle Scholar
  39. 39.
    Chen J, Shi Y, Regan J, Karuppaiah K, Ornitz DM, Long F. Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice. PLoS One. 2014;9:e85161.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lecka-Czernik B. Marrow fat metabolism is linked to the systemic energy metabolism. Bone. 2012;50:534–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Botolin S, McCabe LR. Bone loss and increased bone adiposity in spontaneous and pharmacologically induced diabetic mice. Endocrinology. 2007;148:198–205.CrossRefPubMedGoogle Scholar
  42. 42.
    Gifford A, Towse TF, Walker RC, Avison MJ, Welch EB. Human brown adipose tissue depots automatically segmented by positron emission tomography/computed tomography and registered magnetic resonance images. J Vis Exp: JoVE. 2015.Google Scholar
  43. 43.
    Derlin T, Peldschus K, Munster S, Bannas P, Herrmann J, Stubig T, et al. Comparative diagnostic performance of (1)(8)F-FDG PET/CT versus whole-body MRI for determination of remission status in multiple myeloma after stem cell transplantation. Eur Radiol. 2013;23:570–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Perry C, Lerman H, Joffe E, Sarid N, Amit O, Avivi I, et al. The value of PET/CT in detecting bone marrow involvement in patients with follicular lymphoma. Medicine (Baltimore). 2016;95:e2910.CrossRefGoogle Scholar
  45. 45.
    El Karak F, Bou-Orm IR, Ghosn M, Kattan J, Farhat F, Ibrahim T, et al. PET/CT scanner and bone marrow biopsy in detection of bone marrow involvement in diffuse large B-cell lymphoma. PLoS One. 2017;12:e0170299.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Li GW, Xu Z, Chen QW, Tian YN, Wang XY, Zhou L, et al. Quantitative evaluation of vertebral marrow adipose tissue in postmenopausal female using MRI chemical shift-based water-fat separation. Clin Radiol. 2014;69:254–62.CrossRefPubMedGoogle Scholar
  47. 47.
    Pansini V, Monnet A, Salleron J, Hardouin P, Cortet B, Cotten A. 3 tesla (1) H MR spectroscopy of hip bone marrow in a healthy population, assessment of normal fat content values and influence of age and sex. Journal of magnetic resonance imaging: JMRI. 2014;39:369–76.CrossRefPubMedGoogle Scholar
  48. 48.
    Kherlopian AR, Song T, Duan Q, Neimark MA, Po MJ, Gohagan JK, et al. A review of imaging techniques for systems biology. BMC Syst Biol. 2008;2:74.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Scheller EL, Troiano N, Vanhoutan JN, Bouxsein MA, Fretz JA, Xi Y, et al. Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. Methods Enzymol. 2014;537:123–39.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ren J, Dimitrov I, Sherry AD, Malloy CR. Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla. J Lipid Res. 2008;49:2055–62.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Yu EW, Greenblatt L, Eajazi A, Torriani M, Bredella MA. Marrow adipose tissue composition in adults with morbid obesity. Bone. 2017;97:38–42.CrossRefPubMedGoogle Scholar
  52. 52.
    Schwartz AV, Sigurdsson S, Hue TF, Lang TF, Harris TB, Rosen CJ, et al. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab. 2013;98:2294–300.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kuhn JP, Hernando D, Meffert PJ, Reeder S, Hosten N, Laqua R, et al. Proton-density fat fraction and simultaneous R2* estimation as an MRI tool for assessment of osteoporosis. Eur Radiol. 2013;23:3432–9.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Doucette CR, Horowitz MC, Berry R, MacDougald OA, Anunciado-Koza R, Koza RA, et al. High fat diet increases bone marrow adipose tissue (MAT) but does not alter trabecular or cortical bone mass in C57BL/6J mice. J Cell Physiol. 2015;230:2032–7.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Roldan-Valadez E, Pina-Jimenez C, Favila R, Rios C. Gender and age groups interactions in the quantification of bone marrow fat content in lumbar spine using 3T MR spectroscopy: a multivariate analysis of covariance (Mancova). Eur J Radiol. 2013;82:e697–702.CrossRefPubMedGoogle Scholar
  56. 56.
    Griffith JF, Yeung DK, Ma HT, Leung JC, Kwok TC, Leung PC. Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. Journal of Magnetic Resonance Imaging: JMRI. 2012;36:225–30.CrossRefPubMedGoogle Scholar
  57. 57.
    Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med. 2013;19:1338–44.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lee YH, Petkova AP, Konkar AA, Granneman JG. Cellular origins of cold-induced brown adipocytes in adult mice. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology. 2015;29:286–99.CrossRefGoogle Scholar
  59. 59.
    Mizoguchi T, Pinho S, Ahmed J, Kunisaki Y, Hanoun M, Mendelson A, et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev Cell. 2014;29:340–9.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014;15:154–68.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Yue R, Zhou BO, Shimada IS, Zhao Z, Morrison SJ. Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating Mesenchymal stromal cells in adult bone marrow. Cell Stem Cell. 2016;18:782–96.CrossRefPubMedGoogle Scholar
  62. 62.
    Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM, Bocian C, et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell. 2017;20:771–84. e6CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Dhurandhar NV. Infectobesity: obesity of infectious origin. J Nutr. 2001;131:2794S–7S.CrossRefPubMedGoogle Scholar
  64. 64.
    Atkinson RL, Dhurandhar NV, Allison DB, Bowen RL, Israel BA, Albu JB, et al. Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids. Int J Obes. 2005;29:281–6.CrossRefGoogle Scholar
  65. 65.
    Dhurandhar NV, Whigham LD, Abbott DH, Schultz-Darken NJ, Israel BA, Bradley SM, et al. Human adenovirus Ad-36 promotes weight gain in male rhesus and marmoset monkeys. J Nutr. 2002;132:3155–60.CrossRefPubMedGoogle Scholar
  66. 66.
    Dhurandhar NV, Israel BA, Kolesar JM, Mayhew GF, Cook ME, Atkinson RL. Increased adiposity in animals due to a human virus. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity. 2000;24:989–96.CrossRefGoogle Scholar
  67. 67.
    Atkinson RL. Viruses as an etiology of obesity. Mayo Clin Proc. 2007;82:1192–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Vangipuram SD, Sheele J, Atkinson RL, Holland TC, Dhurandhar NV. A human adenovirus enhances preadipocyte differentiation. Obes Res. 2004;12:770–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Rogers PM, Fusinski KA, Rathod MA, Loiler SA, Pasarica M, Shaw MK, et al. Human adenovirus Ad-36 induces adipogenesis via its E4 orf-1 gene. Int J Obes. 2008;32:397–406.CrossRefGoogle Scholar
  70. 70.
    Zwezdaryk KJ, Ferris MB, Strong AL, Morris CA, Bunnell BA, Dhurandhar NV, et al. Human cytomegalovirus infection of human adipose-derived stromal/stem cells restricts differentiation along the adipogenic lineage. Adipocyte. 2016;5:53–64.CrossRefPubMedGoogle Scholar
  71. 71.
    Olmsted-Davis E, Gannon FH, Ozen M, Ittmann MM, Gugala Z, Hipp JA, et al. Hypoxic adipocytes pattern early heterotopic bone formation. Am J Pathol. 2007;170:620–32.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Salisbury EA, Dickerson AR, Davis TA, Forsberg JA, Davis AR, Olmsted-Davis EA. Characterization of brown adipose-like tissue in trauma-induced heterotopic ossification in humans. Am J Pathol. 2017;187:2071–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Olmsted-Davis EA, Salisbury EA, Hoang D, Davis EL, Lazard Z, Sonnet C, et al. Progenitors in peripheral nerves launch heterotopic ossification. Stem Cells Transl Med. 2017;6:1109–19.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Salisbury EA, Lazard ZW, Ubogu EE, Davis AR, Olmsted-Davis EA. Transient brown adipocyte-like cells derive from peripheral nerve progenitors in response to bone morphogenetic protein 2. Stem Cells Transl Med. 2012;1:874–85.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol. 2006;2:35–43.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Joanna Bukowska
    • 1
  • Trivia Frazier
    • 2
    • 3
  • Stanley Smith
    • 2
  • Theodore Brown
    • 4
  • Robert Bender
    • 2
  • Michelle McCarthy
    • 4
  • Xiying Wu
    • 2
    • 3
  • Bruce A. Bunnell
    • 4
  • Jeffrey M. Gimble
    • 2
    • 3
    • 4
  1. 1.Institute of Animal Reproduction and Food ResearchPolish Academy of SciencesOlsztynPoland
  2. 2.LaCell LLCNew OrleansUSA
  3. 3.Obatala Sciences, Inc.New OrleansUSA
  4. 4.Center for Stem Cell Research and Regenerative MedicineTulane University School of MedicineNew OrleansUSA

Personalised recommendations