Advertisement

Current Osteoporosis Reports

, Volume 16, Issue 1, pp 65–75 | Cite as

Linking the Gut Microbiota to Bone Health in Anorexia Nervosa

  • Nicole C. Aurigemma
  • Kristen J. Koltun
  • Hannah VanEvery
  • Connie J. Rogers
  • Mary Jane De Souza
Secondary Causes of Osteoporosis (S Warden, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Secondary Causes of Osteoporosis

Abstract

Purpose of Review

The purpose of this review is to examine the anorexia nervosa-microbiota-bone relationship, offering a compilation of the relevant human and animal studies that may contribute to a more comprehensive understanding of potential mechanisms involved.

Recent Findings

Recent studies have implicated fermentation by-products of the gut microbiota in bone metabolism.

Summary

Compromised bone health often accompanies anorexia nervosa due to energy deficiency and hypoestrogenism. The gut microbiome has been implicated as a link between these conditions and impaired bone growth phenotypes. Current research supports decrements in Firmicutes and short-chain fatty acids with increases in Methanobrevibacter smithii and Proteobacteria in anorexia nervosa. A potential mechanism for microbiome-regulated bone growth is through modulation of insulin-like growth factor-1. Future research should aim to examine short-chain fatty acids, probiotics, and prebiotics as alternative therapies to treat low bone density in anorexia nervosa.

Keywords

Anorexia nervosa Gut microbiota Bone metabolism Osteoporosis Insulin-like growth factor-1 Short-chain fatty acids 

Notes

Compliance with Ethical Standards

Conflict of Interest

Nicole Aurigemma, Kristen Koltun, Hannah VanEvery, Connie Rogers, and Mary Jane De Souza declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of Importance •• Of Major Importance

  1. 1.
    van de Wouw M, Schellekens H, Dinan TG, Cryan JF. Microbiota-gut-brain axis: modulator of host metabolism and appetite. J Nutr. 2017;147(5):727–45.  https://doi.org/10.3945/jn.116.240481.CrossRefPubMedGoogle Scholar
  2. 2.
    Carr J, Kleiman SC, Bulik CM, Bulik-Sullivan EC, Carroll IM. Can attention to the intestinal microbiota improve understanding and treatment of anorexia nervosa? Expert Rev Gastroenterol Hepatol. 2016;10(5):565–9.  https://doi.org/10.1586/17474124.2016.1166953.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Herpertz-Dahlmann B, Seitz J, Baines J. Food matters: how the microbiome and gut-brain interaction might impact the development and course of anorexia nervosa. Eur Child Adolesc Psychiatry. 2017;26(9):1031–41.  https://doi.org/10.1007/s00787-017-0945-7.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Legroux-Gerot I, Vignau J, D'Herbomez M, Collier F, Marchandise X, Duquesnoy B, et al. Evaluation of bone loss and its mechanisms in anorexia nervosa. Calcif Tissue Int. 2007;81(3):174–82.  https://doi.org/10.1007/s00223-007-9038-9.CrossRefPubMedGoogle Scholar
  5. 5.
    Klibanski A, Biller BM, Schoenfeld DA, Herzog DB, Saxe VC. The effects of estrogen administration on trabecular bone loss in young women with anorexia nervosa. J Clin Endocrinol Metab. 1995;80(3):898–904.  https://doi.org/10.1210/jcem.80.3.7883849.PubMedGoogle Scholar
  6. 6.
    Herzog W, Minne H, Deter C, Leidig G, Schellberg D, Wuster C, et al. Outcome of bone mineral density in anorexia nervosa patients 11.7 years after first admission. J Bone Miner Res. 1993;8(5):597–605.  https://doi.org/10.1002/jbmr.5650080511.CrossRefPubMedGoogle Scholar
  7. 7.
    Herzog W, Deter HC, Fiehn W, Petzold E. Medical findings and predictors of long-term physical outcome in anorexia nervosa: a prospective, 12-year follow-up study. Psychol Med. 1997;27(2):269–79.  https://doi.org/10.1017/S0033291796004394.CrossRefPubMedGoogle Scholar
  8. 8.
    Bachrach LK, Katzman DK, Litt IF, Guido D, Marcus R. Recovery from osteopenia in adolescent girls with anorexia nervosa. J Clin Endocrinol Metab. 1991;72(3):602–6.  https://doi.org/10.1210/jcem-72-3-602.CrossRefPubMedGoogle Scholar
  9. 9.
    Grinspoon S, Thomas E, Pitts S, Gross E, Mickley D, Miller K, et al. Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa. Ann Intern Med. 2000;133(10):790–4.  https://doi.org/10.7326/0003-4819-133-10-200011210-00011.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Soyka LA, Grinspoon S, Levitsky LL, Herzog DB, Klibanski A. The effects of anorexia nervosa on bone metabolism in female adolescents. J Clin Endocrinol Metab. 1999;84(12):4489–96.  https://doi.org/10.1210/jcem.84.12.6207.PubMedGoogle Scholar
  11. 11.
    Grinspoon S, Thomas L, Miller K, Herzog D, Klibanski A. Effects of recombinant human IGF-I and oral contraceptive administration on bone density in anorexia nervosa. J Clin Endocrinol Metab. 2002;87(6):2883–91.  https://doi.org/10.1210/jcem.87.6.8574.CrossRefPubMedGoogle Scholar
  12. 12.
    Rigotti NA, Neer RM, Skates SJ, Herzog DB, Nussbaum SR. The clinical course of osteoporosis in anorexia nervosa. A longitudinal study of cortical bone mass. JAMA. 1991;265(9):1133–8.  https://doi.org/10.1001/jama.1991.03460090081037.CrossRefPubMedGoogle Scholar
  13. 13.
    Lucas AR, Melton LJ 3rd, Crowson CS, O’Fallon WM. Long-term fracture risk among women with anorexia nervosa: a population-based cohort study. Mayo Clin Proc. 1999;74(10):972–7.  https://doi.org/10.1016/S0025-6196(11)63994-3.CrossRefPubMedGoogle Scholar
  14. 14.
    Scheid JL, De Souza MJ. Menstrual irregularities and energy deficiency in physically active women: the role of ghrelin, PYY and adipocytokines. Med Sport Sci. 2010;55:82–102.  https://doi.org/10.1159/000321974.CrossRefPubMedGoogle Scholar
  15. 15.
    Fourman LT, Fazeli PK. Neuroendocrine causes of amenorrhea—an update. J Clin Endocrinol Metab. 2015;100(3):812–24.  https://doi.org/10.1210/jc.2014-3344.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Association AP. Diagnostic and statistical manual of mental disorders. Fifth ed. Arlington: American Psychiatric Association; 2013.  https://doi.org/10.1176/appi.books.9780890425596.
  17. 17.
    Baker JH, Sisk CL, Thornton LM, Brandt H, Crawford S, Fichter MM, et al. Primary amenorrhea in anorexia nervosa: impact on characteristic masculine and feminine traits. Eur Eat Disord Rev. 2014;22(1):32–8.  https://doi.org/10.1002/erv.2263.CrossRefPubMedGoogle Scholar
  18. 18.
    Poyastro Pinheiro A, Thornton LM, Plotonicov KH, Tozzi F, Klump KL, Berrettini WH, et al. Patterns of menstrual disturbance in eating disorders. Int J Eat Disord. 2007;40(5):424–34.  https://doi.org/10.1002/eat.20388.CrossRefPubMedGoogle Scholar
  19. 19.
    Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K, et al. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell. 2007;130(5):811–23.  https://doi.org/10.1016/j.cell.2007.07.025.CrossRefPubMedGoogle Scholar
  20. 20.
    VanHouten JN, Wysolmerski JJ. Low estrogen and high parathyroid hormone-related peptide levels contribute to accelerated bone resorption and bone loss in lactating mice. Endocrinology. 2003;144(12):5521–9.  https://doi.org/10.1210/en.2003-0892.CrossRefPubMedGoogle Scholar
  21. 21.
    Brennan O, Kuliwaba JS, Lee TC, Parkinson IH, Fazzalari NL, McNamara LM, et al. Temporal changes in bone composition, architecture, and strength following estrogen deficiency in osteoporosis. Calcif Tissue Int. 2012;91(6):440–9.  https://doi.org/10.1007/s00223-012-9657-7.CrossRefPubMedGoogle Scholar
  22. 22.
    De Souza MJ, West SL, Jamal SA, Hawker GA, Gundberg CM, Williams NI. The presence of both an energy deficiency and estrogen deficiency exacerbate alterations of bone metabolism in exercising women. Bone. 2008;43(1):140–8.  https://doi.org/10.1016/j.bone.2008.03.013.CrossRefPubMedGoogle Scholar
  23. 23.
    Olson LE, Ohlsson C, Mohan S. The role of GH/IGF-I-mediated mechanisms in sex differences in cortical bone size in mice. Calcif Tissue Int. 2011;88(1):1–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Fontana L, Weiss EP, Villareal DT, Klein S, Holloszy JO. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell. 2008;7(5):681–7.  https://doi.org/10.1111/j.1474-9726.2008.00417.x.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Grinspoon S, Baum H, Lee K, Anderson E, Herzog D, Klibanski A. Effects of short-term recombinant human insulin-like growth factor I administration on bone turnover in osteopenic women with anorexia nervosa. J Clin Endocrinol Metab. 1996;81(11):3864–70.  https://doi.org/10.1210/jcem.81.11.8923830.PubMedGoogle Scholar
  26. 26.
    Yakar S, Canalis E, Sun H, Mejia W, Kawashima Y, Nasser P, et al. Serum IGF-1 determines skeletal strength by regulating subperiosteal expansion and trait interactions. J Bone Miner Res. 2009;24(8):1481–92.  https://doi.org/10.1359/jbmr.090226.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sjögren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, et al. The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27(6):1357–67.  https://doi.org/10.1002/jbmr.1588.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Li JY, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 2016;126(6):2049–63.  https://doi.org/10.1172/JCI86062.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature. 2014;510(7505):417–21.  https://doi.org/10.1038/nature13421.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science. 2016;351(6275):aad3311.  https://doi.org/10.1126/science.aad3311.CrossRefPubMedGoogle Scholar
  31. 31.
    Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science. 2013;339(6119):548–54.  https://doi.org/10.1126/science.1229000.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Inui A, Chen CY, Meguid M. Microbiome, peptide autoantibodies, and eating disorders: a missing link between gut and brain. Nutrition. 2015;31(3):544–5.  https://doi.org/10.1016/j.nut.2015.01.007.CrossRefPubMedGoogle Scholar
  33. 33.
    Kleiman SC, Carroll IM, Tarantino LM, Bulik CM. Gut feelings: a role for the intestinal microbiota in anorexia nervosa? Int J Eat Disord. 2015;48(5):449–51.  https://doi.org/10.1002/eat.22394.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    D'Argenio V, Salvatore F. The role of the gut microbiome in the healthy adult status. Clin Chim Acta. 2015;451(Pt A):97–102.CrossRefPubMedGoogle Scholar
  35. 35.
    Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41.  https://doi.org/10.1016/j.cell.2014.03.011.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Barlow GM, Yu A, Mathur R. Role of the gut microbiome in obesity and diabetes mellitus. Nutr Clin Pract. 2015;30(6):787–97.  https://doi.org/10.1177/0884533615609896.CrossRefPubMedGoogle Scholar
  37. 37.
    Garrett WS. Cancer and the microbiota. Science. 2015;348(6230):80–6.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8.  https://doi.org/10.1126/science.1110591.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab. 2015;26(9):493–501.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–5.  https://doi.org/10.1073/pnas.0504978102.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.  https://doi.org/10.1038/nature05414.CrossRefPubMedGoogle Scholar
  42. 42.
    Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS One. 2009;4(9):e7125.  https://doi.org/10.1371/journal.pone.0007125.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mack I, Cuntz U, Gramer C, Niedermaier S, Pohl C, Schwiertz A, et al. Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints. Sci Rep. 2016;6(26752)  https://doi.org/10.1038/srep26752.
  44. 44.
    Zhu Y, Niu Q, Shi C, Wang J, Zhu W. The role of microbiota in compensatory growth of protein-restricted rats. Microb Biotechnol. 2017;10(2):480–91.  https://doi.org/10.1111/1751-7915.12451.CrossRefPubMedGoogle Scholar
  45. 45.
    • Queipo-Ortuno MI, Seoane LM, Murri M, Pardo M, Gomez-Zumaquero JM, Cardona F, et al. Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS One. 2013;8(5):e65465. This is the first study to examine the microbial changes associated with a model of activity-based anorexia.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Morita C, Tsuji H, Hata T, Gondo M, Takakura S, Kawai K, et al. Gut dysbiosis in patients with anorexia nervosa. PLoS One. 2015;10(12):e0145274.  https://doi.org/10.1371/journal.pone.0145274.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Million M, Angelakis E, Maraninchi M, Henry M, Giorgi R, Valero R, et al. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int J Obes. 2013;37(11):1460–6.  https://doi.org/10.1038/ijo.2013.20.CrossRefGoogle Scholar
  48. 48.
    Borgo F, Riva A, Benetti A, Casiraghi MC, Bertelli S, Garbossa S, et al. Microbiota in anorexia nervosa: the triangle between bacterial species, metabolites and psychological tests. PLoS One. 2017;12(6):e0179739.  https://doi.org/10.1371/journal.pone.0179739.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kleiman SC, Watson HJ, Bulik-Sullivan EC, Huh EY, Tarantino LM, Bulik CM, et al. The intestinal microbiota in acute anorexia nervosa and during renourishment: relationship to depression, anxiety, and eating disorder psychopathology. Psychosom Med. 2015;77(9):969–81.  https://doi.org/10.1097/PSY.0000000000000247.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003;62(1):67–72.  https://doi.org/10.1079/PNS2002207.CrossRefPubMedGoogle Scholar
  51. 51.
    Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Adv Immunol. 2014;121:91–119.  https://doi.org/10.1016/B978-0-12-800100-4.00003-9.CrossRefPubMedGoogle Scholar
  52. 52.
    Suzuki T, Yoshida S, Hara H. Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. Br J Nutr. 2008;100(2):297–305.CrossRefPubMedGoogle Scholar
  53. 53.
    Sahakian AB, Jee SR, Pimentel M. Methane and the gastrointestinal tract. Dig Dis Sci. 2010;55(8):2135–43.  https://doi.org/10.1007/s10620-009-1012-0.CrossRefPubMedGoogle Scholar
  54. 54.
    Flourie B, Etanchaud F, Florent C, Pellier P, Bouhnik Y, Rambaud JC. Comparative study of hydrogen and methane production in the human colon using caecal and faecal homogenates. Gut. 1990;31(6):684–5.  https://doi.org/10.1136/gut.31.6.684.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Million M, Maraninchi M, Henry M, Armougom F, Richet H, Carrieri P, et al. Obesity-associated gut microbiota is enriched in lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes. 2012;36(6):817–25.  https://doi.org/10.1038/ijo.2011.153.CrossRefGoogle Scholar
  56. 56.
    • Tennoune N, Chan P, Breton J, Legrand R, Chabane YN, Akkermann K, et al. Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide alpha-MSH, at the origin of eating disorders. Transl Psychiatry. 2014;4:e458. This is the first study implicating the E. coli by-product, ClpB, as a suppressor of appetite.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Breton J, Legrand R, Akkermann K, Jarv A, Harro J, Dechelotte P, et al. Elevated plasma concentrations of bacterial ClpB protein in patients with eating disorders. Int J Eat Disord. 2016;49(8):805–8.  https://doi.org/10.1002/eat.22531.CrossRefPubMedGoogle Scholar
  58. 58.
    Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci. 2005;8(5):571–8.  https://doi.org/10.1038/nn1455.CrossRefPubMedGoogle Scholar
  59. 59.
    Fetissov SO, Hallman J, Oreland L, Af Klinteberg B, Grenback E, Hulting AL, et al. Autoantibodies against alpha -MSH, ACTH, and LHRH in anorexia and bulimia nervosa patients. Proc Natl Acad Sci U S A. 2002;99(26):17155–60.  https://doi.org/10.1073/pnas.222658699.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Breton J, Tennoune N, Lucas N, Francois M, Legrand R, Jacquemot J, et al. Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab. 2016;23(2):324–34.  https://doi.org/10.1016/j.cmet.2015.10.017.CrossRefPubMedGoogle Scholar
  61. 61.
    Ohlsson C, Sjögren K. Effects of the gut microbiota on bone mass. Trends Endocrinol Metab. 2015;26(2):69–74.  https://doi.org/10.1016/j.tem.2014.11.004.CrossRefPubMedGoogle Scholar
  62. 62.
    Jones RM, Mulle JG, Pacifici R. Osteomicrobiology: the influence of gut microbiota on bone in health and disease. Bone. 2017;  https://doi.org/10.1016/j.bone.2017.04.009.
  63. 63.
    •• Yan J, Herzog JW, Tsang K, Brennan CA, Bower MA, Garrett WS, et al. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci U S A. 2016;113(47):E7554–E63. This is the first study to link the gut microbiota to IGF-1, through SCFAs. Additionally, this study demonstrates the differences in short-term versus long-term colonization of GF mice with regard to microbiota-mediated bone remodeling.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science. 2016;351(6275):854–7.  https://doi.org/10.1126/science.aad8588.CrossRefPubMedGoogle Scholar
  65. 65.
    Allaway HC, Southmayd EA, De Souza MJ. The physiology of functional hypothalamic amenorrhea associated with energy deficiency in exercising women and in women with anorexia nervosa. Horm Mol Biol Clin Investig. 2016;25(2):91–119.  https://doi.org/10.1515/hmbci-2015-0053.PubMedGoogle Scholar
  66. 66.
    De Souza MJ, Toombs RJ, Scheid JL, O’Donnell E, West SL, Williams NI. High prevalence of subtle and severe menstrual disturbances in exercising women: confirmation using daily hormone measures. Hum Reprod. 2010;25(2):491–503.  https://doi.org/10.1093/humrep/dep411.CrossRefPubMedGoogle Scholar
  67. 67.
    Melville KM, Kelly NH, Khan SA, Schimenti JC, Ross FP, Main RP, et al. Female mice lacking estrogen receptor-alpha in osteoblasts have compromised bone mass and strength. J Bone Miner Res. 2014;29(2):370–9.  https://doi.org/10.1002/jbmr.2082.CrossRefPubMedGoogle Scholar
  68. 68.
    Tivesten A, Moverare-Skrtic S, Chagin A, Venken K, Salmon P, Vanderschueren D, et al. Additive protective effects of estrogen and androgen treatment on trabecular bone in ovariectomized rats. J Bone Miner Res. 2004;19(11):1833–9.  https://doi.org/10.1359/JBMR.040819.CrossRefPubMedGoogle Scholar
  69. 69.
    Mohan S, Bhat CG, Wergedal JE, Kesavan C. In vivo evidence of IGF-I-estrogen crosstalk in mediating the cortical bone response to mechanical strain. Bone Res. 2014;2:14007.  https://doi.org/10.1038/boneres.2014.7.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Pacifici R. Estrogen deficiency, T cells and bone loss. Cell Immunol. 2008;252(1–2):68–80.  https://doi.org/10.1016/j.cellimm.2007.06.008.CrossRefPubMedGoogle Scholar
  71. 71.
    Ohlsson C, Engdahl C, Fak F, Andersson A, Windahl SH, Farman HH, et al. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One. 2014;9(3):e92368.  https://doi.org/10.1371/journal.pone.0092368.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, et al. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol. 2014;229(11):1822–30.  https://doi.org/10.1002/jcp.24636.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    • Jafarnejad S, Djafarian K, Fazeli MR, Yekaninejad MS, Rostamian A, Keshavarz SA. Effects of a multispecies probiotic supplement on bone health in osteopenic postmenopausal women: a randomized, double-blind, controlled trial. J Am Coll Nutr. 2017;36(7):497–506. This is the first clinical trial to examine the effects of probiotics on bone markers and BMD.  https://doi.org/10.1080/07315724.2017.1318724.CrossRefPubMedGoogle Scholar
  74. 74.
    Weaver CM. Diet, gut microbiome, and bone health. Curr Osteoporos Rep. 2015;13(2):125–30.  https://doi.org/10.1007/s11914-015-0257-0.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Weitkunat K, Schumann S, Petzke KJ, Blaut M, Loh G, Klaus S. Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice. J Nutr Biochem. 2015;26(9):929–37.  https://doi.org/10.1016/j.jnutbio.2015.03.010.CrossRefPubMedGoogle Scholar
  76. 76.
    Weaver CM, Martin BR, Nakatsu CH, Armstrong AP, Clavijo A, McCabe LD, et al. Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation. J Agric Food Chem. 2011;59(12):6501–10.  https://doi.org/10.1021/jf2009777.CrossRefPubMedGoogle Scholar
  77. 77.
    Whisner CM, Martin BR, Schoterman MH, Nakatsu CH, McCabe LD, McCabe GP, et al. Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind cross-over trial. Br J Nutr. 2013;110(7):1292–303.  https://doi.org/10.1017/S000711451300055X.CrossRefPubMedGoogle Scholar
  78. 78.
    Whisner CM, Martin BR, Nakatsu CH, McCabe GP, McCabe LD, Peacock M, et al. Soluble maize fibre affects short-term calcium absorption in adolescent boys and girls: a randomised controlled trial using dual stable isotopic tracers. Br J Nutr. 2014;112(3):446–56.  https://doi.org/10.1017/S0007114514000981.CrossRefPubMedGoogle Scholar
  79. 79.
    Whisner CM, Martin BR, Nakatsu CH, Story JA, MacDonald-Clarke CJ, McCabe LD, et al. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome: arandomized dose-response trial in free-living pubertal females. J Nutr. 2016;146(7):1298–306.  https://doi.org/10.3945/jn.115.227256.CrossRefPubMedGoogle Scholar
  80. 80.
    Weaver CM, Martin BR, Story JA, Hutchinson I, Sanders L. Novel fibers increase bone calcium content and strength beyond efficiency of large intestine fermentation. J Agric Food Chem. 2010;58(16):8952–7.  https://doi.org/10.1021/jf904086d.CrossRefPubMedGoogle Scholar
  81. 81.
    Chen J, Toyomasu Y, Hayashi Y, Linden DR, Szurszewski JH, Nelson H, et al. Altered gut microbiota in female mice with persistent low body weights following removal of post-weaning chronic dietary restriction. Genome Med. 2016;8(1):103.  https://doi.org/10.1186/s13073-016-0357-1.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Gouba N, Raoult D, Drancourt M. Gut microeukaryotes during anorexia nervosa: a case report. BMC Res Notes. 2014;7(1):33.  https://doi.org/10.1186/1756-0500-7-33.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Pfleiderer A, Lagier JC, Armougom F, Robert C, Vialettes B, Raoult D. Culturomics identified 11 new bacterial species from a single anorexia nervosa stool sample. Eur J Clin Microbiol Infect Dis. 2013;32(11):1471–81.  https://doi.org/10.1007/s10096-013-1900-2.CrossRefPubMedGoogle Scholar
  84. 84.
    Kleiman SC, Glenny EM, Bulik-Sullivan EC, Huh EY, Tsilimigras MCB, Fodor AA, et al. Daily changes in composition and diversity of the intestinal microbiota in patients with anorexia nervosa: a series of three cases. Eur Eat Disord Rev. 2017;25(5):423–7.  https://doi.org/10.1002/erv.2524.CrossRefPubMedGoogle Scholar
  85. 85.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.  https://doi.org/10.1038/nature12820.CrossRefPubMedGoogle Scholar
  86. 86.
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8.  https://doi.org/10.1126/science.1208344.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, Parks B, et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat Commun. 2014;5(4500)  https://doi.org/10.1038/ncomms5500.
  88. 88.
    Tennoune N, Legrand R, Ouelaa W, Breton J, Lucas N, Bole-Feysot C, et al. Sex-related effects of nutritional supplementation of Escherichia coli: relevance to eating disorders. Nutrition. 2015;31(3):498–507.  https://doi.org/10.1016/j.nut.2014.11.003.CrossRefPubMedGoogle Scholar
  89. 89.
    Lucas AR, Beard CM, O'Fallon WM, Kurland LT. 50-year trends in the incidence of anorexia nervosa in Rochester, Minn.: a population-based study. Am J Psychiatry. 1991;148(7):917–22.  https://doi.org/10.1176/ajp.148.7.917.CrossRefPubMedGoogle Scholar
  90. 90.
    Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe. 2011;10(4):324–35.  https://doi.org/10.1016/j.chom.2011.10.003.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Jarvenpaa P, Kosunen T, Fotsis T, Adlercreutz H. In vitro metabolism of estrogens by isolated intestinal micro-organisms and by human faecal microflora. J Steroid Biochem. 1980;13(3):345–9.  https://doi.org/10.1016/0022-4731(80)90014-X.CrossRefPubMedGoogle Scholar
  92. 92.
    Cole CB, Fuller R, Mallet AK, Rowland IR. The influence of the host on expression of intestinal microbial enzyme activities involved in metabolism of foreign compounds. J Appl Bacteriol. 1985;59(6):549–53.  https://doi.org/10.1111/j.1365-2672.1985.tb03359.x.CrossRefPubMedGoogle Scholar
  93. 93.
    Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: physiological and clinical implications. Maturitas. 2017;103:45–53.  https://doi.org/10.1016/j.maturitas.2017.06.025.CrossRefPubMedGoogle Scholar
  94. 94.
    Hebebrand J, Exner C, Hebebrand K, Holtkamp C, Casper RC, Remschmidt H, et al. Hyperactivity in patients with anorexia nervosa and in semistarved rats: evidence for a pivotal role of hypoleptinemia. Physiol Behav. 2003;79(1):25–37.  https://doi.org/10.1016/S0031-9384(03)00102-1.CrossRefPubMedGoogle Scholar
  95. 95.
    Zipfel S, Mack I, Baur LA, Hebebrand J, Touyz S, Herzog W, et al. Impact of exercise on energy metabolism in anorexia nervosa. J Eat Disord. 2013;1(1):37.  https://doi.org/10.1186/2050-2974-1-37.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Dalle Grave R, Calugi S, Marchesini G. Compulsive exercise to control shape or weight in eating disorders: prevalence, associated features, and treatment outcome. Compr Psychiatry. 2008;49(4):346–52.  https://doi.org/10.1016/j.comppsych.2007.12.007.CrossRefPubMedGoogle Scholar
  97. 97.
    Kang SS, Jeraldo PR, Kurti A, Miller ME, Cook MD, Whitlock K, et al. Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol Neurodegener. 2014;9(1):36.  https://doi.org/10.1186/1750-1326-9-36.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63(12):1913–20.  https://doi.org/10.1136/gutjnl-2013-306541.CrossRefPubMedGoogle Scholar
  99. 99.
    Matsumoto M, Inoue R, Tsukahara T, Ushida K, Chiji H, Matsubara N, et al. Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci Biotechnol Biochem. 2008;72(2):572–6.  https://doi.org/10.1271/bbb.70474.CrossRefPubMedGoogle Scholar
  100. 100.
    Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6.  https://doi.org/10.1038/nature12506.CrossRefPubMedGoogle Scholar
  101. 101.
    Klenotich SJ, Dulawa SC. The activity-based anorexia mouse model: Humana Press; 2012.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nicole C. Aurigemma
    • 1
  • Kristen J. Koltun
    • 1
  • Hannah VanEvery
    • 2
  • Connie J. Rogers
    • 3
  • Mary Jane De Souza
    • 4
  1. 1.Women’s Health and Exercise Lab, Department of KinesiologyThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Departments of Nutritional Sciences and Clinical and Translational SciencesThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Nutritional SciencesThe Pennsylvania State UniversityUniversity ParkUSA
  4. 4.Women’s Health and Exercise Lab, Department of Kinesiology and PhysiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations