Skip to main content

Advertisement

Log in

Exosomes in Extracellular Matrix Bone Biology

  • Skeletal Development (P Trainor and K Svoboda, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Exosomes are membrane vesicles that are released by most cell types into the extracellular environment. The purpose of this article is to discuss the main morphological features and contents of bone-derived exosomes, as well as their major isolation and physical characterization techniques. Furthermore, we present various scenarios and discuss potential clinical applications of bone-derived exosomes in bone repair and regeneration.

Recent Findings

Exosomes were believed to be nanosized vesicles derived from the multivesicular body. Reports now suggest that nanovesicles could bud directly from the plasma membrane. However, the exosome cargo is cell-type specific and is derived from the parent cell. In the bone matrix, several intracellular proteins lacking a signal peptide are transported to the ECM by exosomes. Besides proteins, several mRNA, miRNA, and lipids are exported to the ECM by bone cells and bone marrow stromal cells. Recent evidence suggests that several of the functional components in the cargo could regulate processes of bone formation, inhibit osteoclast activity, and promote fracture repair.

Summary

Exosomes are powerful cellular molecular machines produced without human intervention and packaged with physiological cargo that could be utilized for molecular therapy in several skeletal disorders such as osteoporosis, osteogenesis imperfecta, and fracture healing. Although much work has been done, there is a lot of information that is still unknown, as exosomes contain a multitude of molecules whose identity and function have yet to be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Yáñez-Mó M, Siljander PR-M, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. https://doi.org/10.3402/jev.v4.27066. This study is a good overview of the characterization and identification of the contents of extracellular vesicles and the biological function of these vesicles.

    Article  PubMed  Google Scholar 

  2. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83. https://doi.org/10.1083/jcb.201211138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shapiro IM, Landis WJ, Risbud MV. Matrix vesicles: are they anchored exosomes? Bone. 2015;79:29–36. https://doi.org/10.1016/j.bone.2015.05.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Keller S, Ridinger J, Rupp A-K, Janssen JW, Altevogt P. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med. 2011;9(1):86. https://doi.org/10.1186/1479-5876-9-86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lässer C, Seyed Alikhani V, Ekström K, Eldh M, Torregrosa Paredes P, Bossios A, et al. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med. 2011;9(1):9. https://doi.org/10.1186/1479-5876-9-9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Edgar JR. Q&A: what are exosomes, exactly? BMC Biol. 2016;14(1):46. https://doi.org/10.1186/s12915-016-0268-z.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Avcı E, Edibe Avcı BS, Banu Balcı-Peynircioğlu P. An overview of exosomes: from biology to emerging roles in immune response. Acta Med Austriaca. 2015;47:2–10.

    Google Scholar 

  8. Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta BBA - Gen Subj. 2012;1820(7):940–8. https://doi.org/10.1016/j.bbagen.2012.03.017.

    Article  CAS  Google Scholar 

  9. Qin Y, Sun R, Wu C, Wang L, Zhang C. Exosome: a novel approach to stimulate bone regeneration through regulation of osteogenesis and angiogenesis. Int J Mol Sci. 2016;17(5):712. https://doi.org/10.3390/ijms17050712.

    Article  PubMed Central  Google Scholar 

  10. Xie Y, Chen Y, Zhang L, Ge W, Tang P. The roles of bone-derived exosomes and exosomal microRNAs in regulating bone remodelling. J Cell Mol Med. 2017;21(5):1033–41. https://doi.org/10.1111/jcmm.13039.

    Article  PubMed  Google Scholar 

  11. Fleming A, Sampey G, Chung MC, Bailey C, Hoek V, Kashanchi MLF, et al. The carrying pigeons of the cell: exosomes and their role in infectious diseases caused by human pathogens. Pathog Dis. 2014;71:109–20. https://doi.org/10.1111/2049-632X.12135.

    Article  PubMed  Google Scholar 

  12. Gibbons D Stem cell stories that caught our eye: our earliest days, cell therapy without the cells and unproven therapies. Stem Cellar. 2015. https://blog.cirm.ca.gov/2015/09/04/stem-cell-stories-that-caught-our-eye-our-earliest-days-cell-therapy-without-the-cells-and-unproven-therapies/. Accessed 20 Sept 2017.

  13. Narayanan R, Huang C-C, Ravindran S. Hijacking the cellular mail: exosome mediated differentiation of mesenchymal stem cells. Stem Cells Int. 2016;2016:1–11. https://doi.org/10.1155/2016/3808674.

    Article  Google Scholar 

  14. Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics. 2017;7(3):789–804. https://doi.org/10.7150/thno.18133.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zeringer E, Barta T, Li M, Vlassov AV. Strategies for isolation of exosomes. Cold Spring Harb Protoc 2015;2015(4) pdb.top074476. https://doi.org/10.1101/pdb.top074476.

  16. Baranyai T, Herczeg K, Onódi Z, Voszka I, Módos K, Marton N, et al. Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One. 2015;10(12):e0145686. https://doi.org/10.1371/journal.pone.0145686.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Momen-Heravi F, Balaj L, Alian S, Mantel P-Y, Halleck AE, Trachtenberg AJ, et al. Current methods for the isolation of extracellular vesicles. Biol Chem. 2013;394(10):1253–62. https://doi.org/10.1515/hsz-2013-0141.

    Article  CAS  PubMed  Google Scholar 

  18. Nakano M, Nagaishi K, Konari N, Saito Y, Chikenji T, Mizue Y, et al. Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes. Sci Rep. 2016;6(24805):1–14. https://doi.org/10.1038/srep24805.

  19. Li D, Liu J, Guo B, Liang C, Dang L, Lu C, et al. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat Commun. 2016;7:10872. https://doi.org/10.1038/ncomms10872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rager TM, Olson JK, Zhou Y, Wang Y, Besner GE. Exosomes secreted from bone marrow-derived mesenchymal stem cells protect the intestines from experimental necrotizing enterocolitis. J Pediatr Surg. 2016;51(6):942–7. https://doi.org/10.1016/j.jpedsurg.2016.02.061.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xu J-F, Yang G, Pan X-H, Zhang S-J, Zhao C, Qiu B-S, et al. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. PLoS One. 2014;9(12):e114627. https://doi.org/10.1371/journal.pone.0114627.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ge M, Wu Y, Ke R, Cai T, Yang J, Mu X. Value of osteoblast-derived exosomes in bone diseases. J Craniofac Surg. 2017; 28(4): 866–70. https://doi.org/10.1097/SCS.0000000000003463.

  23. Marton N, Kovács OT, Baricza E, Kittel Á, Győri D, Mócsai A, Meier FMP, Goodyear CS, McInnes IB, Buzás EI, Nagy G. Extracellular vesicles regulate the human osteoclastogenesis: divergent roles in discrete inflammatory arthropathies. Cell Mol Life Sci. 2017;74(19):3599–611. https://doi.org/10.1007/s00018-017-2535-8.

  24. • Lu Z, Chen Y, Dunstan C, Roohani-Esfahani S, Zreiqat H. Priming adipose stem cells with tumor necrosis factor-alpha preconditioning potentiates their exosome efficacy for bone regeneration. Tissue Eng Part A. 2017; https://doi.org/10.1089/ten.tea.2016.0548. This paper presents new information on the use of exosomes in bone regeneration.

  25. Sun W, Zhao C, Li Y, Wang L, Nie G, Peng J, et al. Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity. Cell Discov. 2016;2:201615. https://doi.org/10.1038/celldisc.2016.15.

    Google Scholar 

  26. Zhang J, Liu X, Li H, Chen C, Hu B, Niu X, et al. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res Ther. 2016;7(1):136. https://doi.org/10.1186/s13287-016-0391-3.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhu W, Huang L, Li Y, Zhang X, Gu J, Yan Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett. 2012;315(1):28–37. https://doi.org/10.1016/j.canlet.2011.10.002.

    Article  CAS  PubMed  Google Scholar 

  28. Xu S, Wang Z. Bone marrow mesenchymal stem cell-derived exosomes enhance osteoclastogenesis during alveolar bone deterioration in rats. RSC Adv. 2017;7(34):21153–63. https://doi.org/10.1039/C6RA27931G.

    Article  CAS  Google Scholar 

  29. Wang J, Hendrix A, Hernot S, Lemaire M, Bruyne ED, Valckenborgh EV, et al. Bone marrow stromal cell–derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood. 2014;124(4):555–66. https://doi.org/10.1182/blood-2014-03-562439.

    Article  CAS  PubMed  Google Scholar 

  30. • Cui Y, Luan J, Li H, Zhou X, Han J. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Lett. 2016;590(1):185–92. https://doi.org/10.1002/1873-3468.12024. This study identifies the presence of several novel miRNAs in the exosomes and their role in osteoblast differentiation.

    Article  CAS  PubMed  Google Scholar 

  31. Huang C-C, Narayanan R, Alapati S, Ravindran S. Exosomes as biomimetic tools for stem cell differentiation: applications in dental pulp tissue regeneration. Biomaterials. 2016;111:103–15. https://doi.org/10.1016/j.biomaterials.2016.09.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ge M, Ke R, Cai T, Yang J, Mu X. Identification and proteomic analysis of osteoblast-derived exosomes. Biochem Biophys Res Commun. 2015;467(1):27–32. https://doi.org/10.1016/j.bbrc.2015.09.135.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Song Y, Ravindran S, Gao Q, Huang CC, Ramachandran A, et al. DSPP contains an IRES element responsible for the translation of dentin phosphophoryn. J Dent Res. 2014;93(2):155–61. https://doi.org/10.1177/0022034513516631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kolhe R, Hunter M, Liu S, Jadeja RN, Pundkar C, Mondal AK, et al. Gender-specific differential expression of exosomal miRNA in synovial fluid of patients with osteoarthritis. Sci Rep. 2017;7(1):2029. https://doi.org/10.1038/s41598-017-01905-y.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Haraszti RA, Didiot M-C, Sapp E, Leszyk J, Shaffer SA, Rockwell HE, et al. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles. 2016;5(1):32570. https://doi.org/10.3402/jev.v5.32570.

    Article  PubMed  Google Scholar 

  36. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30(1):255–89. https://doi.org/10.1146/annurev-cellbio-101512-122326.

    Article  CAS  PubMed  Google Scholar 

  37. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79. https://doi.org/10.1038/nri855.

    Article  PubMed  Google Scholar 

  38. Ravindran S, Narayanan K, Eapen AS, Hao J, Ramachandran A, Blond S, et al. Endoplasmic reticulum chaperone protein GRP-78 mediates endocytosis of dentin matrix protein 1. J Biol Chem. 2008;283(44):29658–70. https://doi.org/10.1074/jbc.M800786200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramachandran A, Ravindran S, Huang C-C, George A. TGF beta receptor II interacting protein-1, an intracellular protein has an extracellular role as a modulator of matrix mineralization. Sci Rep. 2016;6(37885):1–16. https://doi.org/10.1038/srep37885.

  40. Ekström K, Omar O, Granéli C, Wang X, Vazirisani F, Thomsen P. Monocyte exosomes stimulate the osteogenic gene expression of mesenchymal stem cells. PLoS One. 2013;8(9):e75227. https://doi.org/10.1371/journal.pone.0075227.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009;20(5):1053–67. https://doi.org/10.1681/ASN.2008070798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Herrera MB, Fonsato V, Gatti S, Deregibus MC, Sordi A, Cantarella D, et al. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med. 2010;14(6B):1605–18. https://doi.org/10.1111/j.1582-4934.2009.00860.x.

    Article  CAS  PubMed  Google Scholar 

  43. Li J, Liu K, Liu Y, Xu Y, Zhang F, Yang H, et al. Exosomes mediate the cell-to-cell transmission of IFN-α-induced antiviral activity. Nat Immunol. 2013;14(8):793–803. https://doi.org/10.1038/ni.2647.

    Article  CAS  PubMed  Google Scholar 

  44. Gimona M, Pachler K, Laner-Plamberger S, Schallmoser K, Rohde E. Manufacturing of human extracellular vesicle-based therapeutics for clinical use. Int J Mol Sci. 2017;18(6):1190. https://doi.org/10.3390/ijms18061190.

    Article  PubMed Central  Google Scholar 

  45. Burke J, Kolhe R, Hunter M, Isales C, Hamrick M, Fulzele S. Stem cell-derived exosomes: a potential alternative therapeutic agent in orthopaedics. Stem Cells Int. 2016;2016:1–6. https://doi.org/10.1155/2016/5802529.

    Article  Google Scholar 

  46. Furuta T, Miyaki S, Ishitobi H, Ogura T, Kato Y, Kamei N, et al. Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model. Stem Cells Transl Med. 2016;5(12):1620–30. https://doi.org/10.5966/sctm.2015-0285.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wei J, Li H, Wang S, Li T, Fan J, Liang X, et al. Let-7 enhances osteogenesis and bone formation while repressing adipogenesis of human stromal/mesenchymal stem cells by regulating HMGA2. Stem Cells Dev. 2014;23(13):1452–63. https://doi.org/10.1089/scd.2013.0600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang Y, Xie R-L, Croce CM, Stein JL, Lian JB, van Wijnen AJ, et al. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci U S A. 2011;108(24):9863–8. https://doi.org/10.1073/pnas.1018493108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Qi X, Zhang J, Yuan H, Xu Z, Li Q, Niu X, et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. Int J Biol Sci. 2016;12(7):836–49. https://doi.org/10.7150/ijbs.14809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang S, Chu WC, Lai RC, Lim SK, Hui JHP, Toh WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr Cartil. 2016;24(12):2135–40. https://doi.org/10.1016/j.joca.2016.06.022.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A. P greatly acknowledges the scholarship from the Rosztoczy Foundation.

Funding

This work was supported by the Brodie Endowment Fund and the National Institutes of Health grant DE11657.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne George.

Ethics declarations

Conflict of Interest

Adrienn Pethő, Yinghua Chen, and Anne George declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Skeletal Development

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pethő, A., Chen, Y. & George, A. Exosomes in Extracellular Matrix Bone Biology. Curr Osteoporos Rep 16, 58–64 (2018). https://doi.org/10.1007/s11914-018-0419-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-018-0419-y

Keywords

Navigation