Current Osteoporosis Reports

, Volume 15, Issue 6, pp 564–570 | Cite as

Exercise Frequency and Fracture Risk in Older Adults—How Often Is Enough?

  • Wolfgang Kemmler
  • Simon von Stengel
  • Matthias Kohl
Nutrition, Exercise and Lifestyle in Osteoporosis (S Shapses and J Lappe, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Nutrition, Exercise, and Lifestyle in Osteoporosis


Purpose of Review

Due to older people’s low sports participation rates, exercise frequency may be the most critical component for designing exercise protocols that address fracture risk. The aims of the present article were to review and summarize the independent effect of exercise frequency (ExFreq) on the main determinants of fracture prevention, i.e., bone strength, fall frequency, and fall impact in older adults.

Recent Findings

Evidence collected last year suggests that there is a critical dose of ExFreq that just affects bone (i.e., BMD). Corresponding data for fall-related fracture risk are still sparse and inconsistent, however.


The minimum effective dose (MED) of ExFreq that just favorably affects BMD at the lumbar spine and femoral neck has been found to vary between 2.1 and 2.5 sessions/week. Although this MED cannot necessarily be generalized to other cohorts, we speculate that this “critical exercise frequency” might not significantly vary among adult cohorts.


Exercise frequency Minimum effective dose Bone mineral density Falls Postmenopausal women Physical activity Exercise parameters Older people 



We are thankful for the support of the “Behinderten und Rehabilitations-Sportverband Bayern” (Munich, Germany), “Netzwerk Knochengesundheit” (Erlangen, Germany), and the Institute of Sports and Sport Sciences, Friedrich-Alexander University of Erlangen-Nürnberg, Germany.

Compliance with Ethical Standards

Conflict of Interest

Wolfgang Kemmler, Matthias Kohl, and Simon von Stengel declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    • Kemmler W, Haberle L, von Stengel S. Effects of exercise on fracture reduction in older adults : A systematic review and meta-analysis. Osteoporos Int. 2013;24(7):1937–50. This paper provides an overview of exercise effects on clinical low-trauma fractures in older adults CrossRefPubMedGoogle Scholar
  2. 2.
    • Kemmler W, Bebenek M, Kohl M, Von Stengel S. Exercise and fractures in postmenopausal women. Final results of the controlled Erlangen Fitness and Osteoporosis Prevention Study (EFOPS). Osteoporos Int. 2015;26(10):2491–9. First and only exercise trial that determined significant exercise effects on clinical low-trauma fractures in older adults CrossRefPubMedGoogle Scholar
  3. 3.
    Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356(18):1809–22.CrossRefPubMedGoogle Scholar
  4. 4.
    McCloskey EV, Johansson H, Oden A, Austin M, Siris E, Wang A, et al. Denosumab reduces the risk of osteoporotic fractures in postmenopausal women, particularly in those with moderate to high fracture risk as assessed with FRAX. J Bone Miner Res. 2012;27(7):1480–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Neer RM, Arnaud CD, Zanchetta JR. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41.CrossRefPubMedGoogle Scholar
  6. 6.
    •• Marques EA, Mota J, Carvalho J. Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. Age. 2011;34(6):1493–515. To our opinion the best overview and most sophisticated meta-analysis in the area of exercise and BMD. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    •• Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson LM, et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2012;9:CD007146. Very extensive review that focus on the effect of exercise on falls and fall-related injuries in older adults . Google Scholar
  8. 8.
    Groen BE, Smulders E, de Kam D, Duysens J, Weerdesteyn V. Martial arts fall training to prevent hip fractures in the elderly. Osteoporos Int. 2010;21(2):215–21.CrossRefPubMedGoogle Scholar
  9. 9.
    • Kemmler W, von Stengel S. Exercise and osteoporosis-related fractures: perspectives and recommendations of the sports and exercise scientist. Phys Sportmed. 2011;39(1):142–57. Summary of specific exercise recommendations to optimally adress fracture determinants in older adults. CrossRefGoogle Scholar
  10. 10.
    Clark DO. Physical activity and its correlates among urban primary care patients aged 55 years or older. J Gerontol B Psychol Sci Soc Sci. 1999;54(1):S41–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Statistisches-Bundesamt. Gesundheit in Deutschland [Health in Germany]. In: Report, editor. Robert Koch Institut. Berlin: 2006.Google Scholar
  12. 12.
    Toigo M, Boutellier U. New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol. 2006;97(6):643–63.CrossRefPubMedGoogle Scholar
  13. 13.
    Peterson MD, Rhea MR, Sen A, Gordon PM. Resistance exercise for muscular strength in older adults: a meta-analysis. Ageing Res Rev. 2010;9(3):226–37.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Borde R, Hortobagyi T, Granacher U. Dose-response relationships of resistance training in healthy old adults: a systematic review and meta-analysis. Sports Med. 2015;45(12):1693–720.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    • Gentil P, Arruda A, Souza D, Giessing J, Paoli A, Fisher J, et al. Is there any practical application of meta-analytical results in strength training? Front Physiol. 2017;8:1. Very critical statement with respect to the application of meta-analysis in the area of resistance exercise studies. PubMedPubMedCentralGoogle Scholar
  16. 16.
    • Beck BR, Daly RM, Singh MA, Taaffe DR. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J Sci Med Sport. 2016;20(5):438–455. Excellent summary of exercise recommendations to optimally adress bone in older adults. Google Scholar
  17. 17.
    Giangregorio LM, Papaioannou A, Macintyre NJ, Ashe MC, Heinonen A, Shipp K, et al. Too fit to fracture: exercise recommendations for individuals with osteoporosis or osteoporotic vertebral fracture. Osteoporos Int. 2014;25(3):821–35.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hagihara Y, Fukuda S, Goto S, Iida H, Yamazaki M, Moriya H. How many days per week should rats undergo running exercise to increase BMD? Osteoporos Int. 2005;23:289–94.Google Scholar
  19. 19.
    Raab-Cullen DM, Akhter MP, Kimmel DB, Recker RR. Bone response to alternate-day mechanical loading of the rat tibia. J Bone Miner Res. 1994;9(2):203–11.CrossRefPubMedGoogle Scholar
  20. 20.
    Umemura Y, Nagasawa S, Honda A, Singh R. High-impact exercise frequency per week or day for osteogenic response in rats. J Bone Miner Metab. 2008;26(5):456–60.CrossRefPubMedGoogle Scholar
  21. 21.
    Cullen DM, Smith RT, Akhter MP. Bone-loading response varies with strain magnitude and cycle number. J Appl Physiol. 2001;91(5):1971–6.PubMedGoogle Scholar
  22. 22.
    Bebenek M, Kemmler W, von Stengel S, Engelke K, Kalender W. Effect of exercise and Cimicifuga racemosa (CR BNO 1055) on postmenopausal risk factors and complaints—the randomized controlled TRACE Study. Menopause. 2010;17(4):791–800.PubMedGoogle Scholar
  23. 23.
    Bemben DA, Bemben MG. Dose-response effect of 40 weeks of resistance training on bone mineral density in older adults. Osteoporos Int. 2011;22(1):179–86.CrossRefPubMedGoogle Scholar
  24. 24.
    Cussler EC, Going SB, Houtkooper LB, Stanford VA, Blew RM, Flint-Wagner HG, et al. Exercise frequency and calcium intake predict 4-year bone changes in postmenopausal women. Osteoporos Int. 2005;16(12):2129–41.CrossRefPubMedGoogle Scholar
  25. 25.
    Bailey CA, Brooke-Wavell K. Optimum frequency of exercise for bone health: randomised controlled trial of a high-impact unilateral intervention. Bone. 2010;46(4):1043–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Kemmler W, Riedel H. Körperliche Belastung und Osteoporose - Einfluß einer 10monatigen Interventionsmaßnahme auf ossäre und extraossäre Risikofaktoren einer Osteoporose. Dtsch Z Sportmed. 1998;49:270–7.Google Scholar
  27. 27.
    Kemmler W, Bebenek M, von Stengel S, Engelke K, Kalender WA. Effect of block-periodized exercise training on bone and coronary heart disease risk factors in early post-menopausal women: a randomized controlled study. Scand J Med Sci Sports. 2013;23(1):121–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Kemmler W, von Stengel S. Exercise frequency, health risk factors, and diseases of the elderly. Arch Phys Med Rehabil. 2013;94(11):2046–53.CrossRefPubMedGoogle Scholar
  29. 29.
    •• Kemmler W, von Stengel S. Dose-response effect of exercise frequency on bone mineral density in post-menopausal, osteopenic women. Scand J Med Sci Sports. 2014;24:526–34. The study that determined the minimum effective dose of exercise on BMD at the lumbar spine and femoral neck over a total length of 16 years. CrossRefPubMedGoogle Scholar
  30. 30.
    Kemmler W, von Stengel S, Kohl M. Exercise frequency and bone mineral density development in exercising postmenopausal osteopenic women. Is there a critical dose of exercise for affecting bone? Results of the Erlangen Fitness and Osteoporosis Prevention Study. Bone. 2016;89:1–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Kemmler W, von Stengel S, Engelke K, Haberle L, Kalender WA. Exercise effects on bone mineral density, falls, coronary risk factors, and health care costs in older women: the randomized controlled senior fitness and prevention (SEFIP) study. Arch Intern Med. 2010;170(2):179–85.CrossRefPubMedGoogle Scholar
  32. 32.
    Kemmler W, Engelke K, von Stengel S. Long-term exercise and bone mineral density changes in postmenopausal women—are there periods of reduced effectiveness? J Bone Miner Res. 2016;31(1):215–22.CrossRefPubMedGoogle Scholar
  33. 33.
    Schmitt NM, Schmitt J, Dören M. The role of physical activity in the prevention of osteoporosis in postmenopausal women—an update. Maturitas. 2009;63:34–8.CrossRefPubMedGoogle Scholar
  34. 34.
    • Sherrington C, Tiedemann A, Fairhall N, Close JC, Lord SR. Exercise to prevent falls in older adults: an updated meta-analysis and best practice recommendations. NSW Public Health Bull. 2011;22(3–4):78–83. Summary of exercise recommmendations to reduce falls in older people. CrossRefGoogle Scholar
  35. 35.
    Giangregorio LM, Thabane L, Adachi JD, Ashe MC, Bleakney RR, Braun EA, et al. Build better bones with exercise: protocol for a feasibility study of a multicenter randomized controlled trial of 12 months of home exercise in women with a vertebral fracture. Phys Ther. 2014;94(9):1337–52.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cumming RG, Thomas M, Szonyi G, Salkeld G, O'Neill E, Westbury C, et al. Home visits by an occupational therapist for assessment and modification of environmental hazards: a randomized trial of falls prevention. J Am Geriatr Soc. 1999;47(12):1397–402.CrossRefPubMedGoogle Scholar
  37. 37.
    Voukelatos A, Cumming RG, Lord SR, Rissel C. A randomized, controlled trial of tai chi for the prevention of falls: the Central Sydney tai chi trial. J Am Geriatr Soc. 2007;55(8):1185–91.CrossRefPubMedGoogle Scholar
  38. 38.
    Means KM, Rodell DE, O'Sullivan PS. Balance, mobility, and falls among community-dwelling elderly persons: effects of a rehabilitation exercise program. Am J Phys Med Rehabil. 2005;84(4):238–50.CrossRefPubMedGoogle Scholar
  39. 39.
    Kemmler W. Meta-analysis and exercise related sports medicine [Meta-Analysen im trainingswissenschaftlichen und sportmedizinischen Spannungsfeld]. Dt Ztschr Sport Med. 2013;64(3):96–8.Google Scholar
  40. 40.
    Groen BE, Weerdesteyn V, Duysens J. Martial arts fall techniques decrease the impact forces at the hip during sideways falling. J Biomech. 2007;40(2):458–62.CrossRefPubMedGoogle Scholar
  41. 41.
    Leavitt FJ. Can martial arts falling techniques prevent injuries? Inj Prev. 2003;9(3):284.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    van der Zijden AM, Groen BE, Tanck E, Nienhuis B, Verdonschot N, Weerdesteyn V. Can martial arts techniques reduce fall severity? An in vivo study of femoral loading configurations in sideways falls. J Biomech. 2012;45(9):1650–5.CrossRefPubMedGoogle Scholar
  43. 43.
    Weerdesteyn V, Groen BE, van Swigchem R, Duysens J. Martial arts fall techniques reduce hip impact forces in naive subjects after a brief period of training. J Electromyogr Kinesiol. 2008;18(2):235–42.CrossRefPubMedGoogle Scholar
  44. 44.
    Rütten A, Abu-Omar K, Meierjürgen R, Lutz A, Adlwarth R. Was bewegt die Nicht-Beweger? Präv Gesundheitsforsch. 2009;4:245–50.CrossRefGoogle Scholar
  45. 45.
    Bolam KA, van Uffelen JG, Taaffe DR. The effect of physical exercise on bone density in middle-aged and older men: a systematic review. Osteoporos Int. 2013;24(11):2749–62.CrossRefPubMedGoogle Scholar
  46. 46.
    Peterson MD, Sen A, Gordon PM. Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med Sci Sports Exerc. 2011;43(2):249–58.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Marcus R. Exercise: moving in the right direction. J Bone Miner Res. 1998;13(12):1793–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Börjesson M, Hellenius ML, Jansson E, Karlson J, Leijon M, Staehle A, et al. Physical activity in the prevention and treatment of disease. Professional-Associations-for-Physical-Activity, editor. Stockholm: Swedish Institute of Health; 2010.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Wolfgang Kemmler
    • 1
  • Simon von Stengel
    • 1
  • Matthias Kohl
    • 2
  1. 1.Institute of Medical PhysicsFriedrich-Alexander University of Erlangen-NürnbergErlangenGermany
  2. 2.Department of Medical and Life SciencesUniversity of FurtwangenFurtwangen im SchwarzwaldGermany

Personalised recommendations