Current Osteoporosis Reports

, Volume 15, Issue 5, pp 450–458 | Cite as

Epigenetics and Bone Remodeling

  • Ali Husain
  • Matlock A. Jeffries
Osteoimmunology (M Humphrey and M Nakamura, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Osteoimmunology


Purpose of Review

Bone remodeling is a diverse field of study with many direct clinical applications; past studies have implicated epigenetic alterations as key factors of both normal bone tissue development and function and diseases of pathologic bone remodeling. The purpose of this article is to review the most important recent advances that link epigenetic changes to the bone remodeling field.

Recent Findings

Epigenetics describes three major phenomena: DNA modification via methylation, histone side chain modifications, and short non-coding RNA sequences which work in concert to regulate gene transcription in a heritable fashion. Recent findings include the role of DNA methylation changes of Wnt, RANK/RANKL, and other key signaling pathways, epigenetic regulation of osteoblast and osteoclast differentiation, and others.


Although much work has been done, much is still unknown. Future epigenome-wide studies should focus on extending the tissue coverage, integrating multiple epigenetic analyses with transcriptome data, and working to uncover epigenetic changes linked with early events in aberrant bone remodeling.


Bone remodeling Epigenetics DNA methylation Histone modification miRNA Review 


Compliance with Ethical Standards

Conflict of Interest

Matlock Jeffries and Ali Husain declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Oldknow KJ, MacRae VE, Farquharson C. Endocrine role of bone: recent and emerging perspectives beyond osteocalcin. J Endocrinol. 2015;225:R1–19.CrossRefPubMedGoogle Scholar
  2. 2.
    Wu Y, Humphrey MB, Nakamura MC. Osteoclasts—the innate immune cells of the bone. Autoimmunity. 2008;41:183–94.CrossRefPubMedGoogle Scholar
  3. 3.
    Johnell O, Kanis J. Epidemiology of osteoporotic fractures. Osteoporos Int. 2005;16(Suppl 2):S3–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014;29:2520–6.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet. 1999;353:878–82.CrossRefPubMedGoogle Scholar
  6. 6.
    Frost SA, Nguyen ND, Center JR, Eisman JA, Nguyen TV. Excess mortality attributable to hip-fracture: a relative survival analysis. Bone. 2013;56:23–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Grønskag AB, Romundstad P, Forsmo S, Langhammer A, Schei B. Excess mortality after hip fracture among elderly women in Norway. Osteoporos Int Springer-Verlag. 2012;23:1807–11.CrossRefGoogle Scholar
  8. 8.
    Tarride J-E, Burke N, Leslie WD, Morin SN, Adachi JD, Papaioannou A, et al. Loss of health related quality of life following low-trauma fractures in the elderly. BMC Geriatr. 2016;16:84.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Suenkeler IH, Nowak M, Misselwitz B, Kugler C, Schreiber W, Oertel WH, et al. Time course of health-related quality of life as determined 3, 6 and 12 months after stroke. Relationship to neurological deficit, disability and depression. J Neurol. 2002;249:1160–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Haynes DR, Crotti TN, Loric M, Bain GI, Atkins GJ, Findlay DM. Osteoprotegerin and receptor activator of nuclear factor kappaB ligand (RANKL) regulate osteoclast formation by cells in the human rheumatoid arthritic joint. Rheumatology. 2001;40:623–30.CrossRefPubMedGoogle Scholar
  11. 11.
    •• Karasik D, Rivadeneira F, Johnson ML. The genetics of bone mass and susceptibility to bone diseases. Nat Rev Rheumatol. 2016;12:323–34. Recent, comprehensive review of genetic susceptibility to common clinical disorders of bone remodeling.CrossRefPubMedGoogle Scholar
  12. 12.
    Jeffries MA, Sawalha AH. Autoimmune disease in the epigenetic era: how has epigenetics changed our understanding of disease and how can we expect the field to evolve? Expert Rev Clin Immunol. 2015;11:45–58.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jeffries MA, Donica M, Baker L, Stevenson M, Annan AC, Humphrey MB, et al. Genome-wide DNA methylation study identifies significant epigenomic changes in osteoarthritic subchondral bone and similarity to overlying cartilage. Arthritis Rheumatol. 2015; Available from: doi: 10.1002/art.39555.
  14. 14.
    Jeffries MA, Donica M, Baker LW, Stevenson ME, Annan AC, Humphrey MB, et al. Genome-wide DNA methylation study identifies significant epigenomic changes in osteoarthritic cartilage. Arthritis Rheumatol. Wiley Online Library. 2014;66:2804–15.CrossRefPubMedGoogle Scholar
  15. 15.
    •• Loughlin J, Reynard LN. Osteoarthritis: epigenetics of articular cartilage in knee and hip OA. Nat Rev Rheumatol. 2015;11:6–7. Nice short review of epigenetic studies of osteoarthritis cartilage.CrossRefPubMedGoogle Scholar
  16. 16.
    Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462:315–22.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Scarano E, Iaccarino M, Grippo P, Parisi E. The heterogeneity of thymine methyl group origin in DNA pyrimidine isostichs of developing sea urchin embryos. Proc Natl Acad Sci U S A. 1967;57:1394–400.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hughes T, Webb R, Fei Y, Wren JD, Sawalha AH. DNA methylome in human CD4+ T cells identifies transcriptionally repressive and non-repressive methylation peaks. Genes Immun. 2010;11:554–60.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Schomacher L. Mammalian DNA demethylation: multiple faces and upstream regulation. Epigenetics. 2013;8:679–84.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Guo JU, Su Y, Zhong C, Ming G-L, Song H. Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond. Cell Cycle. 2011;10:2662–8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dieker J, Muller S. Epigenetic histone code and autoimmunity. Clin Rev Allergy Immunol. 2010;39:78–84.CrossRefPubMedGoogle Scholar
  22. 22.
    Pratt AJ, MacRae IJ. The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem. 2009;284:17897–901.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yoon J-H, Abdelmohsen K, Gorospe M. Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol. 2014;34:9–14.CrossRefPubMedGoogle Scholar
  24. 24.
    Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10:925–33.PubMedGoogle Scholar
  25. 25.
    Gong Y E et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. 2017. - PubMed - NCBI [Internet]. [cited 2017 Jan 22]. Available from:,,SSL+11719191.
  26. 26.
    Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346:1513–21.CrossRefPubMedGoogle Scholar
  27. 27.
    Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107:513–23.CrossRefPubMedGoogle Scholar
  28. 28.
    Balemans W, Patel N, Ebeling M, Van Hul E, Wuyts W, Lacza C, et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet. 2002;39:91–7.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Staehling-Hampton K, Proll S, Paeper BW, Zhao L, Charmley P, Brown A, et al. A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet. 2002;110:144–52.CrossRefPubMedGoogle Scholar
  30. 30.
    Niziolek PJ, Farmer TL, Cui Y, Turner CH, Warman ML, Robling AG. High-bone-mass-producing mutations in the Wnt signaling pathway result in distinct skeletal phenotypes. Bone. 2011;49:1010–9.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Agholme F, Li X, Isaksson H, Ke HZ, Aspenberg P. Sclerostin antibody treatment enhances metaphyseal bone healing in rats. J Bone Miner Res. 2010;25:2412–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Padhi D, Jang G, Stouch B, Fang L, Posvar E. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res Wiley Online Library. 2011;26:19–26.CrossRefPubMedGoogle Scholar
  33. 33.
    Taylor S, Ominsky MS, Hu R, Pacheco E, He YD, Brown DL, et al. Time-dependent cellular and transcriptional changes in the osteoblast lineage associated with sclerostin antibody treatment in ovariectomized rats. Bone. 2016;84:148–59.CrossRefPubMedGoogle Scholar
  34. 34.
    Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH, Weber PB, et al. Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol. 2010;30:3071–85.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280:19883–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Semënov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem. 2005;280:26770–5.CrossRefPubMedGoogle Scholar
  37. 37.
    Delgado-Calle J, Fernández AF, Sainz J, Zarrabeitia MT, Sañudo C, García-Renedo R, et al. Genome-wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum. 2013;65:197–205.CrossRefPubMedGoogle Scholar
  38. 38.
    Delgado-Calle J, Sañudo C, Bolado A, Fernández AF, Arozamena J, Pascual-Carra MA, et al. DNA methylation contributes to the regulation of sclerostin expression in human osteocytes. J Bone Miner Res. 2012;27:926–37.CrossRefPubMedGoogle Scholar
  39. 39.
    •• Reppe S, Noer A, Grimholt RM, Halldórsson BV, Medina-Gomez C, Gautvik VT, et al. Methylation of bone SOST, its mRNA, and serum sclerostin levels correlate strongly with fracture risk in postmenopausal women. J Bone Miner Res. 2015;30:249–56. One of the only studies in this field to examine DNA methylation changes in a particular tissue (bone) with overall risk of a systemic bone remodeling disorder (osteoporosis).CrossRefPubMedGoogle Scholar
  40. 40.
    •• Lhaneche L, Hald JD, Domingues A, Hannouche D, Delepine M, Zelenika D, et al. Variations of SOST mRNA expression in human bone are associated with DNA polymorphism and DNA methylation in the SOST gene. Bone. 2016;92:107–15. A good example of how genetics and epigenetics interact to influence gene expression related to bone remodeling.CrossRefPubMedGoogle Scholar
  41. 41.
    Tarfiei G, Noruzinia M, Soleimani M, Kaviani S, Mahmoodinia Maymand M, Farshdousti Hagh M, et al. ROR2 promoter methylation change in osteoblastic differentiation of mesenchymal stem cells. Cell J. 2011;13:11–5.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Chiba N, Furukawa K-I, Takayama S, Asari T, Chin S, Harada Y, et al. Decreased DNA methylation in the promoter region of the WNT5A and GDNF genes may promote the osteogenicity of mesenchymal stem cells from patients with ossified spinal ligaments. J Pharmacol Sci. 2015;127:467–73.CrossRefPubMedGoogle Scholar
  43. 43.
    Cho Y-D, Yoon W-J, Kim W-J, Woo K-M, Baek J-H, Lee G, et al. Epigenetic modifications and canonical wingless/int-1 class (WNT) signaling enable trans-differentiation of nonosteogenic cells into osteoblasts. J Biol Chem. 2014;289:20120–8.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhou G-S, Zhang X-L, Wu J-P, Zhang R-P, Xiang L-X, Dai L-C, et al. 5-Azacytidine facilitates osteogenic gene expression and differentiation of mesenchymal stem cells by alteration in DNA methylation. Cytotechnology. 2009;60:11.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kang M-I, Kim H-S, Jung Y-C, Kim Y-H, Hong S-J, Kim M-K, et al. Transitional CpG methylation between promoters and retroelements of tissue-specific genes during human mesenchymal cell differentiation. J Cell Biochem. Wiley Online Library. 2007;102:224–39.CrossRefPubMedGoogle Scholar
  46. 46.
    Delgado-Calle J, Sañudo C, Fernández AF, García-Renedo R, Fraga MF, Riancho JA. Role of DNA methylation in the regulation of the RANKL-OPG system in human bone. Epigenetics. 2012;7:83–91.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kitazawa R, Kitazawa S, Maeda S. Promoter structure of mouse RANKL/TRANCE/OPGL/ODF gene. Biochim Biophys Acta. 1999;1445:134–41.CrossRefPubMedGoogle Scholar
  48. 48.
    Kitazawa S, Kitazawa R. Epigenetic control of mouse receptor activator of NF-kappa B ligand gene expression. Biochem Biophys Res Commun. 2002;293:126–31.CrossRefPubMedGoogle Scholar
  49. 49.
    Reppe S, Grimholt RM, Lyle R, Olstad OK, Gautvik VT, Gautvik KM. Strong correlation between BMD associated transcripts in postmenopausal iliac bone biopsies and DNA methylation levels at specific CpGs. J Bone Miner Res. 2014;S74. WILEY-BLACKWELL 111 RIVER ST, HOBOKEN 07030-5774, NJ USA.Google Scholar
  50. 50.
    Reppe S E et al. The influence of DNA methylation on bone cells. - PubMed - NCBI [Internet]. 2015 [cited 2017 Jan 18]. Available from:,,SSL+?term=The+Influence+of+DNA+Methylation+on+Bone+Cells.
  51. 51.
    Del Real A, Pérez-Campo FM, Fernández AF, Sañudo C, Ibarbia CG, Pérez-Núñez MI, et al. Differential analysis of genome-wide methylation and gene expression in mesenchymal stem cells of patients with fractures and osteoarthritis. Epigenetics. 2016:1–10.Google Scholar
  52. 52.
    Loeser RF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr Cartil. 2009;17:971–9.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Vasheghani F, Zhang Y, Li Y-H, Blati M, Fahmi H, Lussier B, et al. PPARγ deficiency results in severe, accelerated osteoarthritis associated with aberrant mTOR signalling in the articular cartilage. Ann Rheum Dis. 2015;74:569–78.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Holzer LA. Subchondral bone: an emerging target for treatment of osteoarthritis. J Rheum Dis Treat. 2015;1. Available from:
  55. 55.
    Li G, Yin J, Gao J, Cheng TS, Pavlos NJ, Zhang C, et al. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther. 2013;15:223.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Winslow MM, Pan M, Starbuck M, Gallo EM, Deng L, Karsenty G, et al. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell. 2006;10:771–82.CrossRefPubMedGoogle Scholar
  57. 57.
    Zhang Y, Fukui N, Yahata M, Katsuragawa Y, Tashiro T, Ikegawa S, et al. Identification of DNA methylation changes associated with disease progression in subchondral bone with site-matched cartilage in knee osteoarthritis. Sci Rep. 2016;6:34460.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Han S-M, Han S-H, Coh Y-R, Jang G, Chan Ra J, Kang S-K, et al. Enhanced proliferation and differentiation of Oct4- and Sox2-overexpressing human adipose tissue mesenchymal stem cells. Exp Mol Med. 2014;46:e101.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    de la Rica L, Rodríguez-Ubreva J, García M, Islam ABMMK, Urquiza JM, Hernando H, et al. PU.1 target genes undergo Tet2-coupled demethylation and DNMT3b-mediated methylation in monocyte-to-osteoclast differentiation. Genome Biol. 2013;14:R99.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zhang Y-X, Sun H-L, Liang H, Li K, Fan Q-M, Zhao Q-H. Dynamic and distinct histone modifications of osteogenic genes during osteogenic differentiation. J Biochem. 2015;158:445–57.PubMedGoogle Scholar
  61. 61.
    Qin H-T, Li H-Q, Liu F. Selective histone deacetylase small molecule inhibitors: recent progress and perspectives. Expert Opin Ther Pat. 2016;1–15.Google Scholar
  62. 62.
    Cantley MD, Fairlie DP, Bartold PM, Rainsford KD, Le GT, Lucke AJ, et al. Inhibitors of histone deacetylases in class I and class II suppress human osteoclasts in vitro. J Cell Physiol. 2011;226:3233–41.CrossRefPubMedGoogle Scholar
  63. 63.
    Schroeder TM, Westendorf JJ. Histone deacetylase inhibitors promote osteoblast maturation. J Bone Miner Res. 2005;20:2254–63.CrossRefPubMedGoogle Scholar
  64. 64.
    Lee HW, Suh JH, Kim AY, Lee YS, Park SY, Kim JB. Histone deacetylase 1-mediated histone modification regulates osteoblast differentiation. Mol Endocrinol. 2006;20:2432–43.CrossRefPubMedGoogle Scholar
  65. 65.
    Schroeder TM, Kahler RA, Li X, Westendorf JJ. Histone deacetylase 3 interacts with runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation. J Biol Chem. 2004;279:41998–2007.CrossRefPubMedGoogle Scholar
  66. 66.
    McGee-Lawrence ME, Bradley EW, Dudakovic A, Carlson SW, Ryan ZC, Kumar R, et al. Histone deacetylase 3 is required for maintenance of bone mass during aging. Bone. 2013;52:296–307.CrossRefPubMedGoogle Scholar
  67. 67.
    Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson B, Hsu Y, Richards JB, et al. Twenty loci associated with bone mineral density identified by large-scale meta-analysis of genome-wide association datasets. Bone. Elsevier. 2009;44:S230–1.CrossRefGoogle Scholar
  68. 68.
    Wein MN, Spatz J, Nishimori S, Doench J, Root D, Babij P, et al. HDAC5 controls MEF2C-driven sclerostin expression in osteocytes. J Bone Miner Res. 2015;30:400–11.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Li H, Xie H, Liu W, Hu R, Huang B, Tan Y-F, et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest. 2009;119:3666–77.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kim JH, Kim K, Youn BU, Jin HM, Kim J-Y, Moon JB, et al. RANKL induces NFATc1 acetylation and stability via histone acetyltransferases during osteoclast differentiation. Biochem J. 2011;436:253–62.CrossRefPubMedGoogle Scholar
  71. 71.
    Joosten LAB, Leoni F, Meghji S, Mascagni P. Inhibition of HDAC activity by ITF2357 ameliorates joint inflammation and prevents cartilage and bone destruction in experimental arthritis. Mol Med. 2011;17:391–6.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Pham L, Kaiser B, Romsa A, Schwarz T, Gopalakrishnan R, Jensen ED, et al. HDAC3 and HDAC7 have opposite effects on osteoclast differentiation. J Biol Chem. 2011;286:12056–65.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Jin Z, Wei W, Dechow PC, Wan Y. HDAC7 inhibits osteoclastogenesis by reversing RANKL-triggered β-catenin switch. Mol Endocrinol. 2013;27:325–35.CrossRefPubMedGoogle Scholar
  74. 74.
    Jin Z, Wei W, Huynh H, Wan Y. HDAC9 inhibits osteoclastogenesis via mutual suppression of PPARγ/RANKL signaling. Mol Endocrinol. 2015;29:730–8.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Rahman MM, Kukita A, Kukita T, Shobuike T, Nakamura T, Kohashi O. Two histone deacetylase inhibitors, trichostatin A and sodium butyrate, suppress differentiation into osteoclasts but not into macrophages. Blood. 2003;101:3451–9.CrossRefPubMedGoogle Scholar
  76. 76.
    Nakamura T, Kukita T, Shobuike T, Nagata K, Wu Z, Ogawa K, et al. Inhibition of histone deacetylase suppresses osteoclastogenesis and bone destruction by inducing IFN-β production. J Immunol. American Association of Immunologists. 2005;175:5809–16.CrossRefPubMedGoogle Scholar
  77. 77.
    Williams PJ, Nishu K, Rahman MM. HDAC inhibitor trichostatin A suppresses osteoclastogenesis by upregulating the expression of C/EBP-β and MKP-1. Ann N Y Acad Sci. 2011;1240:18–25.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747–54.CrossRefPubMedGoogle Scholar
  79. 79.
    Cohen MM Jr. Perspectives on RUNX genes: an update. Am J Med Genet A. 2009;149A:2629–46.CrossRefPubMedGoogle Scholar
  80. 80.
    Zhang Y, Xie R-L, Croce CM, Stein JL, Lian JB, van Wijnen AJ, et al. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci U S A. 2011;108:9863–8.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Gaur T, Hussain S, Mudhasani R, Parulkar I, Colby JL, Frederick D, et al. Dicer inactivation in osteoprogenitor cells compromises fetal survival and bone formation, while excision in differentiated osteoblasts increases bone mass in the adult mouse. Dev Biol. 2010;340:10–21.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Schaap-Oziemlak AM, Raymakers RA, Bergevoet SM, Gilissen C, Jansen BJH, Adema GJ, et al. MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells. Stem Cells Dev. 2010;19:877–85.CrossRefPubMedGoogle Scholar
  83. 83.
    Mizuno Y, Yagi K, Tokuzawa Y, Kanesaki-Yatsuka Y, Suda T, Katagiri T, et al. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem Biophys Res Commun. 2008;368:267–72.CrossRefPubMedGoogle Scholar
  84. 84.
    Itoh T, Nozawa Y, Akao Y. MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. J Biol Chem. 2009;284:19272–9.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Huang J, Zhao L, Xing L, Chen D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells. Wiley Online Library. 2010;28:357–64.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Hassan MQ, Maeda Y, Taipaleenmaki H, Zhang W, Jafferji M, Gordon JAR, et al. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem. 2012;287:42084–92.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Zhang W-B, Zhong W-J, Wang L. A signal-amplification circuit between miR-218 and Wnt/β-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation. Bone. 2014;58:59–66.CrossRefPubMedGoogle Scholar
  88. 88.
    Liu T, Hou L, Zhao Y, Huang Y. Epigenetic silencing of HDAC1 by miR-449a upregulates Runx2 and promotes osteoblast differentiation. Int J Mol Med. 2015;35:238–46.CrossRefPubMedGoogle Scholar
  89. 89.
    Chen C, Cheng P, Xie H, Zhou H-D, Wu X-P, Liao E-Y, et al. MiR-503 regulates osteoclastogenesis via targeting RANK. J Bone Miner Res. 2014;29:338–47.CrossRefPubMedGoogle Scholar
  90. 90.
    Shibuya H, Nakasa T, Adachi N, Nagata Y, Ishikawa M, Deie M, et al. Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation. Mod Rheumatol. 2013;23:674–85.CrossRefPubMedGoogle Scholar
  91. 91.
    Li Y-T, Chen S-Y, Wang C-R, Liu M-F, Lin C-C, Jou I-M, et al. Brief report: amelioration of collagen-induced arthritis in mice by lentivirus-mediated silencing of microRNA-223. Arthritis Rheum. 2012;64:3240–5.CrossRefPubMedGoogle Scholar
  92. 92.
    •• Seeliger C, Karpinski K, Haug AT, Vester H, Schmitt A, Bauer JS, et al. Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res. 2014;29:1718–28. A well-done study demonstrating the potential of serum epigenetic patterns as diagnostic biomarkers in clinical osteoporosis.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Division of Rheumatology, Immunology, and AllergyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Oklahoma Medical Research FoundationArthritis and Clinical Immunology ProgramOklahoma CityUSA

Personalised recommendations