Advertisement

Current Osteoporosis Reports

, Volume 13, Issue 6, pp 363–371 | Cite as

Prebiotic and Probiotic Regulation of Bone Health: Role of the Intestine and its Microbiome

  • Laura McCabeEmail author
  • Robert A. Britton
  • Narayanan Parameswaran
Skeletal Biology and Regulation (MR Forwood and A Robling, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Skeletal Biology and Regulation

Abstract

Recent advances in our understanding of how the intestinal microbiome contributes to health and disease have generated great interest in developing strategies for modulating the abundance of microbes and/or their activity to improve overall human health and prevent pathologies such as osteoporosis. Bone is an organ that the gut has long been known to regulate through absorption of calcium, the key bone mineral. However, it is clear that modulation of the gut and its microbiome can affect bone density and strength in a variety of animal models (zebrafish, rodents, chicken) and humans. This is demonstrated in studies ablating the microbiome through antibiotic treatment or using germ-free mouse conditions as well as in studies modulating the microbiome activity and composition through prebiotic and/or probiotic treatment. This review will discuss recent developments in this new and exciting area.

Keywords

Bone density Prebiotics Probiotics Microbiome Osteoblast Osteoclast 

Notes

Acknowledgments

The authors would like to acknowledge funding from NIH: NCCIH RO1AT007695 and NIDDK R01DK101050.

Compliance with Ethics Guidelines

Conflict of Interest

Dr. McCabe reports grants from BioGaia, during the conduct of the study; in addition, Dr. McCabe has a patent on the selection and use of lactic acid bacteria for bone health (United States Patent Application 20150150917 issued).

Dr. Britton reports grants from BioGaia, during the conduct of the study. In addition, Dr. Britton has a patent on the selection and use of lactic acid bacteria for bone health (United States Patent Application 20150150917).

Dr. Parameswaran has nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Backhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, et al. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe. 2012;12:611–22.CrossRefPubMedGoogle Scholar
  2. 2.
    O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688–93.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Human Microbiome Project, C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.CrossRefGoogle Scholar
  4. 4.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K, Chehoud C, Albenberg LG, Nessel L, Gilroy E, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2014.Google Scholar
  6. 6.
    Zheng X, Xie G, Zhao A, Zhao L, Yao C, Chiu NH, et al. The footprints of gut microbial-mammalian co-metabolism. J Proteome Res. 2011;10:5512–22.CrossRefPubMedGoogle Scholar
  7. 7.•
    Sjogren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, et al. The gut microbiota regulates bone mass in mice. J Bone Min Res Off J Am Soc Bone Min Res. 2012;27:1357–67. Directly measured the impact of intestinal microbes on bone health and associated parameters. Demonstrated the microbiome leads to lower bone volume fraction when compared to germ-free controls. CrossRefGoogle Scholar
  8. 8.
    Irwin R, Lee T, Young VB, Parameswaran N, McCabe LR. Colitis-induced bone loss is gender dependent and associated with increased inflammation. Inflamm Bowel Dis. 2013;19:1586–97.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Gao Y, Grassi F, Ryan MR, Terauchi M, Page K, Yang X, et al. IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest. 2007;117:122–32.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Weitzmann MN, Pacifici R. T cells: unexpected players in the bone loss induced by estrogen deficiency and in basal bone homeostasis. Ann N Y Acad Sci. 2007;1116:360–75.CrossRefPubMedGoogle Scholar
  11. 11.
    Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med. 2000;191:275–86.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Kudo O, Fujikawa Y, Itonaga I, Sabokbar A, Torisu T, Athanasou NA. Proinflammatory cytokine (TNFalpha/IL-1alpha) induction of human osteoclast formation. J Pathol. 2002;198:220–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–6.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–21.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010;104 Suppl 2:S1–63.CrossRefPubMedGoogle Scholar
  16. 16.
    Bindels LB, Delzenne NM, Cani PD, Walter J. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol. 2015;12:303–10.CrossRefPubMedGoogle Scholar
  17. 17.
    Macfarlane S, Macfarlane GT, Cummings JH. Review article: prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther. 2006;24:701–14.CrossRefPubMedGoogle Scholar
  18. 18.
    Thomas DW, Greer FR. Probiotics and prebiotics in pediatrics. Pediatrics. 2010;126:1217–31.CrossRefPubMedGoogle Scholar
  19. 19.
    Scholz-Ahrens KE, Ade P, Marten B, Weber P, Timm W, Acil Y, et al. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr. 2007;137:838S–46.PubMedGoogle Scholar
  20. 20.
    Chonan O, Watanuki M. Effect of galactooligosaccharides on calcium absorption in rats. J Nutr Sci Vitaminol (Tokyo). 1995;41:95–104.CrossRefGoogle Scholar
  21. 21.
    Roberfroid MB, Cumps J, Devogelaer JP. Dietary chicory inulin increases whole-body bone mineral density in growing male rats. J Nutr. 2002;132:3599–602.PubMedGoogle Scholar
  22. 22.
    Legette LL, Lee W, Martin BR, Story JA, Campbell JK, Weaver CM. Prebiotics enhance magnesium absorption and inulin-based fibers exert chronic effects on calcium utilization in a postmenopausal rodent model. J Food Sci. 2012;77:H88–94.CrossRefPubMedGoogle Scholar
  23. 23.
    Garcia-Vieyra MI, Del Real A, Lopez MG. Agave fructans: their effect on mineral absorption and bone mineral content. J Med Food. 2014;17:1247–55.CrossRefPubMedGoogle Scholar
  24. 24.
    Ohta A, Motohashi Y, Sakai K, Hirayama M, Adachi T, Sakuma K. Dietary fructooligosaccharides increase calcium absorption and levels of mucosal calbindin-D9k in the large intestine of gastrectomized rats. Scand J Gastroenterol. 1998;33:1062–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Shiga K, Nishimukai M, Tomita F, Hara H. Ingestion of difructose anhydride III, a non-digestible disaccharide, improves postgastrectomy osteopenia in rats. Scand J Gastroenterol. 2006;41:1165–73.CrossRefPubMedGoogle Scholar
  26. 26.
    Zafar TA, Weaver CM, Zhao Y, Martin BR, Wastney ME. Nondigestible oligosaccharides increase calcium absorption and suppress bone resorption in ovariectomized rats. J Nutr. 2004;134:399–402.PubMedGoogle Scholar
  27. 27.
    Mitamura R, Hara H. Ingestion of difructose anhydride III partially restores calcium absorption impaired by vitamin D and estrogen deficiency in rats. Eur J Nutr. 2006;45:242–9.CrossRefPubMedGoogle Scholar
  28. 28.
    van den Heuvel EG, Muys T, van Dokkum W, Schaafsma G. Oligofructose stimulates calcium absorption in adolescents. Am J Clin Nutr. 1999;69:544–8.PubMedGoogle Scholar
  29. 29.
    Griffin IJ, Davila PM, Abrams SA. Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br J Nutr. 2002;87 Suppl 2:S187–91.CrossRefPubMedGoogle Scholar
  30. 30.
    Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, et al. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr. 2005;82:471–6.PubMedGoogle Scholar
  31. 31.
    Holloway L, Moynihan S, Abrams SA, Kent K, Hsu AR, Friedlander AL. Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. Br J Nutr. 2007;97:365–72.CrossRefPubMedGoogle Scholar
  32. 32.
    van den Heuvel EG, Schoterman MH, Muijs T. Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women. J Nutr. 2000;130:2938–42.PubMedGoogle Scholar
  33. 33.
    Takahara S, Morohashi T, Sano T, Ohta A, Yamada S, Sasa R. Fructooligosaccharide consumption enhances femoral bone volume and mineral concentrations in rats. J Nutr. 2000;130:1792–5.PubMedGoogle Scholar
  34. 34.
    Weaver CM, Martin BR, Story JA, Hutchinson I, Sanders L. Novel fibers increase bone calcium content and strength beyond efficiency of large intestine fermentation. J Agric Food Chem. 2010;58:8952–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Chonan O, Matsumoto K, Watanuki M. Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Biosci Biotechnol Biochem. 1995;59:236–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Ohta A, Uehara M, Sakai K, Takasaki M, Adlercreutz H, Morohashi T, et al. A combination of dietary fructooligosaccharides and isoflavone conjugates increases femoral bone mineral density and equol production in ovariectomized mice. J Nutr. 2002;132:2048–54.PubMedGoogle Scholar
  37. 37.
    Ohta A, Ohtsuki M, Uehara M, Hosono A, Hirayama M, Adachi T, et al. Dietary fructooligosaccharides prevent postgastrectomy anemia and osteopenia in rats. J Nutr. 1998;128:485–90.PubMedGoogle Scholar
  38. 38.
    Scholz-Ahrens KE, Schrezenmeir J. Inulin and oligofructose and mineral metabolism: the evidence from animal trials. J Nutr. 2007;137:2513S–23.PubMedGoogle Scholar
  39. 39.
    Ortiz LT, Rodriguez ML, Alzueta C, Rebole A, Trevino J. Effect of inulin on growth performance, intestinal tract sizes, mineral retention and tibial bone mineralisation in broiler chickens. Br Poult Sci. 2009;50:325–32.CrossRefPubMedGoogle Scholar
  40. 40.
    Varley PF, McCarney C, Callan JJ, O’Doherty JV. Effect of dietary mineral level and inulin inclusion on phosphorus, calcium and nitrogen utilisation, intestinal microflora and bone development. J Sci Food Agric. 2010;90:2447–54.CrossRefPubMedGoogle Scholar
  41. 41.
    Coxam V. Current data with inulin-type fructans and calcium, targeting bone health in adults. J Nutr. 2007;137:2527S–33.PubMedGoogle Scholar
  42. 42.
    Slevin MM, Allsopp PJ, Magee PJ, Bonham MP, Naughton VR, Strain JJ, et al. Supplementation with calcium and short-chain fructo-oligosaccharides affects markers of bone turnover but not bone mineral density in postmenopausal women. J Nutr. 2014;144:297–304.CrossRefPubMedGoogle Scholar
  43. 43.
    Mathey J, Puel C, Kati-Coulibaly S, Bennetau-Pelissero C, Davicco MJ, Lebecque P, et al. Fructooligosaccharides maximize bone-sparing effects of soy isoflavone-enriched diet in the ovariectomized rat. Calcif Tissue Int. 2004;75:169–79.CrossRefPubMedGoogle Scholar
  44. 44.
    Weaver CM, Martin BR, Nakatsu CH, Armstrong AP, Clavijo A, McCabe LD, et al. Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation. J Agric Food Chem. 2011;59:6501–10.CrossRefPubMedGoogle Scholar
  45. 45.•
    Weaver CM. Diet, gut microbiome, and bone health. Curr Osteoporos Rep. 2015;13:125–30. Nice review discussing the role of prebiotics and their enhancement of calcium absorption in animal and human studies. CrossRefPubMedGoogle Scholar
  46. 46.
    Yang LC, Wu JB, Lu TJ, Lin WC. The prebiotic effect of Anoectochilus formosanus and its consequences on bone health. British J Nutr. 2012;1–10.Google Scholar
  47. 47.
    Bryk G, Coronel MZ, Pellegrini G, Mandalunis P, Rio ME, de Portela ML, Zeni SN Effect of a combination GOS/FOS prebiotic mixture and interaction with calcium intake on mineral absorption and bone parameters in growing rats. Eur J Nutr. 2014.Google Scholar
  48. 48.
    Shiga K, Hara H, Okano G, Ito M, Minami A, Tomita F. Ingestion of difructose anhydride III and voluntary running exercise independently increase femoral and tibial bone mineral density and bone strength with increasing calcium absorption in rats. J Nutr. 2003;133:4207–11.PubMedGoogle Scholar
  49. 49.
    Raschka L, Daniel H. Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone. 2005;37:728–35.CrossRefPubMedGoogle Scholar
  50. 50.
    Trinidad TP, Wolever TM, Thompson LU. Effect of acetate and propionate on calcium absorption from the rectum and distal colon of humans. Am J Clin Nutr. 1996;63:574–8.PubMedGoogle Scholar
  51. 51.
    Langlands SJ, Hopkins MJ, Coleman N, Cummings JH. Prebiotic carbohydrates modify the mucosa associated microflora of the human large bowel. Gut. 2004;53:1610–6.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    (FAO), F.a.A.O.o.t.U.N. Probiotics in food: health and nutritional properties and guidelines for evaluation. FAO Food and Nutrition paper. 2001;85.Google Scholar
  53. 53.
    Abdelqader A, Irshaid R, Al-Fataftah A-R. Effects of dietary probiotic inclusion on performance, eggshell quality, cecal microflora composition, and tibia traits of laying hens in the late phase of production. Trop Anim Health Prod. 2013;45:1017–24.CrossRefPubMedGoogle Scholar
  54. 54.
    Lan GQ, Abdullah N, Jalaludin S, Ho YW. Efficacy of supplementation of a phytase-producing bacterial culture on the performance and nutrient use of broiler chickens fed corn-soybean meal diets. Poult Sci. 2002;81:1522–32.CrossRefPubMedGoogle Scholar
  55. 55.
    Mutus R, Kocabagli N, Alp M, Acar N, Eren M, Gezen SS. The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers. Poult Sci. 2006;85:1621–5.CrossRefPubMedGoogle Scholar
  56. 56.
    Sadeghi AA. Bone mineralization of broiler chicks challenged with Salmonella enteritidis fed diet containing probiotic (Bacillus subtilis). Probiot Antimicrob Proteins. 2014;6:136–40.CrossRefGoogle Scholar
  57. 57.
    Messora MR, Oliveira LFF, Foureaux RC, Taba MJ, Zangeronimo MG, Furlaneto FAC, et al. Probiotic therapy reduces periodontal tissue destruction and improves the intestinal morphology in rats with ligature-induced periodontitis. J Periodontol. 2013;84:1818–26.CrossRefPubMedGoogle Scholar
  58. 58.
    Foureaux RDC, Messora MR, de Oliveira LFF, Napimoga MH, Pereira ANJ, Ferreira MS, et al. Effects of probiotic therapy on metabolic and inflammatory parameters of rats with ligature-induced periodontitis associated with restraint stress. J Periodontol. 2014;85:975–83.CrossRefGoogle Scholar
  59. 59.
    Garcia VG, Knoll LR, Longo M, Novaes VCN, Assem NZ, Ervolino E, de Toledo BEC, Theodoro LH Effect of the probiotic Saccharomyces cerevisiae on ligature-induced periodontitis in rats. J Period Res. 2015.Google Scholar
  60. 60.
    Maekawa T, Hajishengallis G. Topical treatment with probiotic Lactobacillus brevis CD2 inhibits experimental periodontal inflammation and bone loss. J Periodontal Res. 2014;49:785–91.CrossRefPubMedGoogle Scholar
  61. 61.
    Tomofuji T, Ekuni D, Azuma T, Irie K, Endo Y, Yamamoto T, et al. Supplementation of broccoli or Bifidobacterium longum-fermented broccoli suppresses serum lipid peroxidation and osteoclast differentiation on alveolar bone surface in rats fed a high-cholesterol diet. Nutr Res. 2012;32:301–7.CrossRefPubMedGoogle Scholar
  62. 62.•
    McCabe LR, Irwin R, Schaefer L, Britton RA. Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol. 2013;228:1793–8. Determined that responses to probiotics can be gender dependent. Demonstrated an increase in bone formation in male mice in response to L. reuteri treatment. PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.••
    Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, et al. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol. 2014;229:1822–30. Identified that use of probiotics can suppress osteoclast activity in ovariectomized mice and prevent bone loss. Demonstrated that probiotics can modify the intestinal microbiome in ovariectomized mice and secrete factors that suppress osteoclastogenesis in vitro. CrossRefPubMedGoogle Scholar
  64. 64.
    Ohlsson C, Engdahl C, Fak F, Andersson A, Windahl SH, Farman HH, et al. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One. 2014;9:e92368.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Chiang SS, Pan TM. Antiosteoporotic effects of Lactobacillus-fermented soy skim milk on bone mineral density and the microstructure of femoral bone in ovariectomized mice. J Agric Food Chem. 2011;59:7734–42.CrossRefPubMedGoogle Scholar
  66. 66.
    Narva M, Rissanen J, Halleen J, Vapaatalo H, Vaananen K, Korpela R. Effects of bioactive peptide, valyl-prolyl-proline (VPP), and lactobacillus helveticus fermented milk containing VPP on bone loss in ovariectomized rats. Ann Nutr Metab. 2007;51:65–74.CrossRefPubMedGoogle Scholar
  67. 67.••
    Zhang J, Motyl KJ, Irwin R, MacDougald OA, Britton RA, McCabe LR Loss of bone and Wnt10b expression in male type 1 diabetic mice is blocked by the probiotic L. reuteri. Endocrinology. 2015;EN20151308. Established that probiotics can block bone loss in a type 1 diabetes mouse model. A role for L. reuteri preventing TNF suppression of Wnt signaling in bone is suggested.Google Scholar
  68. 68.
    Narva M, Collin M, Lamberg-Allardt C, Karkkainen M, Poussa T, Vapaatalo H, et al. Effects of long-term intervention with Lactobacillus helveticus-fermented milk on bone mineral density and bone mineral content in growing rats. Ann Nutr Metab. 2004;48:228–34.CrossRefPubMedGoogle Scholar
  69. 69.
    Rodrigues FC, Castro ASB, Rodrigues VC, Fernandes SA, Fontes EAF, de Oliveira TT, et al. Yacon flour and Bifidobacterium longum modulate bone health in rats. J Med Food. 2012;15:664–70.CrossRefPubMedGoogle Scholar
  70. 70.
    Rovensky J, Svik K, Matha V, Istok R, Ebringer L, Ferencik M, et al. The effects of Enterococcus faecium and selenium on methotrexate treatment in rat adjuvant-induced arthritis. Clin Dev Immunol. 2004;11:267–73.PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.••
    Amdekar S, Singh V, Singh R, Sharma P, Keshav P, Kumar A. Lactobacillus casei reduces the inflammatory joint damage associated with collagen-induced arthritis (CIA) by reducing the pro-inflammatory cytokines: Lactobacillus casei: COX-2 inhibitor. J Clin Immunol. 2011;31:147–54. Showed a key difference between a broad anti-inflammatory which also suppresses the anti-inflammatory IL-10 cytokine versus a probiotic that suppresses only pro-inflammatory cytokines but enhances IL-10. CrossRefPubMedGoogle Scholar
  72. 72.
    Salva S, Merino MC, Aguero G, Gruppi A, Alvarez S. Dietary supplementation with probiotics improves hematopoiesis in malnourished mice. PLoS One. 2012;7:e31171.PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Gerbitz A, Schultz M, Wilke A, Linde H-J, Scholmerich J, Andreesen R, et al. Probiotic effects on experimental graft-versus-host disease: let them eat yogurt. Blood. 2004;103:4365–7.CrossRefPubMedGoogle Scholar
  74. 74.
    Avella MA, Place A, Du S-J, Williams E, Silvi S, Zohar Y, et al. Lactobacillus rhamnosus accelerates zebrafish backbone calcification and gonadal differentiation through effects on the GnRH and IGF systems. PLoS One. 2012;7:e45572.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Maradonna F, Gioacchini G, Falcinelli S, Bertotto D, Radaelli G, Olivotto I, et al. Probiotic supplementation promotes calcification in Danio rerio larvae: a molecular study. PLoS One. 2013;8:e83155.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Laura McCabe
    • 1
    • 2
    Email author
  • Robert A. Britton
    • 3
  • Narayanan Parameswaran
    • 1
  1. 1.Department of Physiology, Biomedical Imaging Research CenterMichigan State UniversityEast LansingUSA
  2. 2.Department of Radiology, Biomedical Imaging Research CenterMichigan State UniversityEast LansingUSA
  3. 3.Baylor College of Medicine, Department of Molecular Virology and MicrobiologyAlkek Center for Metagenomics and Microbiome ResearchHoustonUSA

Personalised recommendations